Name	Partner Name		
TA Name	Section Day Time		

Experiment 2 Lab Notebook Template Citrus Distillation and GC Analysis

Use as reference for notebook preparation – every student uploads to GradeScope after lab

<u>Pre-Lab Requirements</u> – must be complete *before* arriving to lab

- 1. Lab Notebook: copy templates below into designated notebook
 - Purpose, scheme, and reagent table
 - Procedure Diagrams
 - Cleaning and Safety copy table from the procedure
 - Data entries
- 2. **Dress for lab** see safety rules arrive a few minutes early

A. Purpose, sketch of citrus, and structures of terpenes:

B. Reagent Table – properties must be filled in before lab

Sample Name	Amount Fill in during lab	Molecular Mass	mmoles Fill in during lab	Boiling or melting point	Density	Hazards Refer to clean-up & safety table
Citrus Peels		n/a	n/a	n/a	n/a	n/a
Water						
Citrus Oil Enter properties for limonene						

List terpene hazards:

C. Procedure – hand-drawn using procedure in lab PDF, class notes, & Slugs@home

- Instructions, diagrams, & labels for all equipment, chemical names with amounts, & transfers
- Leave space to record additional notes and observations within the procedure diagrams

Step 1. Preparation of peels from home

Step 2. Distillation Apparatus – copy Figure 2 from Exp 2 PDF

- Include diagram of complete distillation setup with labeled components
- Step-wise procedure to assemble the distillation apparatus

Step 3. Separation and Collection of Citrus Oil

Separation of citrus oil from distillate in a buret and collection in a vial

Step 4. Sample Preparation

Representative diagram for any 1 sample: steps for drawing liquid & air into syringe

Step 5. Injection of Standards, Citrus Oil, & Data Collection

- Identity and volume of each standard
- Transfer from needle to GC (one representative sample)
- GC diagram: injection port, oven, chart recorder & rough sketch of chromatograms

Cleaning & Safety – copy table from procedure

Cleaning and Safety – copy the tables from the end of the procedure

 Includes instructions for safely taking apart the distillation apparatus and returning shared equipment

D. Data

Description of your peels <i>and</i> those of a neighboring pair	(3 characteristics, ex. size, color,	fragrance, texture)
Mass of citrus peels g	Volume of water	_ mL
Distillation temperature: first drop °C • Estimate one decimal place, ex. 97.0 °C	Final temperature	°C
Mass of citrus oil g	Percent Recovery	%
Calculation: % Recovery = (mass citrus oil) / (mass	s of peels) x 100%	

Record the **Observations** and **% recovery** of a neighboring group in your lab:

^{*} you'll need this and comparison of your peels to their for the lab report (bigger or smaller pieces of peel?)

E. Data & Calculations: Gas Chromatography (GC)

- See Experiment 2 for background on GC; equations below.
- GC charts will be obtained in lab, time permitting, or sample charts provided.
- Copy the sample calculations and tables below into your notebook.

Corrected Retention Time, t_R'

solvent sample air injection baseline distance from air to sample (cm) distance from chart speed air to sample 1 min 60 sec t_R' (sec) = 1 min 2.5 cm

Integration and Percent (%) Composition **FIGURE 20.13** Determining peak area: h = height; $W_{h/2}$ = width at half-

Integration: Peak Area = $h \times w_{h/2}$

% Composition, A = Area of component A x 100% Sum of all peak areas

Table 1. Standard Terpene GC Retention times

Sample	Corrected t _R (s)
alpha-pinene	
beta-pinene	
Limonene	

Retention Time Calculations:

Table 2. GC Analysis of Citrus Oil

* Not all standards may be present in the oil, some peaks overlap, and other unknown peaks may be present. Add or remove rows as needed.

Peak #	Compound Name	Corrected t _{Rt} (s)	Integration (cm²)	% Composition

Calculations (retention time, integration, % composition):