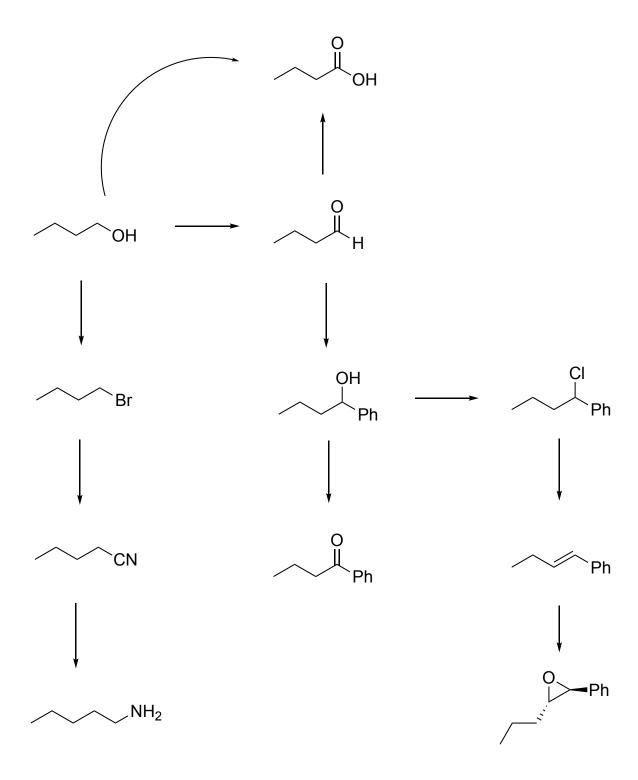
# <u>Chapter 20 Homework – Redox Reactions</u>

# 20A. REDOX Reactions

|   | ZUA. REDUX Reactions |                                                                                                                                                                 |                  |  |  |  |  |
|---|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
|   |                      |                                                                                                                                                                 |                  |  |  |  |  |
|   | Starting Material    | Reagents & translation                                                                                                                                          | Draw the Product |  |  |  |  |
| 1 | ОН                   | pyridinium chlorochromate (PCC)  PCC: Pyridinium chlorochromate in methylene chloride solvent                                                                   |                  |  |  |  |  |
| 2 | OH                   | NaCrO <sub>4</sub> Chromic Acid  or KMnO <sub>4</sub> Potassium permanganate Reagents may also be listed as 1. KMnO <sub>4</sub> , KOH 2. H <sub>2</sub> O, HCl |                  |  |  |  |  |
| 3 | OH                   | PCC                                                                                                                                                             |                  |  |  |  |  |
| 4 | ОН                   | 1 mole H <sub>2</sub> , Pd  1 mole of hydrogen gas over palladium catalyst  Alternate metals to Pd: platinum (Pt) or nickel (Ni)                                |                  |  |  |  |  |
| 5 | OH                   | NaCrO₄<br>or<br>KMnO₄                                                                                                                                           |                  |  |  |  |  |

**20B. Mix & Match with Reaction Bootcamp!**Not all molecules react with all reagents – look out for <u>seven</u> combinations that result in "NO REACTION".


| React each <b>molecule</b> with each <b>reagent</b> and <b>draw the product</b> in the box. | <b>ОН</b> | ОН | O H |
|---------------------------------------------------------------------------------------------|-----------|----|-----|
| PCC                                                                                         |           |    |     |
| NaCrO <sub>4</sub>                                                                          |           |    |     |
| 1. LiAlH₄ (excess)<br>2. H₂O                                                                |           |    |     |
| 1 mole H <sub>2</sub> , Pt                                                                  |           |    |     |
| NaBH₄ (1 mol)<br>CH₃OH                                                                      |           |    |     |

# 20D. Reaction Puzzle - "training wheels" for multi-step synthesis

The "puzzle" below covers Chapter 20 and previous reactions. Take it one step at a time.

#### Add all missing reagents to the arrows.

- Hydride and organometallic addition reactions require a separate, second step for addition of water.
- Be sure to add those numbers for separate steps (1.... 2....) where applicable for full credit.



# 20E. Chemoselective Readuction Puzzles - "training wheels" for multi-step synthesis

- Fill in the proper **reagent** over the arrows below.
- Include the **amount** of each reagent added (1 mole or 2 moles).

# 11. Aldehyde & Alkene

#### 12. Alcohol & Alkene

#### 20F. Multi-Step Synthesis

- Each transformation requires at least two synthetic steps to reach the target product.
  - All problems below require an organometallic reagent to add carbons. Be sure you're using it with the correct type of functional group!
  - o These problems were designed to use no more than four reactions. There are multiple pathways and it's ok if you use a feasible pathway with more than four steps ©
- Show each set of reagents and reaction products on the journey.
- Mechanisms are not required, but may be helpful.
- If there is a mixture of products (ex. *major* and *minor*), assume the minor product can be removed.

13.

14.

15.