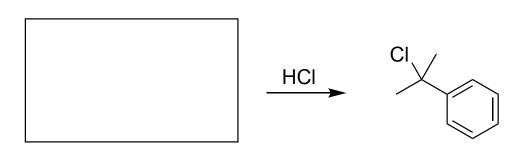
CHEM 8B Chapter 12 Homework – Alkene Reactions

Predict the **product** in each reaction.

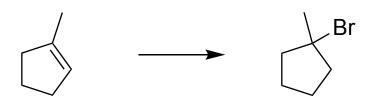
1.

2.


$$H_2O$$
 H_2SO_4

Draw the structure of the **alkene** that would give the product.

3.


$$H_2O$$
 H_2SO_4
OH

4.

Fill in the missing **reagent(s)** to complete each reaction.

5.

6.

7. Draw the **full arrow-pushing mechanism** for the reaction below, including all charges and intermediates. Hint: there is a carbocation rearrangement.

<u>CHEM 8B Chapters 13-14 Homework – Alkene Reactions and Conjugated/Aromatic Compounds</u> Includes Chapter 12 alkene reactions

- Draw the product of each reaction: starting material + reagent → Product.
- Several correct products may be possible. **Draw ONE product to be graded** in the box.

		Reagents & translation		
Starting Material		* know this mechanism	Draw ONE Product	Alternate reagent
1		* (a) HBr Hydrobromic acid (Chapter 12 reaction)		Different halide, same mechanism: HCI, hydrochloric acid HI, hydroiodic acid
2		*(b) Cl ₂ Chlorine		Different halide, same mechanism: Br ₂ , bromine I ₂ , iodine
3		*(c) Cl₂, H₂O Chlorine in water		Different halide, same mechanism: Br ₂ , H ₂ O bromine in water I ₂ , H ₂ O in water
4		(d) H₂, Pd Hydrogen gas over palladium metal		H ₂ with Pt, Ni, Ni ₂ B
5		(e) 1. BH ₃ , THF 2. H ₂ O ₂ , NaOH Hydroboration with borane in THF, then oxidation with basic peroxide		No alternate reagent; this is a very unique reaction!

	Starting Material	Reagents & translation * know this mechanism	Draw ONE Product	Notes / Alternate reagents
6		(f) 1. Hg(OAc)₂, H₂O 2. NaBH₄ Oxymercuration with mercury (II) acetate, water, then reduction with sodium borohydride		Similar to H ₂ O, H ₂ SO ₄ - except mechanism does not include carbocation (no hydride or alkyl shift possible)
7		*(g) H₂O, H₂SO₄ Dilute sulfuric acid (Chapter 12 reaction)		H ₃ O ⁺ Hydronium is the reactive species in the mechanism
8		(h) mCPBA CI OH meta-chloroperoxybenzoic acid		peroxy acids peracetic acid CH ₃ CO ₃ H

9. Fill in the missing reagent(s) over each arrow.

10. Draw TWO potential alkene(s) and necessary reagent(s) to synthesize this alkyl bromide.

11. Draw the alkene and reagents needed to synthesize this alcohol.

- 12. Use your organic reaction toolbelt to propose a multi-step synthesis for each transformation below.
 - Each problem requires at least 2 synthetic steps (reactions).
 - No mechanisms (curved arrow notation) required.
 - Include all **reagents** and draw the **product** of each reaction.
 - o Worked Example:

(a) ? OH OH

3

MORE PRACTICE: Mechanisms

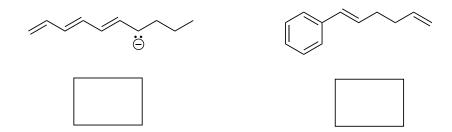
added 1-16-24, NOT required in HW submission

13. Draw the **mechanisms** for both reactions with curved arrows and intermediate with labeled charges. Draw the **product** of the reaction in the box.

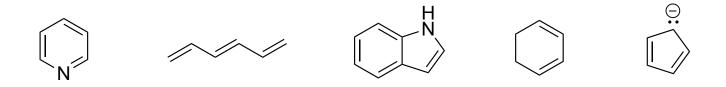
(a)

(b)

14. Draw the mechanism for this reaction, including curved arrows and intermediates with labeled charges.


$$\begin{array}{c} CI-CI \\ \hline \\ H_2O \end{array}$$

MORE PRACTICE: Mix & Match with Reaction Bootcamp! added 1-16-24, NOT required in HW submission


React each alkene 1-3 with each reagent below and draw the product in the box		1	2	3
(a)	HBr			
(b)	Cl ₂			
(d)	H ₂ , Pd			
(e)	1. BH ₃ , THF 2. H ₂ O ₂ , Na OH			
(f)	1. Hg(OAc)₂, H₂O 2. NaB H ₄			
(h)	<i>m</i> CPBA			

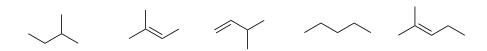
Chapter 14 HW – Conjugation and Aromaticity – Resonance City!

1. How many **pi electrons** in the *longest conjugated pi system* in each molecule? Write your answer (number) in the box provided.

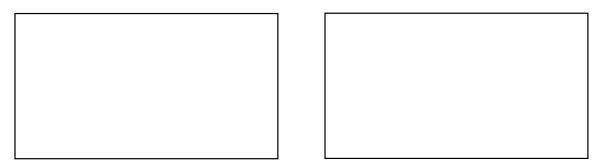
2. Circle each compound that is aromatic. Draw an X over the compounds that are NOT aromatic.

3. Draw the major product in each elimination reaction below. Ignore potential substitution products.

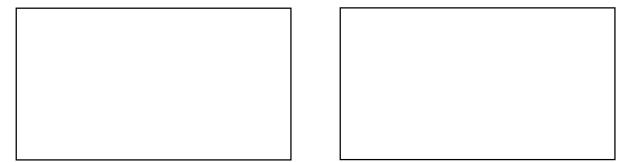
Br CH₃ONa


CI NaOH

CHEM 8B Chapter 15 Homework – Mass Spectrometry (MS)

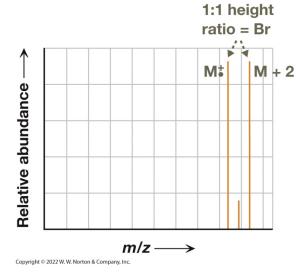

A compound's mass spectrum includes an "M⁺ peak" that reveals the molecular weight of the compound!

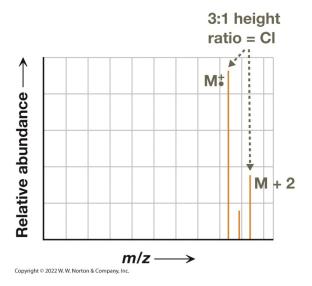
1.	A h	ydrocarbon	has 5	carbons	and mass	s spectrum	reveals an	M^{+}	peak = 7	72 .

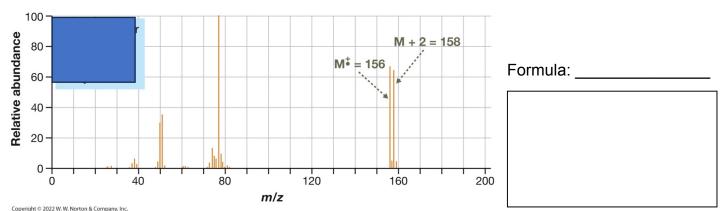

- a. What is its molecular formula? _____
- b. Which TWO structures fit this data?

- Propose the molecular formula and TWO structures of molecules with 6 carbons, 1 oxygen, and mass spectrum M⁺ peak = 102.
 - a. Molecular formula:
 - b. Propose TWO structures that fit this data.

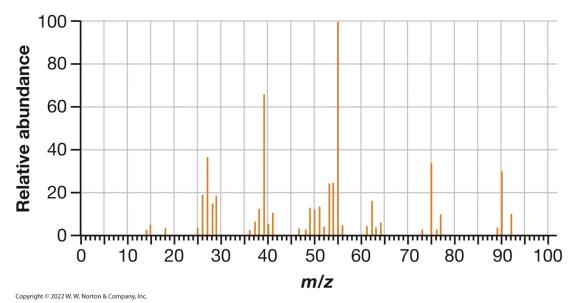
- 3. An organic compound has 3 carbons and mass spectrum M^+ peak = 59
 - a. What is its molecular formula? _____
 - b. Propose TWO structures that fit this data.


4. An organic compound has 6 carbons and mass spectrum M⁺ peak = 99


- a. What is its molecular formula? _____
- b. Propose TWO structures that fit this data.



5. Mass Spectrum Distinctive M+2 Peaks – Bromine and Chlorine Isotopes



(a) **Propose a structure** for a molecule with **6 carbons** and the following mass spectrum.

(b) Propose the molecular formula and structure for a molecule with 4 carbons and the mass spectrum below. Note the peak intensities (height) of the M⁺ peak = 92 and M+2 peak = 94.

Molecular Formula _____

Propose TWO structures that fit this data