CHEM 8M, Lecture 9

Experiment 6 (Lab Practical) – Synthesis of Aspirin

- ¹H NMR Analysis, Reaction Set Up, Work Up, Chemical Tests, IR, ¹³C NMR

¹H NMR Analysis of Aspirin

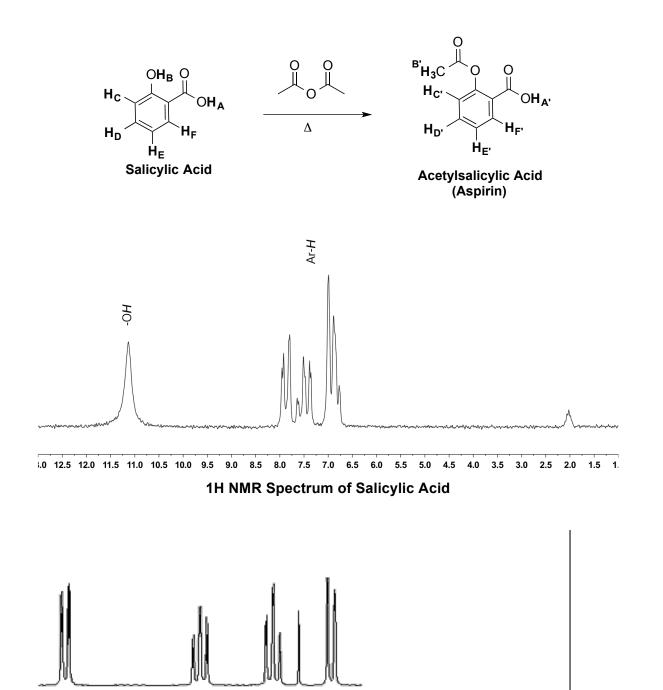
Last time: resonance effects relative chemical shifts (deshielding) of aromatic H's

EWG deshields the ortho & para H's

EDG shields the ortho & para H's

$$\bigcap_{\Theta} \bigcap_{\Theta} \bigcap_{\Theta$$

SUMMARIZE ¹H NMR of ASPIRIN


$$H_{C'}$$
 $H_{C'}$
 $H_{E'}$
 $H_{E'}$

Most deshielded Ar-H (highest chem shift)

Acetylsalicylic Acid (Aspirin)

Most shielded Ar-H (lowest chem shift)

What differences are expected / observed in the ¹H NMR of aspirin & its precursor?

8.0 7.0 6.0 5.0 4.0 3.0 2.0

1H NMR Spectrum of Aspirin

7.2

*11.5 ppm broad singlet expected by not observed in this particular spectrum

7.4

7.6

8.0

7.8

Reaction Mechanism & Set Up

Reaction Work Up

1. Cool for ~1 min

2. Add water to quench in warm water bath, 5 min

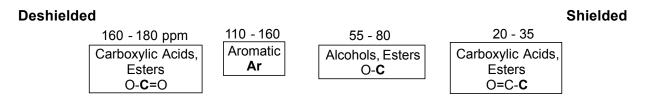
$$\begin{array}{c}
O \\
O
\end{array}$$

$$\begin{array}{c}
H_2O \\
\hline
\text{hydrolysis}
\end{array}$$

- 3. Crystallize
 - (a) Cool to RT, transfer to beaker
 - (b) Cool in ice bath, then scratch inside bottom of beaker, then wait!
 - (c) No crystals after ~5 min? Raise hand, ask TA for seed crystal
 - Wait at least 5 min after adding seed crystal to filter
- 4. Vacuum Filtration

Ferric Chloride Test for Phenols

$$\begin{array}{c|c} 3 & & \\ \hline \\ & \\ \end{array} \begin{array}{c} OH \\ \hline \\ \end{array} \begin{array}{c} FeCl_3 \\ \hline \\ \end{array} \begin{array}{c} O\\ \hline \\ \end{array} \begin{array}{c} Fe \\ \hline \\ \end{array} \begin{array}{c} O\\ \hline \\ \end{array} \begin{array}{c} FeCl_3 \\ \hline \\ \end{array} \begin{array}{c} O\\ \hline \end{array} \begin{array}{c} O\\ \end{array} \begin{array}{c} O\\ \hline \end{array} \begin{array}{c} O\\$$


3 test tubes: (1) Salicylic Acid

(2) Product

 $(3) H_2O$

¹³C NMR

- Exploring carbon nuclei of ¹³C isotopes (1.1% abundance)
 - longer experiment, requires more sample
- ¹³C nuclei resonate at higher chemical shifts (10-220ppm) than ¹H nuclei (0-12ppm)
- Similar deshielding effects to ¹H NMR

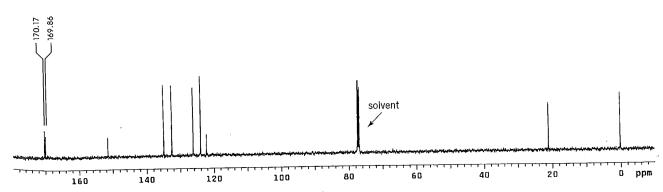


Figure 14.13 125.7-MHz ¹³C-NMR spectrum of aspirin in CDCl₃.

0	Chemical Shift (Observed ppm)	Assignment(s) (A' – J')	Expected Chemical Shift Range (ppm)
B' G' O O H'	169 & 170		
c' J' OH	152		
D' F'	125 – 135 (4 peaks)		
Acetylsalicylic Acid (Aspirin)	122		
	20		

IR Spectra of Salicylic Acid & Aspirin available online for comparison

Thanks for a great quarter!

Please fill out separate evals for me and your TA.

- What did you think about these lecture handouts?
- Reflect: what do you remember most about this class?
- How did the instructors play their part in engaging you with the material?
- What did we do well and what could we improve upon?