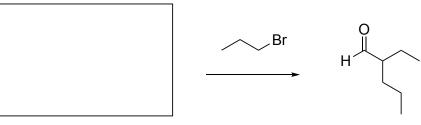

Chapter 18-19 Homework – Addition to Polar pi Bonds

Chapter 18A. Bond Basics

- 1. to each bond to indicate its polarity.
- ←+
- C-Li C-Mg C=O C=N O-H C=N
- 2. Circle and label each functional group in the fictional molecule below.
 - Acetal
 - Alcohol
 - Aldehyde
 - Amine
 - Imine
 - Ketone
 - Nitrile



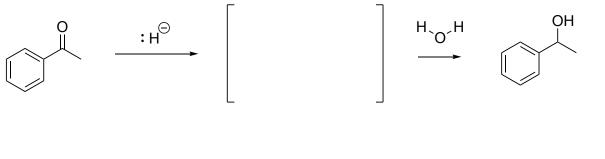
- 3. Show the mechanism and product for the alpha-deprotonation of butanal.
 - Draw the H's in the alpha position,
 - use curved arrow notation to show the proton transfer reaction with sodium hydride,
 - and draw the enolate formed.

enolate

- 4. React the enolate above with propylbromide via SN2 mechanism (one-step substitution).
 - **Redraw the enolate** from #3 above.
 - Add curved arrows to explain how the bonds are broken and formed.

18B. CARBONYL REACTIONS

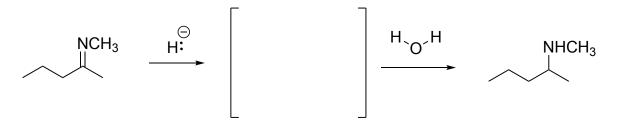
- Draw the product of each reaction: starting material + reagents \rightarrow Product.

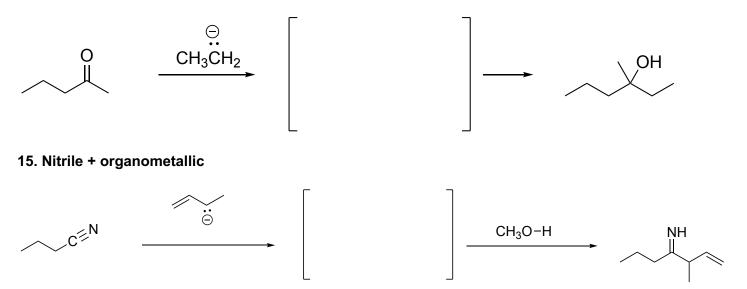

		Reagents & <i>translation</i> *be able to draw the arrow-	Alternate reagents	
	Starting Material	pushing mechanism	(same product)	Draw the Product
5	D D D D D D D D D D D D D D D D D D D	NaBH₄, MeOH sodium borohydride in methanol	1. NaBH₄ 2. H₂O <i>Or</i> 1. LiAlH₄ 2. H₂O	
6	O Acetophenone	1. LiAlH₄ 2. H₂O lithium aluminum hydride followed by water	NaBH ₄ , MeOH <i>Or</i> 1. NaBH ₄ 2. H ₂ O	
7	benzonitrile	1. LiAlH₄ 2. H₂O lithium aluminum hydride followed by water	n/a	
8	NH imine	NaBH₄ sodium boro hydride in methanol	1. LiAlH₄ 2. H₂O	
9	O ⊢ H 3-methylbutanal	 MgBr H₂O vinyl magnesium bromide followed by water 	1. ∕⊂Li 2. H ₂ O	
10	∕∕∕CN nitrile	1. Li 2. H ₂ O Isopropyl lithium followed by water	1MgBr 2. H ₂ O	

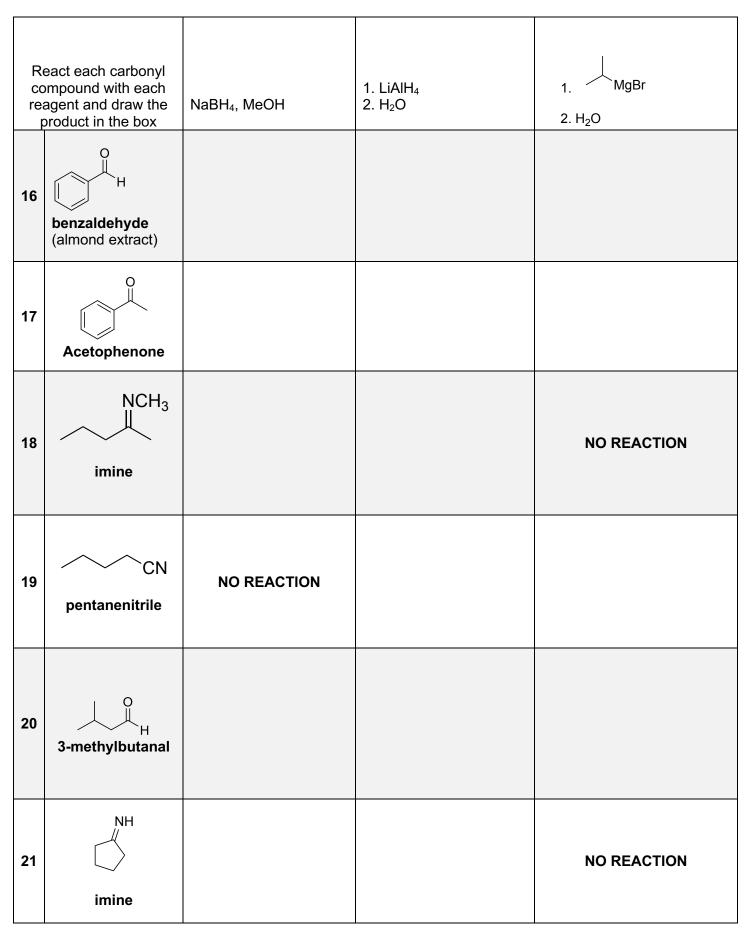
Pro-tip: See the REACTION SUMMARY at the end of Chapter 18 class notes.


Ch 18C. POLAR Pi BOND ADDITION MECHANISMS

- Draw the arrow-pushing mechanism for the reactions, including all charged intermediates and product.
- Hydride and organometallic reagents are simplified with their nucleophilic form.

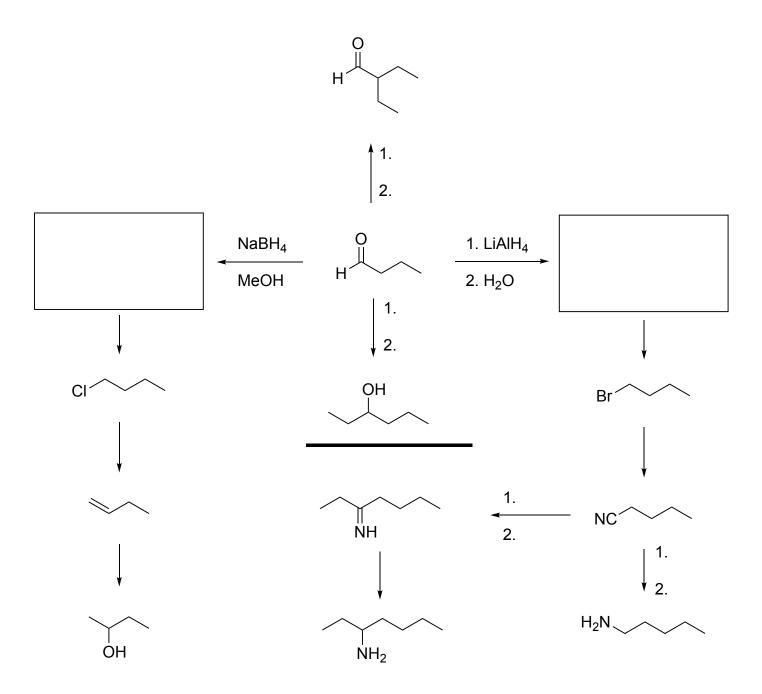

11. Ketone Reduction


12. Nitrile reduction



13. Imine reduction

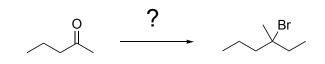
14. Addition of organometallic to aldehyde/ketone

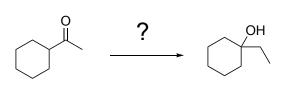


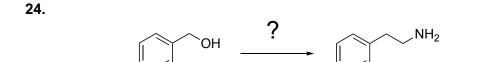
18E. Reaction Puzzle - "training wheels" for multi-step synthesis

The "puzzle" below covers Chapter 18 and previous reactions. Take it one step at a time.

Draw the missing products in the boxes and add missing reagents to the arrows.


When the reagents need to be separated into steps, the numbers are provided for you.


18F. Multi-Step Synthesis


- Each transformation requires at least two synthetic steps to reach the target product.
 - These problems were designed to use no more than four reactions.
 - \circ There are multiple pathways and it's ok if you use a feasible pathway with more than four steps \odot
- Show each set of reagents and reaction products on the journey.
 - o Mechanisms are not required, but may be helpful.
- If there is a mixture of products (ex. *major* and *minor*), assume the minor product can be removed.
 - You can just draw the desired *major* product.

23.

