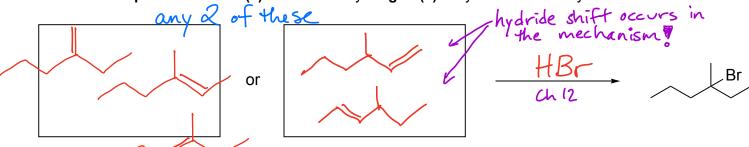
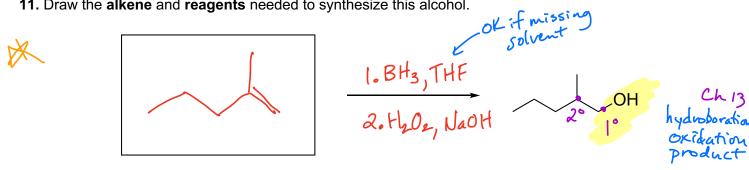
CHEM 8B Chapters 13-14 Homework – Alkene Reactions and Conjugated/Aromatic Compounds

Includes Chapter 12 alkene reactions

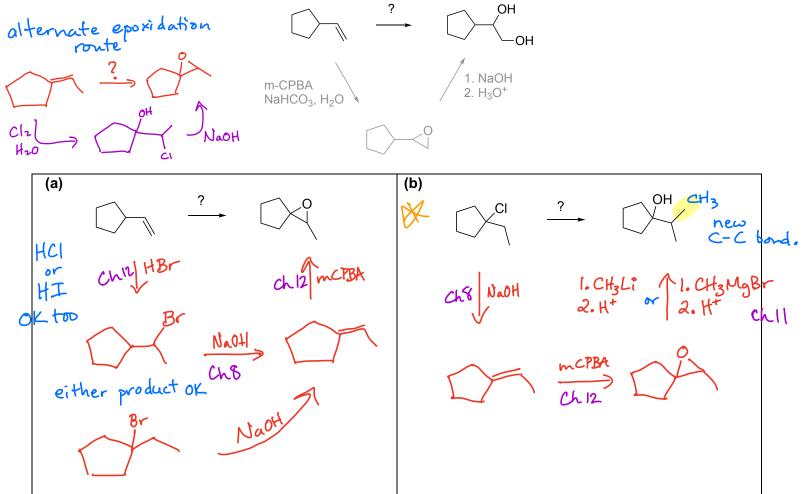
- Draw the <u>product of each reaction</u>: **starting material + reagent → Product**.
- Several correct products may be possible. **Draw ONE product to be graded** in the box.


			Reagents & translation			
	Sta	rting Material	* know this mechanism	Draw ONE Product	Alternate reagent	
	1		* (a) HBr	Br	Different halide, same mechanism: HCI, hydrochloric acid	
			Hydrobromic acid (Chapter 12 reaction)	same l " Br	HI, hydroiodic acid	
	2		*(b) Cl ₂ Chlorine	OR CITY	Different halide, same mechanism: Br ₂ , bromine I ₂ , iodine	
义	3		*(c) Cl ₂ , H ₂ O Chlorine in water	any one of these	Different halide, same mechanism: Br ₂ , H ₂ O bromine in water I ₂ , H ₂ O in water	
K	4		(d) H₂, Pd Hydrogen gas over palladium metal		H ₂ with Pt, Ni, Ni ₂ B	
	5		(e) 1. BH ₃ , THF 2. H ₂ O ₂ , NaOH Hydroboration with borane in THF, then oxidation with basic peroxide	HO	No alternate reagent; this is a very unique reaction!	

	(64)	incorrect RRGT product	→ YoH	7 _p +5
--	------	---------------------------	-------	-------------------


		KKG	' r '	
	Starting Material	Reagents & translation * know this mechanism	Draw ONE Product	Notes / Alternate reagents
6		(f) 1. Hg(OAc) ₂ , H ₂ O 2. NaBH ₄ Oxymercuration with mercury (II) acetate, water, then reduction with sodium borohydride	OH	Similar to H ₂ O, H ₂ SO ₄ - except mechanism does not include carbocation (no hydride or alkyl shift possible)
7	H ^f (*(g) H ₂ O, H ₂ SO ₄ *(g) H ₂ O, H ₂ O, H ₂ SO ₄ *(g) H ₂ O, H ₂ O, H ₂ SO ₄ *(g) H ₂ O, H	3 methyl shift 30 30 OH	H₃O⁺ Hydronium is the reactive species in the mechanism
8		(h) mCPBA CI OOH meta-chloroperoxybenzoic acid		peroxy acids peracetic acid CH ₃ CO ₃ H

9. Fill in the missing reagent(s) over each arrow.


10. Draw TWO potential alkene(s) and necessary reagent(s) to synthesize this alkyl bromide.

11. Draw the alkene and reagents needed to synthesize this alcohol.

- 12. Use your organic reaction toolbelt to propose a multi-step synthesis for each transformation below.
 - Each problem requires at least 2 synthetic steps (reactions).
 - No mechanisms (curved arrow notation) required.
 - Include all **reagents** and draw the **product** of each reaction.
 - Worked Example:

MORE PRACTICE: Mechanisms

added 1-16-24, NOT required in HW submission

13. Draw the **mechanisms** for both reactions with curved arrows and intermediate with labeled charges. Draw the **product** of the reaction in the box.

14. Draw the mechanism for this reaction, including curved arrows and intermediates with labeled charges.

MORE PRACTICE: Mix & Match with Reaction Bootcamp!

added 1-16-24, NOT required in HW submission

			T	
React each alkene 1-3 with each reagent below and draw the product in the box		1	2	3
(a)	HBr	Br	Conshift in mechanism.	Br
(b)	Cl ₂	CI	t enantioner	CI
(d)	H ₂ , Pd			Benzene + alkene does NOT react
(e)	1. BH ₃ , THF 2. H ₂ O ₂ , Na OH	OH	H tenantion. OH messy mixture of regio! stereo- isomers	OH
(f)	1. Hg(OAc)₂, H₂O 2. NaB H ₄	OH	+ OH Wixture of OH	OH 1
(h)	mCPBA tran	s-epoxide trans-alkene	en antiomer en antiomer	