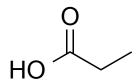

CHEM 8M, Lecture 7

Exp 4, Day 2 – Synthesis of & Vat Dyeing with Indigo Prep for NMR Problem Set – ¹H NMR Splitting

Part D.2. Vat Dyeing with Indigo

¹**H NMR** = "Proton NMR"


Relate the terms below to propanoic acid...

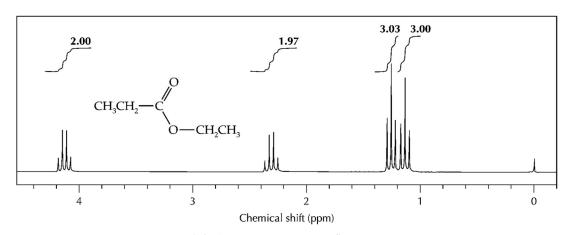
- Chemical Equivalence
- Integration
- Chemical Shifts

L7-1

Splitting aka ¹H-¹H Coupling and the "n+1 Rule"

Non-equivalent signals (neighboring proton nuclei) effect each other's peak shape.


i ne "n+1 rule" and splitting patterns						
n	n+1	Splitting				
(# of H neighbors)	(splitting or multiplicity)	Pattern				
0	1	Singlet				
1	2	Doublet				
2	3	Triplet				
3	4	Quartet				
4	5	Pentet				
5	6	Sextet				
6	7	Septet				


¹H spectrum of ethyl propanoate has two 2H quartets (B&C) and two 3H triplets (A&D).

- Signal **D** is a **3H triplet** at **1.3 ppm**:
- "δ 1.1 (3H triplet)"
- All D nuclei spin against B field @ 1.3 ppm
- D has 2 neighbors (signal C, n = 2) that are 50 / 50 with & against B field
- The *central* chemical shift of **D** remains the same (1.3 ppm)
- The random spins of C effect the peak shape of signal D
 - n = 2; n+1 = 3, triplet

Signal **D** without splitting

Signal **D** with splitting

Explain the splitting pattern of C, " δ 4.1 (2H quartet)"

<u>Preparing for NMR Problem Set</u> Predict # signals, integration, splitting, and chemical shift (range and calculated)

Br	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*
Br					

Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

8M, Indigo; ¹H NMR Splitting

Structural Elucidation - Propose a structure from chemical formula, IR, & ¹H NMR

Process: calculate degrees of unsaturation, use IR to identify possible functional group(s), draw structure fragments based on signal information (2H doublet = CH_2CH), then put the fragments together in the final structure. Check your work by calculating chemical shifts of the proposed structure.

 C_3H_6O ; **IR** 1720 cm⁻¹, 2900 cm⁻¹; ¹**H NMR** – δ 2.0 ppm (3H singlet)

 $C_5H_{12}O;$ IR 3300 cm⁻¹, 2900 cm⁻¹; ¹H NMR $-\delta$ 4.0 ppm (1H broad singlet), δ 3.5 ppm (2H triplet), δ 1.6 (1H nonet), δ 1.5 ppm (2H quartet), δ 0.9 (6H doublet)

Next week in lab: Indigo Synthesis, Work on Experimental Methods & NMR Problem Set

Next week in lecture: More ¹H NMR Analysis