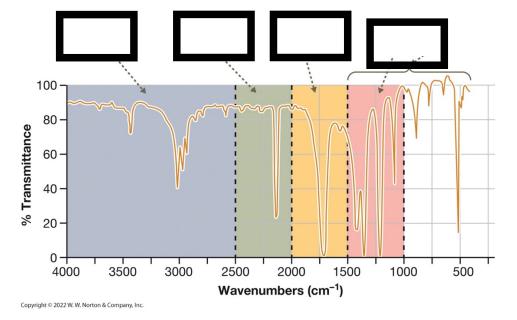

Structural Elucidation: Infrared (IR) Spectroscopy

CHEM 8B Chapter 16 Homework

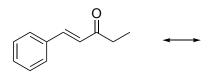

1. Consider the equations below with variables defined.

What is the relationship between wavenumber and frequency? Circle one.

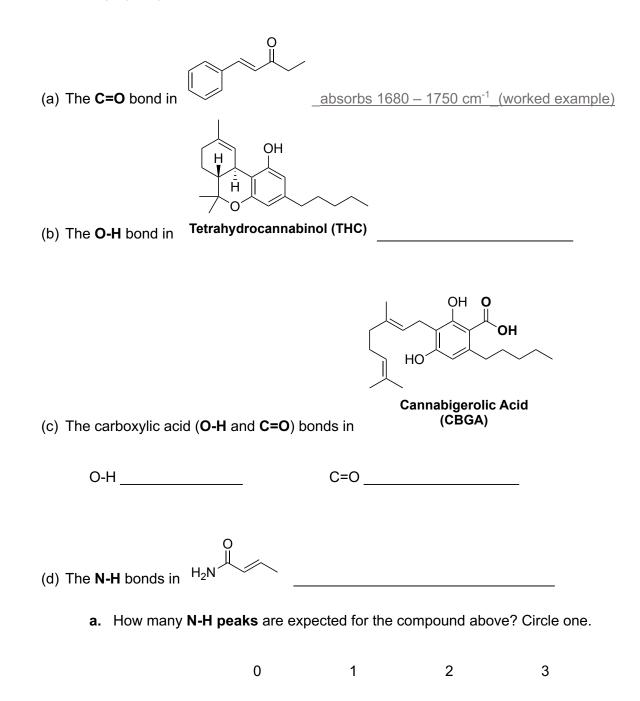
Proportional

Inversely proportional

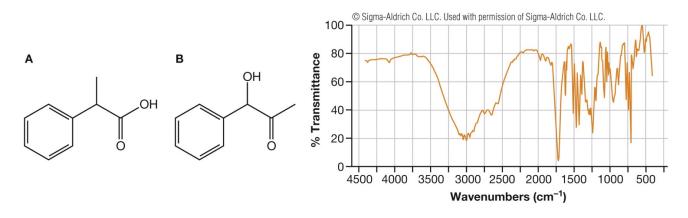
2. Provide one example of a bond that would absorb in each region in each box below (ex. O-H, C=C).

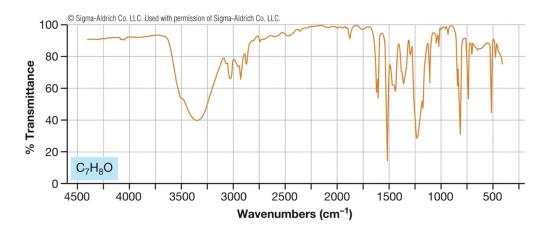

3. Bond length and stretching frequency

- \Rightarrow Which has a **longer bond**? Circle one. **O-H** or **C=O**
- \Rightarrow Which has a higher stretching frequency (wavenumber)? Circle one. C-H or C=C
- \Rightarrow Which compound's C=O bond has a lower stretching frequency (wavenumber)? Circle one.



3. Conjugation - Resonance


Used **curved arrow** notation and **draw ONE resonance structure** of the compound below. Be sure to include all charges on atoms where appropriate!

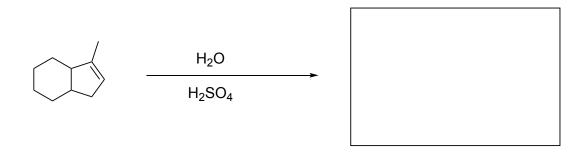

4. Predict IR Peaks: Use **Table 16-1** Characteristic Frequencies of IR absorption to list the **expected bond absorbance range (cm**⁻¹) in its IR spectrum.


5. Match spectrum to molecule: Which molecule best fits the IR spectrum?

6. Propose TWO possible structures that fit the molecular formula C₇H₈O and the IR spectrum below.

- (a) What oxygen-containing functional group does the compound have?
- (b) Draw two proposed **structures** for C₇H₈O, one in each box. *Hint: the molecule contains a ring.*

7. Structure elucidation in a chemical reaction, using IR and Mass Spec data analysis of the product. Answer the prompts below to help confirm the structure of a reaction product.


(a) The mass spectrum of the product in the reaction below displays a M^+ peak = 154.

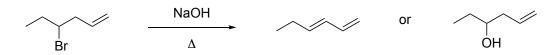
What is the molecular the molecular formula of the product?

(b) The IR spectrum displays a **broad**, **strong signal at 3250cm⁻¹**.

What is the most likely **functional group** in the product?

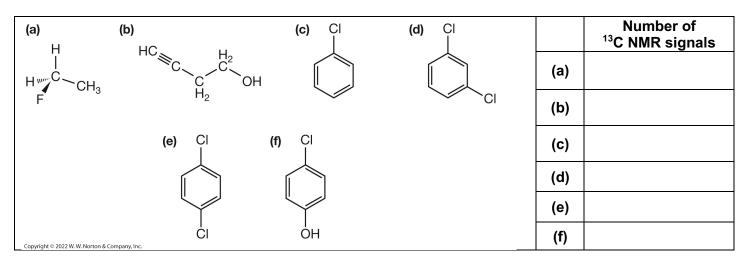
(c) Draw the structure of the **product** in the box.

7. Structure elucidation in a chemical reaction, using IR and Mass Spec data analysis of the product. Answer the prompts below to guide you to the structure of the reaction product.

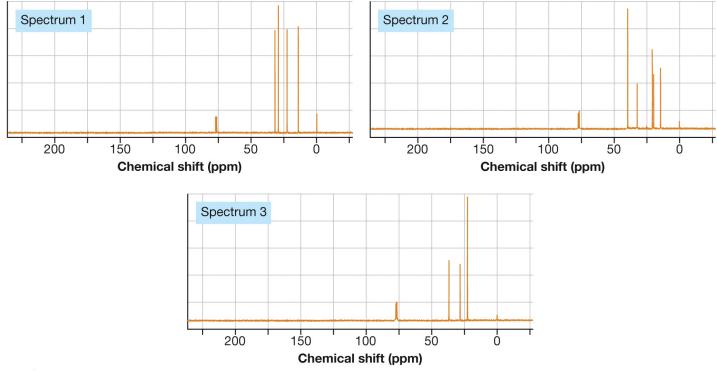

(a) The mass spectrum of the product in the reaction below displays a M^+ peak = 82.

What is the molecular the molecular formula of the product?

(b) The IR spectrum displays a **medium-strength signal at 1627 cm⁻¹**.

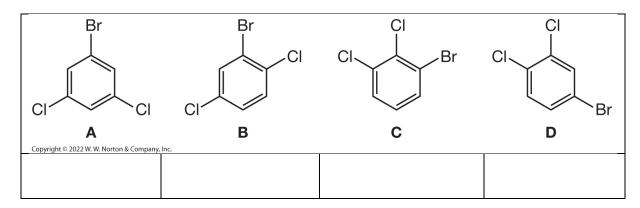

What is the most likely **functional group** in the product?

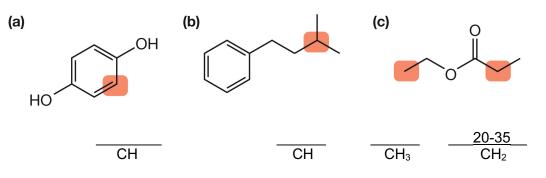
(d) **Circle the major product** of the reaction based on the spectroscopy data above.


Part A. Carbon Nuclear Magnetic Resonance, ¹³C NMR

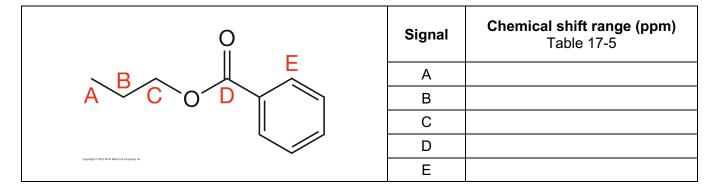
1. How many signals are expected in each compound's ¹³C NMR spectrum?

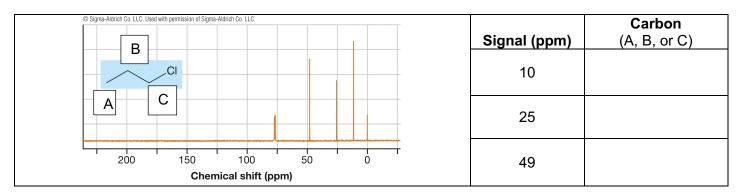
The ¹³C NMR spectra of three isomers with molecular formula C₈H₁₈ are given below.
 Match each chemical name to its spectrum (1-3). Ignore the peak at 76 ppm (solvent).


Isomer	Spectrum (1, 2, or 3?)
2,5-dimethylhexane	
4-methylheptane	
Octane	

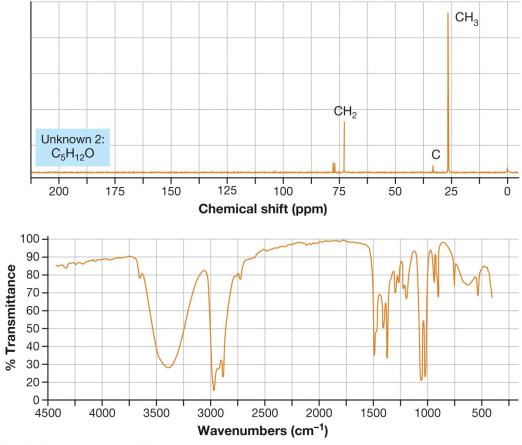

Copyright © 2022 W. W. Norton & Company, Inc.

Ch 17A. ¹³C NMR


3. How many signals are expected in each compound's ¹³C NMR spectrum?


4. Indicate the **approximate chemical shift (range)** of each highlighted carbon in its ¹³C NMR spectrum (Table 17-5).

5. Indicate the expected ¹³C NMR chemical shift range for each carbon (A-E) in the table below.



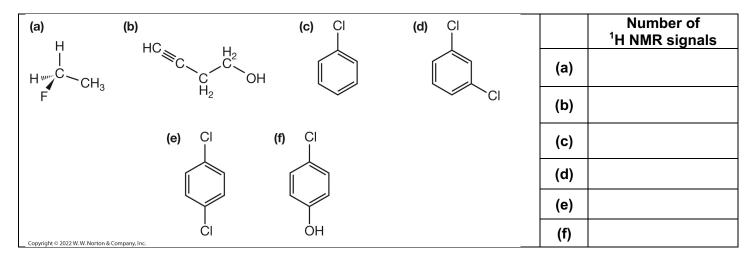
6. 1-chloropropane produced the ¹³C NMR spectrum shown here. **Match each carbon** in the molecule (letters A-C) to each signal in the spectrum.

Ch 17, Part A. ¹³C NMR

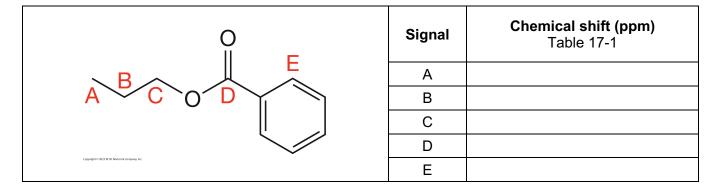
7. **Propose the structure** of the molecule that matches the spectral data below.

Copyright © 2022 W. W. Norton & Company, Inc.

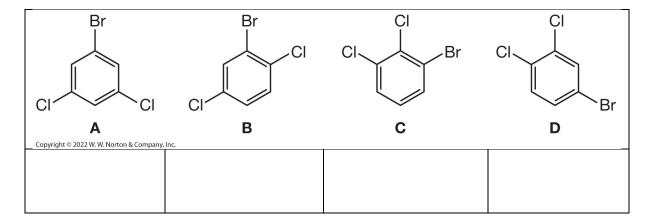
What clues does the ¹³C NMR spectrum provide about the structure?


What clues does the IR spectrum provide about the structure?

Structure:

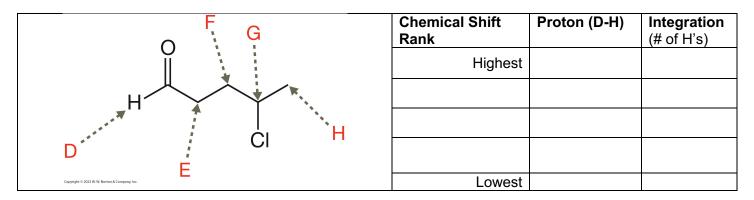


Chapter 17 HW, Part B. Proton Nuclear Magnetic Resonance, ¹H NMR

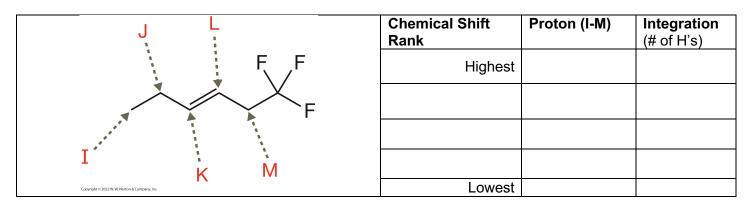

8. How many signals are expected in each compound's ¹H NMR spectrum?

9. Indicate the **approximate** ¹**H NMR chemical shift** for each carbon (A-E) in the table below.

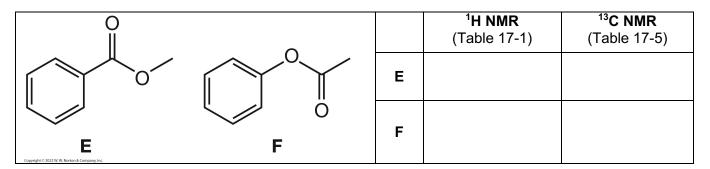
10. How many signals are expected in each compound's ¹H NMR spectrum?



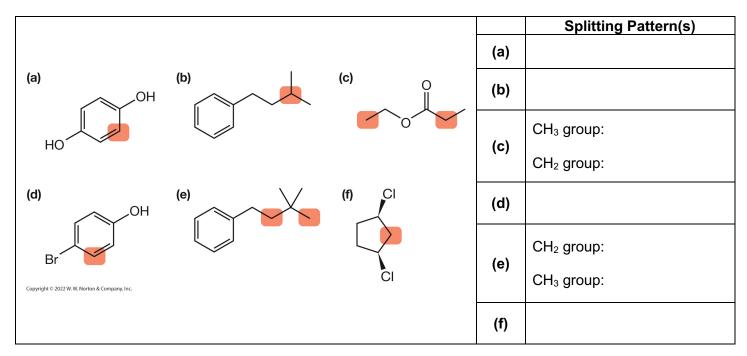
Chapter 17B. ¹H NMR


11. Rank protons A-C in order from **largest to smallest chemical shift.** Write the proton's letter in the right column of the table. Then, provide the **integration value** (number of H's) responsible for each signal.

O A	B	C	Chemical Shift Rank	Proton (A-C)	Integration (# of H's)
	а М		High		
	\checkmark		Medium		
Copyright © 2022 W. W. Norton & Company, Inc.			Low		


12. Rank protons D-H in order from **largest to smallest chemical shift.** Write the proton's letter in the right column of the table.

13. Rank protons I-M in order from **largest chemical shift to smallest.** Write the proton's letter in the right column of the table.



14. Report the approximate ¹H NMR and ¹³C NMR chemical shifts of just the <u>CH₃ group</u> in similar benzylic esters E and F below.

Chapter 17B. ¹H NMR

15. Use the N+1 rule, where N is the number of adjacent H's, to predict **splitting pattern** of the highlighted signal in its ¹H NMR spectrum (singlet, doublet, triplet, quartet, pentet, sextet, septet, octet, or nonet).

16. <u>Structural Elucidation</u>: use the data below to determine the structure of the compound.

		What does each piece of data tell you about the compound?
Formula	C ₃ H ₆ O	Any double bonds?
IR	1720 cm ⁻¹ (broad, strong) 2900 cm ⁻¹ (sharp, strong)	
¹ H NMR	One signal Chemical shift = 2.0 ppm Integration = 6H Splitting = singlet	
¹³ C NMR	δ 207 ppm δ 31 ppm	

Structure:

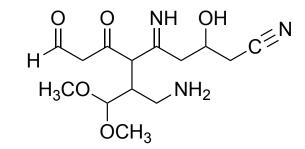
Chapter 17 HW

17. Structural Elucidation: use the data below to determine the structure of the compound.

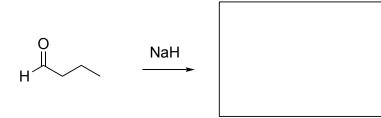
Formula	C ₅ H ₁₂ O			What does each signal tell you about the compound? (show your work in the space below)
IR	3300 cm ⁻¹			
	2900 cm ⁻¹			
¹ H NMR	Chemical shift	Integration (# of Hs)	Splitting	
	4.0 ppm	1	Broad singlet	
	3.5 ppm	2	Triplet	
	1.6 ppm	1	nonet	
	1.5 ppm	2	quartet	
	0.9 ppm	6	doublet	
¹³ C NMR	δ 61 (CH ₂)			
	δ 42 (CH ₂)			
	δ 25 (CH)			
	δ 23 (CH ₃)			

Structure:

This graded HW set includes problems adapted from the Karty 3 text.

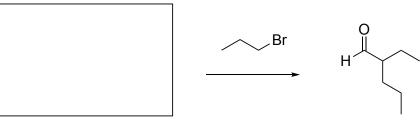

Recommended Problems from Karty 3, Chapter 17 – see Canvas textbook module

- **In-Chapter Problems,** "Your Turn" = 1-4,7,8, 14-16, 20, 21, 24-27, 30
- End-o-Chapter Problems = 1-2, 6-9, 11, 12, 21, 24, 25, 29-35, 41, 44, 47, 49, 52, 53
 - Solutions to all problems are now available for FREE in the Canvas textbook module!


Chapter 18-19 Homework – Addition to Polar pi Bonds

Chapter 18A. Bond Basics

- 1. to each bond to indicate its polarity.
- ←+
- C-Li C-Mg C=O C=N O-H C=N
- 2. Circle and label each functional group in the fictional molecule below.
 - Acetal
 - Alcohol
 - Aldehyde
 - Amine
 - Imine
 - Ketone
 - Nitrile



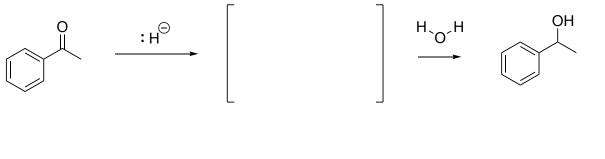
- 3. Show the mechanism and product for the alpha-deprotonation of butanal.
 - Draw the H's in the alpha position,
 - use curved arrow notation to show the proton transfer reaction with sodium hydride,
 - and draw the enolate formed.

enolate

- 4. React the enolate above with propylbromide via SN2 mechanism (one-step substitution).
 - **Redraw the enolate** from #3 above.
 - Add curved arrows to explain how the bonds are broken and formed.

18B. CARBONYL REACTIONS

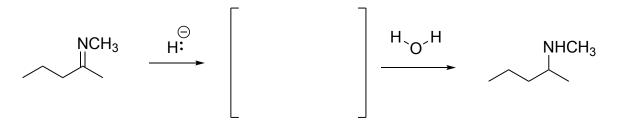
- Draw the product of each reaction: starting material + reagents \rightarrow Product.

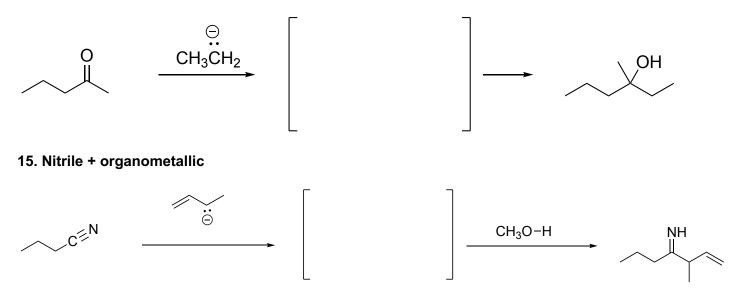

5	Starting Material	Reagents & translation *be able to draw the arrow- pushing mechanism NaBH₄, MeOH sodium borohydride in methanol	Alternate reagents (same product) 1. NaBH ₄ 2. H ₂ O <i>Or</i> 1. LiAIH ₄	Draw the Product
6	Acetophenone	1. LiAlH₄ 2. H₂O lithium aluminum hydride followed by water	2. H ₂ O NaBH ₄ , MeOH <i>Or</i> 1. NaBH ₄ 2. H ₂ O	
7	benzonitrile	1. LiAlH₄ 2. H₂O lithium aluminum hydride followed by water	n/a	
8	NH imine	NaBH₄ sodium boro hydride in methanol	1. LiAlH₄ 2. H₂O	
9	↓ → → H 3-methylbutanal	 MgBr H₂O vinyl magnesium bromide followed by water 	1. ∕⊂Li 2. H ₂ O	
10	∕∕∕CN nitrile	 Li H₂O Isopropyl lithium followed by water 	1MgBr 2. H ₂ O	

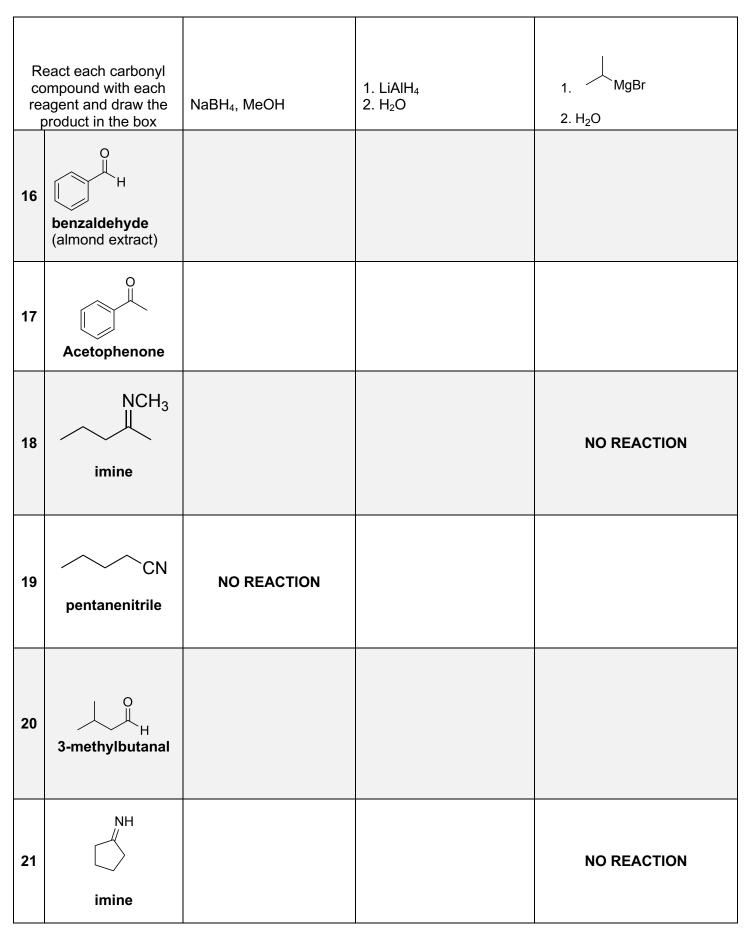
Pro-tip: See the REACTION SUMMARY at the end of Chapter 18 class notes.

Ch 18C. POLAR Pi BOND ADDITION MECHANISMS

- Draw the arrow-pushing mechanism for the reactions, including all charged intermediates and product.
- Hydride and organometallic reagents are simplified with their nucleophilic form.

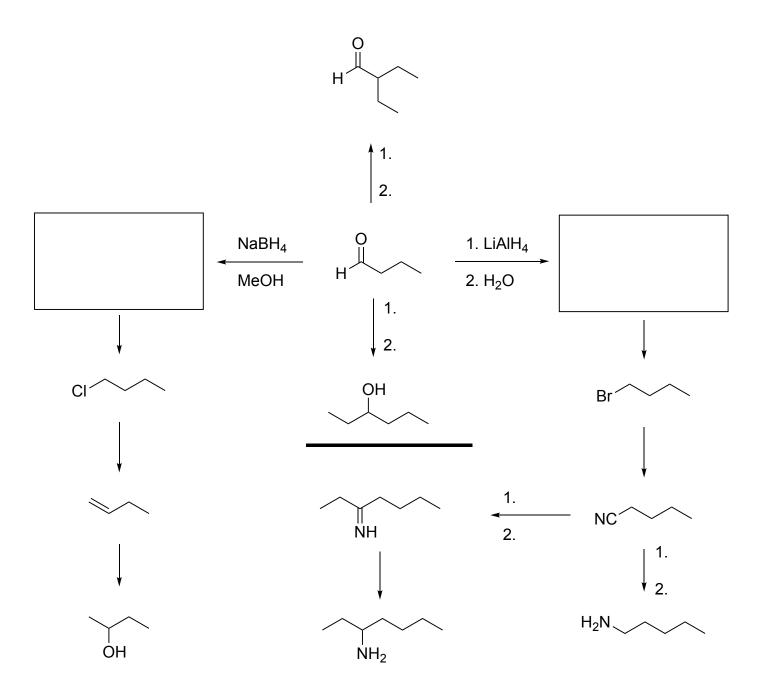

11. Ketone Reduction


12. Nitrile reduction



13. Imine reduction

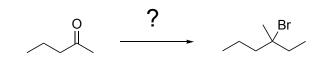
14. Addition of organometallic to aldehyde/ketone

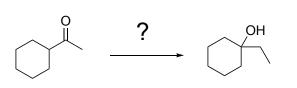


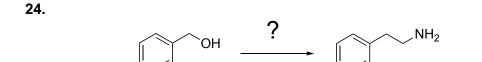
18E. Reaction Puzzle - "training wheels" for multi-step synthesis

The "puzzle" below covers Chapter 18 and previous reactions. Take it one step at a time.

Draw the missing products in the boxes and add missing reagents to the arrows.


When the reagents need to be separated into steps, the numbers are provided for you.


18F. Multi-Step Synthesis


- Each transformation requires at least two synthetic steps to reach the target product.
 - These problems were designed to use no more than four reactions.
 - \circ There are multiple pathways and it's ok if you use a feasible pathway with more than four steps \odot
- Show each set of reagents and reaction products on the journey.
 - o Mechanisms are not required, but may be helpful.
- If there is a mixture of products (ex. *major* and *minor*), assume the minor product can be removed.
 - You can just draw the desired *major* product.

23.

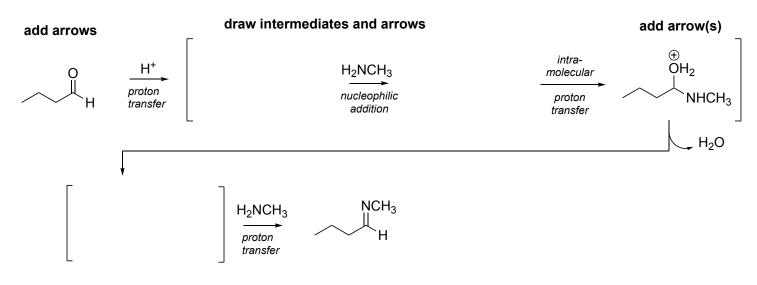
Chapter 19 Homework – Addition of Weak Nucleophiles to Polar pi Bonds

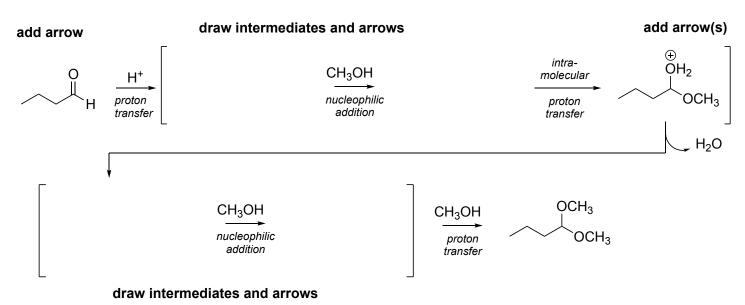
19A. NUCLEOPHILIC ADDITION REACTIONS with weak-sauce nucleophiles

	Starting Material	Reagents & translation	Draw the Product
1	0	HCN hydrogen cyanide	
2	0	NH ₃, H⁺ <i>Ammonia</i> under acidic conditions	
3	ОН	H₂NCH ₃, H ⁺ <i>Methylamine</i> with acid catalyst	
4	С Н	CH₃CH₂OH, H ⁺ excess ethanol under acidic conditions	
5	0 , , ,	HOCH₂CH₂OH , H ⁺ 1,2-ethanediol under acidic conditions	

19B. ACIDIC NUCLEOPHILIC ADDITION MECHANISMS

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.

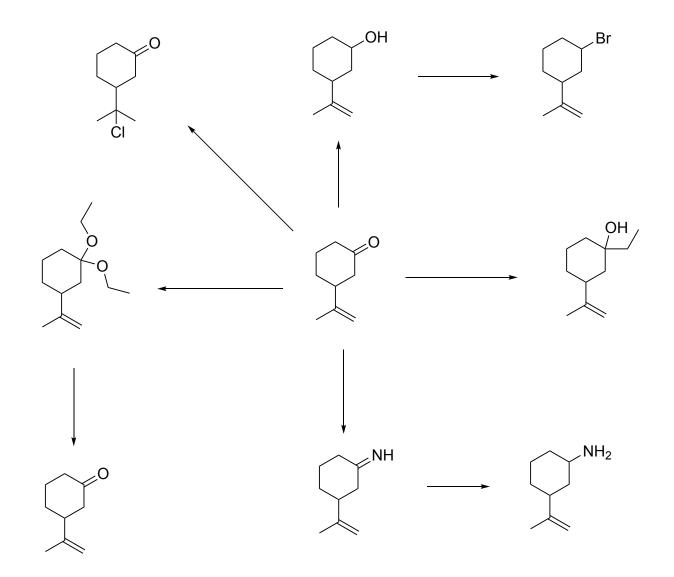

7. Cyanohydrin formation


19C. NUCLEOPHILIC ADDITION & DEHYDRATION MECHANISMS

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.

8. Imine mechanism

9. Acetal Mechanism


React each aldehyde or ketone with each reagent and <u>draw the product</u> in the box.	C→ ^O _H	0	O H O
CH₃CH₂OH (2 mol), H⁺			
HCN			
HOCH₂CH₂OH, H⁺			
H₂NCH₃, H⁺			
PhNH₂, H⁺			

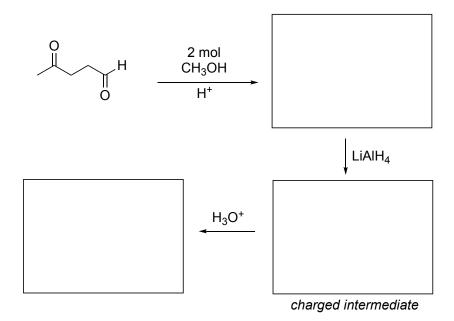
19E. Reaction Puzzle - "training wheels" for multi-step synthesis

The "puzzle" below covers Chapter 19 and previous reactions. Take it one step at a time.

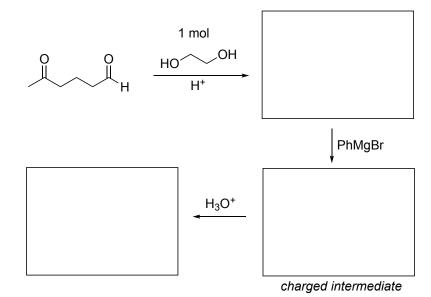
Add all missing reagents to the arrows.

- Hydride and organometallic addition reactions require a separate, second step for addition of water.
- Be sure to add those numbers for separate steps (1.... 2....) where applicable for full credit.

19F. Chemoselective Reaction Puzzles - "training wheels" for multi-step synthesis

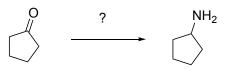

Aldehydes are more reactive than ketones, but what if you want the ketone to react instead?

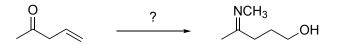
- I. The aldehyde is reacted with alcohol to form an acetal "protecting group",
- II. then the desired addition reaction takes place on the ketone,
- **III.** and finally the acetal is removed (hydrolyzed) to reveal the original aldehyde.


Cool, right?!

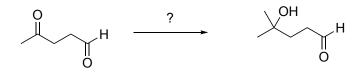
Draw the missing products of each reaction in the boxes.

11. Chemoselective reduction


12. Chemoselective organometallic addition


19F. Multi-Step Synthesis

- Each transformation requires at least two synthetic steps to reach the target product.
 - o These problems were designed to use no more than three reactions.
 - o There are multiple pathways and it's ok if you use a feasible pathway with more than three steps ©
- Show each set of reagents and reaction products on the journey.
 - o Mechanisms are not required, but may be helpful.
- If there is a mixture of products (ex. *major* and *minor*), assume the minor product can be removed.
 - You can just draw the desired *major* product.


13. Ketone to amine

14. Conjugated ketone to alpha-chloro-imine

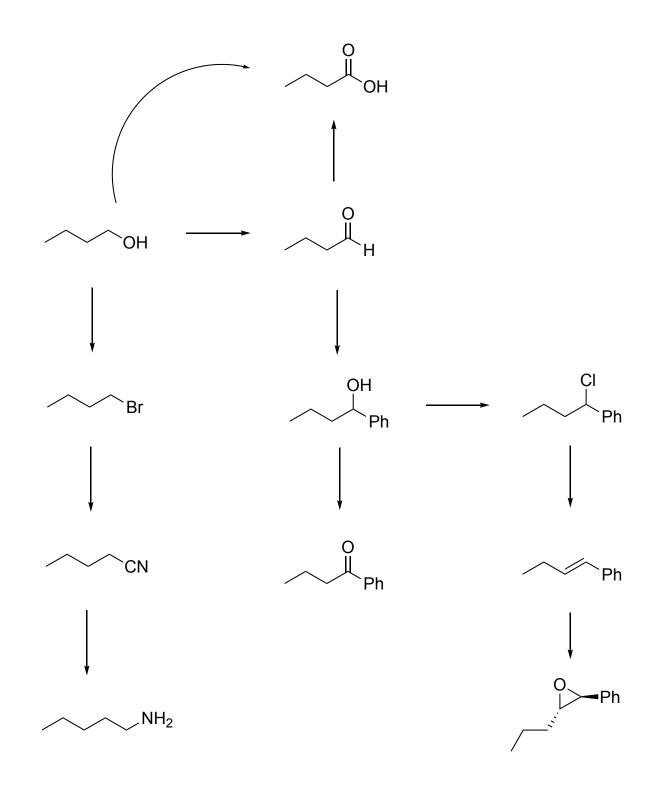
15. Chemoselective organometallic addition - see "training wheels" on pg 5

Chapter 20 Homework – Redox Reactions

20A. REDOX Reactions

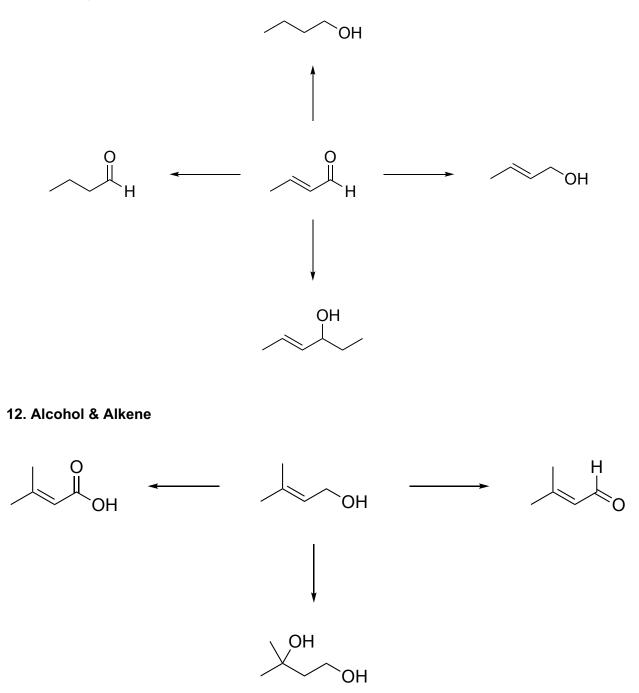
	Starting Material	Reagents & translation	Draw the Product
1	ОН	⊕ ⊕ ⊖	
2	Он	NaCrO ₄ Chromic Acid Or KMnO ₄ Potassium permanganate Reagents may also be listed as 1. KMnO ₄ , KOH 2. H ₂ O, HCl	
3	OH	PCC	
4	ОН	1 mole H₂, Pd 1 mole of hydrogen gas over palladium catalyst Alternate metals to Pd: platinum (Pt) or nickel (Ni)	
5	O H	NaCrO₄ or KMnO₄	

20B. Mix & Match with Reaction Bootcamp! Not all molecules react with all reagents – look out for <u>seven</u> combinations that result in "NO REACTION".


React each molecule with each reagent and <u>draw</u> <u>the product</u> in the box.	ОН	ОН	O H O
PCC			
NaCrO₄			
1. LiAlH₄ (excess) 2. H₂O			
1 mole H ₂ , Pt			
NaBH₄ (1 mol) CH₃OH			

20D. Reaction Puzzle - "training wheels" for multi-step synthesis

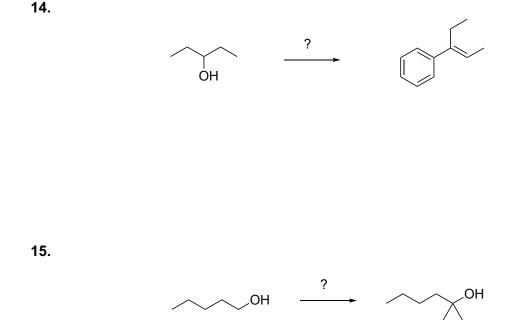
The "puzzle" below covers Chapter 20 and previous reactions. Take it one step at a time.


Add all missing reagents to the arrows.

- Hydride and organometallic addition reactions require a separate, second step for addition of water.
- Be sure to add those numbers for separate steps (1.... 2....) where applicable for full credit.

20E. Chemoselective Readuction Puzzles - "training wheels" for multi-step synthesis

- Fill in the proper **reagent** over the arrows below.
- Include the **amount** of each reagent added (1 mole or 2 moles).
 - 11. Aldehyde & Alkene



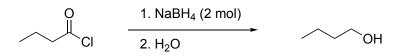
20F. Multi-Step Synthesis

- Each transformation requires at least two synthetic steps to reach the target product.
 - All problems below require an organometallic reagent to add carbons. Be sure you're using it with the correct type of functional group!
 - These problems were designed to use <u>no more than four reactions</u>. There are multiple pathways and it's ok if you use a feasible pathway with more than four steps ©
- Show each set of reagents and reaction products on the journey.
- Mechanisms are not required, but may be helpful.
- If there is a mixture of products (ex. *major* and *minor*), assume the minor product can be removed.

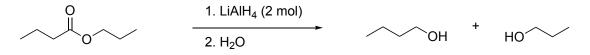
13.

Chapter 22 Homework – Carboxylic Acids & Friends

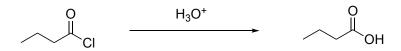
20A. HYDROGEN & OXYGEN NUCLEOPHILES.


Draw the product of each reaction: starting material + reagent \rightarrow Product.

	Starting Material	Reagents & translation	Draw the Product
1	ОН	1. xs LiAlH₄ 2. H₂O Excess lithium aluminum hydride, followed by water	
2	N N	1. xs LiAlH₄ 2. H₂O	
3	CI	xs NaBH₄, MeOH sodium boro hydride in methanol	
4	о H ₃ CO	1. xs LiAlH₄ 2. H₂O	Draw both organic products
5	CI	H₃O⁺, Δ Aqueous acid and heat	
6	O N H	H₃O⁺, Δ	Draw both organic products
7	O H H	H₃O⁺, Δ	Draw both organic products

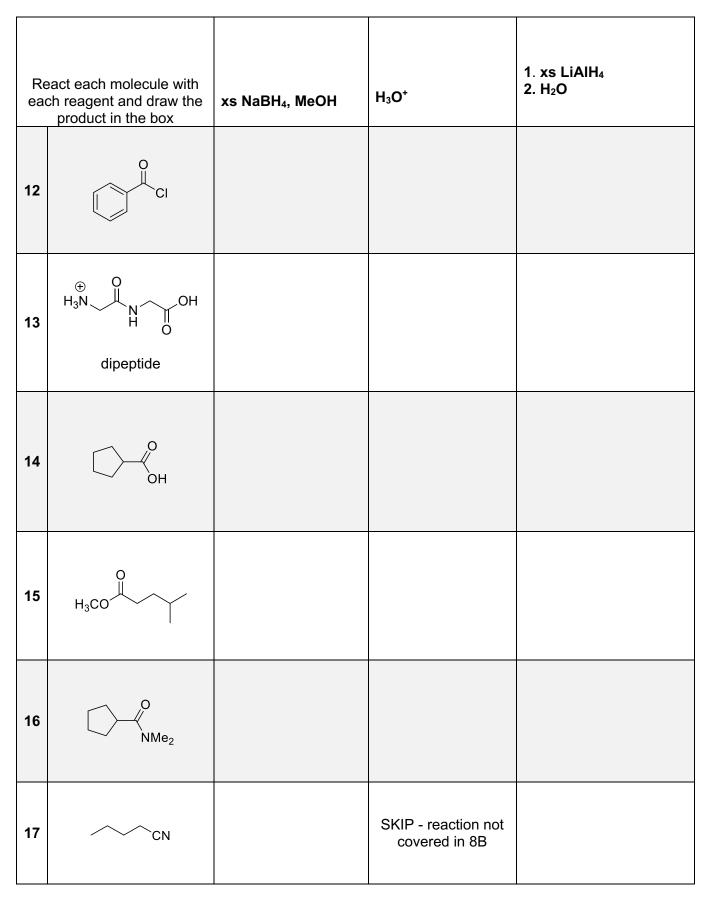

22B. Mechanisms – Acid Derivatives with hydrogen and oxygen nucleophiles.

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.


8. Acid chloride reduction with excess LAH

9. Ester reduction with excess LAH

10. Acid chloride hydrolysis



11. Amide hydrolysis

22C. Nucleophilic Acyl Substitution – Mix & Match with Reaction Bootcamp!

- Draw the product(s) of each reaction: starting material + reagent \rightarrow Product(s)
- Look out for "No Reaction" when the reagent does not react with the starting material

