<u>Chapter 19 Homework – Addition to Polar pi Bonds</u>

19A. NUCLEOPHILIC ADDITION REACTIONS with weak sauce nucleophiles

	Starting Material	Reagents & translation	Draw the Product	
1	O A A A A A A A A A A A A A A A A A A A	HCN hydrogen cyanide	HO CN	
2	0	NH ₃ , H ⁺ <i>Ammonia</i> under acidic conditions	NH	
3	O	H₂NCH ₃ , H ⁺ <i>Methylamine</i> with acid catalyst	NCH3	
4	ОН	CH₃CH₂OH, H ⁺ excess ethanol under acidic conditions		
5	0	HOCH ₂ CH ₂ OH, H ⁺ 1,2-ethanediol under acidic conditions		

19B. ACIDIC NUCLEOPHILIC ADDITION MECHANISMS

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.

7. Cyanohydrin formation

19C. NUCLEOPHILIC ADDITION & DEHYDRATION MECHANISMS

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.

8. Imine mechanism

9. Acetal Mechanism

React each aldehyde or ketone with each reagent and draw the product in the box.	O H	0	O H O
CH₃CH₂OH (2 mol), H ⁺	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LoX	
HCN	OH CZ	NC OH	OH
HOCH₂CH₂OH, H ⁺			
H₂NCH₃, H ⁺	NCH ₃	NCH3	O H NCH3
PhNH ₂ , H ⁺	NPh	NPh }	NPh

19E. Reaction Puzzle - "training wheels" for multi-step synthesis

The "puzzle" below covers Chapter 19 and previous reactions. Take it one step at a time.

Add all missing reagents to the arrows.

- Hydride and organometallic addition reactions require a separate, second step for addition of water.
- Be sure to add those numbers for separate steps (1.... 2....) where applicable for full credit.

19F. Chemoselective Reaction Puzzles - "training wheels" for multi-step synthesis

Aldehydes are more reactive than ketones, but what if you want the ketone to react instead?

- 1. The aldehyde is reacted with alcohol to form an acetal "protecting group",
- 2. then the desired addition reaction takes place on the ketone,
- 3. and finally the acetal is removed (hydrolyzed) to reveal the original aldehyde.

Cool, right?!

Draw the missing products of each reaction in the boxes.

11. Chemoselective reduction

12. Chemoselective organometallic addition

$$\begin{array}{c|c}
 & 1 \text{ mol} \\
 & H \\
 & H^{+}
\end{array}$$

$$\begin{array}{c}
 & PhMgBr \\
 & Ph \\
 & Ph$$

19F. Multi-Step Synthesis

- Each transformation requires at least two synthetic steps to reach the target product.
 - o These problems were designed to use no more than three reactions.
 - There are multiple pathways and it's ok if you use a feasible pathway with more than three steps ☺
- Show each set of reagents and reaction products on the journey.
 - o Mechanisms are not required, but may be helpful.
- If there is a mixture of products (ex. major and minor), assume the minor product can be removed.
 - o You can just draw the desired *major* product.

13. Ketone to amine

14. Conjugated ketone to alpha-chloro-imine

15. Chemoselective organometallic addition – see "training wheels" on pg 5