CHEM 8M, Lecture 4

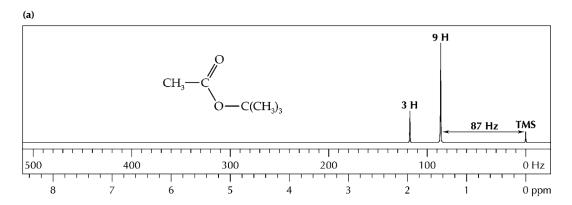
- ¹H NMR Structural Analysis
- Spectral Analysis of Benzhydrol

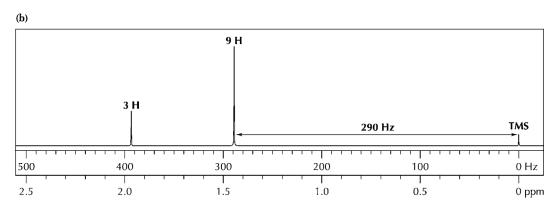
¹H NMR Chemical Equivalency, Integration, & Chemical Shifts

How many ¹H NMR absorptions are expected below (how many types of non-equivalent protons)?

What is the ratio of peak areas expected upon integration of the spectrum?

Approximate the **chemical shift** for each type of proton.


- What is the *chemical environment* of each proton?
- H-C-("Group") used to assign most appropriate chemical shift range


Can you use the structure to explain the relative chemical shift ranges?

What's the resonance frequency, Kenneth?

Chemical shift (ppm) = <u>frequency of proton relative to TMS</u> Maximum operating frequency of instrument (MHz)

Ex. *tert*-butyl acetate is dissolved in a solution of CDCl₃ (w/ 0.1 % TMS) and ¹H NMR spectra are run on two different instruments.

FIGURE 22.12 ¹H NMR spectra of *tert*-butyl acetate in the region from 0 to 500 Hz at (a) 60 MHz and (b) 200 MHz. The chemical shift of each signal is the same regardless of the spectrometer frequency.

How can ¹H NMR be used to determine or confirm chemical structures?

- Chemical shift, integration, & splitting (more on splitting in future lectures)

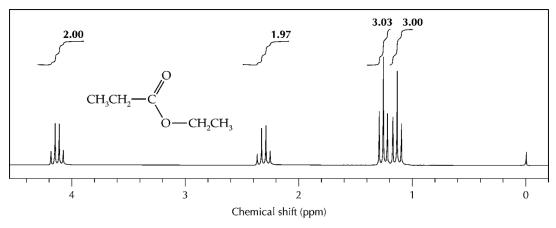
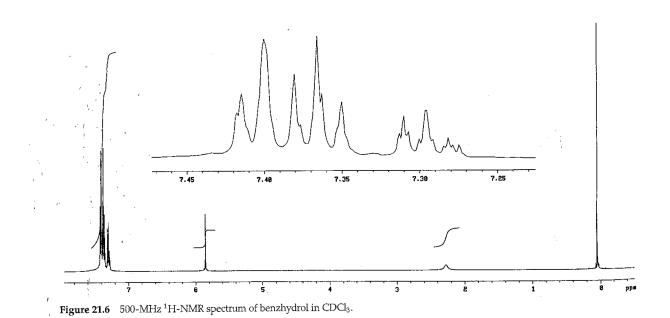


FIGURE 22.11 ¹H NMR spectrum of ethyl propanoate at 200 MHz.

¹H NMR Analysis (on paper)


- 1. How many types of non-equivalent protons are in benzhydrol?
- 2. What is the relative ratio of H's for each signal?
- 3. What is the chemical shift for each signal?
- 1. Look for symmetry equivalent protons and for asymmetry non-equivalent protons

- 2. How many of each type of proton?
- 3. Identifying chemical shift ranges in benzhydrol

Benzhydrol

Calculating expected chemical shifts using chemical shift correlation tables

Base value + Additive parameter (based on group and proximity)

Put it all together...

Table 3. ¹H NMR Analysis of Benzhydrol

C HO HE	Signal	Integration (# of H's)	Expected Chemical Shift (ppm)	Observed Chemical Shift (ppm)
B _H H	Α			
	В			
	С			
Benzhydrol	D			
	E			

Next week in lab: ¹H NMR Activity & drawer check

Next week in lecture: Oxidation of Benzhydrol