Part A. Carbon Nuclear Magnetic Resonance, ¹³C NMR

1. How many signals are expected in each compound's ¹³C NMR spectrum?

The ¹³C NMR spectra of three isomers with molecular formula C₈H₁₈ are given below.
Match each chemical name to its spectrum (1-3). Ignore the peak at 76 ppm (solvent).

Isomer	Spectrum (1, 2, or 3?)
2,5-dimethylhexane	
4-methylheptane	
Octane	

Copyright © 2022 W. W. Norton & Company, Inc.

Ch 17A. ¹³C NMR

3. How many signals are expected in each compound's ¹³C NMR spectrum?

4. Indicate the **approximate chemical shift (range)** of each highlighted carbon in its ¹³C NMR spectrum (Table 17-5).

5. Indicate the expected ¹³C NMR chemical shift range for each carbon (A-E) in the table below.

6. 1-chloropropane produced the ¹³C NMR spectrum shown here. **Match each carbon** in the molecule (letters A-C) to each signal in the spectrum.

Ch 17, Part A. ¹³C NMR

7. **Propose the structure** of the molecule that matches the spectral data below.

Copyright © 2022 W. W. Norton & Company, Inc.

What clues does the ¹³C NMR spectrum provide about the structure?

What clues does the IR spectrum provide about the structure?

Structure:

Chapter 17 HW, Part B. Proton Nuclear Magnetic Resonance, ¹H NMR

8. How many signals are expected in each compound's ¹H NMR spectrum?

9. Indicate the **approximate** ¹**H NMR chemical shift** for each carbon (A-E) in the table below.

10. How many signals are expected in each compound's ¹H NMR spectrum?

Chapter 17B. ¹H NMR

11. Rank protons A-C in order from **largest to smallest chemical shift.** Write the proton's letter in the right column of the table. Then, provide the **integration value** (number of H's) responsible for each signal.

O A	B	C	Chemical Shift Rank	Proton (A-C)	Integration (# of H's)
			High		
	$\checkmark \checkmark$		Medium		
Copyright © 2022 W. W. Norton & Company, Inc.			Low		

12. Rank protons D-H in order from **largest to smallest chemical shift.** Write the proton's letter in the right column of the table.

13. Rank protons I-M in order from **largest chemical shift to smallest.** Write the proton's letter in the right column of the table.

14. Report the approximate ¹H NMR and ¹³C NMR chemical shifts of just the <u>CH₃ group</u> in similar benzylic esters E and F below.

Chapter 17B. ¹H NMR

15. Use the N+1 rule, where N is the number of adjacent H's, to predict **splitting pattern** of the highlighted signal in its ¹H NMR spectrum (singlet, doublet, triplet, quartet, pentet, sextet, septet, octet, or nonet).

16. <u>Structural Elucidation</u>: use the data below to determine the structure of the compound.

		What does each piece of data tell you about the compound?
Formula	C ₃ H ₆ O	Any double bonds?
IR	1720 cm ⁻¹ (broad, strong) 2900 cm ⁻¹ (sharp, strong)	
¹ H NMR	One signal Chemical shift = 2.0 ppm Integration = 6H Splitting = singlet	
¹³ C NMR	δ 207 ppm δ 31 ppm	

Structure:

Chapter 17 HW

17. Structural Elucidation: use the data below to determine the structure of the compound.

Formula	C ₅ H ₁₂ O			What does each signal tell you about the
				compound?
				(show your work in the space below)
IR	3300 cm^{-1}			
	2000 cm			
¹ H NMR	Chemical shift	Integration (# of Hs)	Splitting	
		,	Broad	
	4.0 ppm	1	singlet	
	3.5 ppm	2	Triplet	
	1.6 ppm	1	nonet	
	1.5 ppm	2	quartet	
	0.9 ppm	6	doublet	
¹³ C NMR	δ 61 (CH ₂)			
	δ 42 (CH ₂)			
	δ 25 (CH)			
	δ 23 (CH ₃)			

Structure:

This graded HW set includes problems adapted from the Karty 3 text.

Recommended Problems from Karty 3, Chapter 17 – see Canvas textbook module

- **In-Chapter Problems,** "Your Turn" = 1-4,7,8, 14-16, 20, 21, 24-27, 30
- End-o-Chapter Problems = 1-2, 6-9, 11, 12, 21, 24, 25, 29-35, 41, 44, 47, 49, 52, 53
 - Solutions to all problems are now available for FREE in the Canvas textbook module!