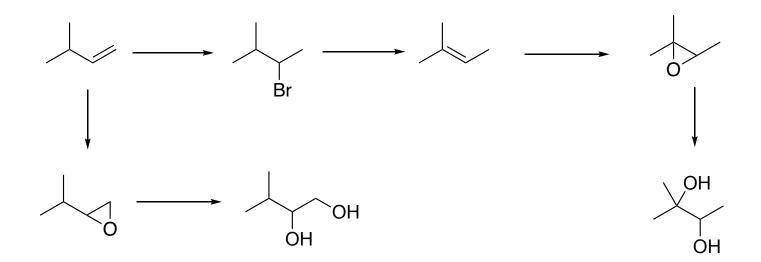
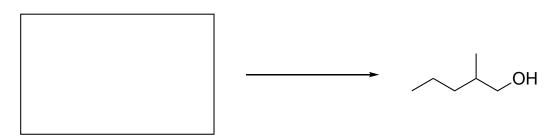
CHEM 8B Chapters 13-14 Homework – Alkene Reactions and Conjugated/Aromatic Compounds


Includes Chapter 12 alkene reactions

- Draw the product of each reaction: starting material + reagent \rightarrow Product.
- Several correct products may be possible. Draw ONE product to be graded in the box.

Stanting Material		Reagents & translation		
Starting Material		* know this mechanism	Draw ONE Product	Alternate reagent
1		* (a) HBr <i>Hydrobromic acid</i> (Chapter 12 reaction)		Different halide, same mechanism: HCI, hydrochloric acid HI, hydroiodic acid
2		*(b) Cl2 Chlorine		Different halide, same mechanism: Br ₂ , bromine I ₂ , iodine
3		*(c) Cl ₂ , H ₂ O Chlorine in water		Different halide, same mechanism: Br ₂ , H ₂ O bromine in water I ₂ , H ₂ O in water
4		(d) H₂, Pd Hydrogen gas over palladium metal		H_2 with Pt, Ni, Ni ₂ B
5		(e) 1. BH ₃ , THF 2. H ₂ O ₂ , NaOH Hydroboration with borane in THF, then oxidation with basic peroxide		No alternate reagent; this is a very unique reaction!

	Starting Material	Reagents & <i>translation</i> * know this mechanism	Draw ONE Product	Notes / Alternate reagents
6		 (f) 1. Hg(OAc)₂, H₂O 2. NaBH₄ Oxymercuration with mercury (II) acetate, water, then reduction with sodium borohydride 		Similar to H₂O, H₂SO₄ - except mechanism does not include carbocation (no hydride or alkyl shift possible)
7		*(g) H₂O, H₂SO₄ <i>Dilute sulfuric acid</i> (Chapter 12 reaction)		H₃O ⁺ Hydronium is the reactive species in the mechanism
8		(h) <i>m</i> CPBA CI <i>meta-chloroperoxy</i> benzoic <i>acid</i>		peroxy acids peracetic acid CH₃CO₃H

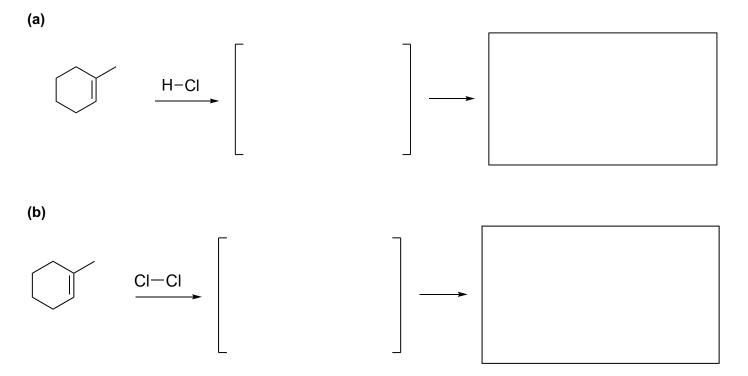

9. Fill in the missing reagent(s) over each arrow.

10. Draw TWO potential alkene(s) and necessary reagent(s) to synthesize this alkyl bromide.

11. Draw the **alkene** and **reagents** needed to synthesize this alcohol.

12. Use your organic reaction toolbelt to propose a **multi-step synthesis** for each transformation below.

- Each problem requires at least 2 synthetic steps (reactions).
- No mechanisms (curved arrow notation) required.
- Include all reagents and draw the product of each reaction.
 - Worked Example:



3

MORE PRACTICE: Mechanisms

added 1-16-24, NOT required in HW submission

13. Draw the **mechanisms** for both reactions with curved arrows and intermediate with labeled charges. Draw the **product** of the reaction in the box.

14. Draw the mechanism for this reaction, including curved arrows and intermediates with labeled charges.

4

MORE PRACTICE: Mix & Match with Reaction Bootcamp!

added 1-16-24, NOT required in HW submission

			2	
React each alkene 1-3 with each reagent below and draw the product in the box		1		3
(a)	HBr			
(b)	Cl ₂			
(d)	H₂, Pd			
(e)	1. BH ₃ , THF 2. H ₂ O ₂ , Na OH			
(f)	1. Hg(OAc)₂, H₂O 2. NaB H ₄			
(h)	<i>m</i> CPBA			