French schwa in Harmonic Grammar

Brian Smith UCLA

Joe Pater UMass Amherst

4/1/2016 Linguistic Symposium on Romance Languages Stonybrook (SUNY) Ongoing collaboration with Joe Pater

Today

- Experimental data on the phonological conditioning of two optional processes in French
 - Schwa epenthesis
 - Schwa deletion
- Both processes can be accounted for with weighted constraints, and both demonstrate ganging effects
- Takeaway: weighted constraints provide a natural fit for the data, capture both *cumulative* and *independent* effects of constraints

Plan

- The idealized (categorical) epenthesis pattern
 - Analysis in HG
 - Alternatives
- Experiment: variation in epenthesis and deletion
- A MaxEnt-HG model of variable epenthesis and deletion

Schwa background

- Definition: front rounded mid vowel that alternates with zero
- Phonetically [ø], [œ], or somewhere between

Background

Dell (1973/1985) describes three levels of optionality

Forbidden schwa Jacques l\(\mathbf{e}\) ach\(\delta\)te

Optional schwa Marie I(e) vend

Obligatory schwa Jacques le vend

• I'll follow his notation, and mostly use his examples (all IPA transcriptions are by me)

Schwa epenthesis

- Described as obligatory (Léon 1966); occurs iff:
 - The epenthesis site is after a complex cluster
 - The site is followed by exactly one syllable
- Data for Verb+Noun compounds

	Word	IPA	Context of ə	Meaning
a.	gard <u>e</u> -fou	gard <u>ə</u> +fu	VCC_σ	railing
b.	port <u>e</u> -clefs	bort ō +kle	VCC_σ	keychain

Schwa epenthesis

 No schwa if epenthesis site is followed by 2+ syllables

	Word	IPA	Context of ə	Meaning
C.	port ¢ -manteau	port+mãto	VCC_σσ	coat rack
d.	gard e -manger	gard+mãʒe	VCC_σσ	cold kitchen

Schwa epenthesis

No schwa if epenthesis site isn't preceded by a cluster

	Word	IPA	Context of ə	Meaning
e.	cass e -noix	kas+nwa	VC_σ	nutcracker
f.	piqu ∉ -nique	pik+nik	VC_σ	picnic
g.	coup ∉ -papier	kup+papje	VC_σσ	paper cutter
h.	pass ∉ -partout	pas+paʁtu	VC_σσ	master key

Why analyze as epenthesis?

 Not just in compounds. Occurs at every morpheme boundary (if CC_σ), even if there's no orthographic 'e'

(i) une veste rouge une veste rouge et blanc

[hu nest eng eplg] (Dell: 554)

(j) exact<u>e</u>+ment massiv**∉**+ment [ɛgzaktə+mã] (Dell: 228) [masiv+mã]

(k) un short vert

 $[\tilde{\mathbf{g}}] \text{DRF} \text{ ARR}$ (Dell:534)

Completely predictable → epenthesis (not deletion)

One more requirement

Epenthesis is forbidden before a vowel

 Cannot create a schwa-V sequence (which is avoided throughout French, excepting h-aspiré)

An HG analysis of schwa epenthesis

- Lends itself to analysis with weighted constraints in Maximum Entropy Harmonic Grammar (MaxEnt: Goldwater & Johnson 2003)
- HG is like OT with constraints and candidate sets but constraints are weighted instead of ranked
- Results in ganging: one strong constraint can be overtaken by two weaker constraints together
- MaxEnt is a probabilistic variant of HG: outputs a probability distribution

Constraints

- Two independent requirements:
 - Requirement 1: Schwa must be in the penult
 - Requirement 2: Schwa must be after a cluster
- Translated into two constraints:
 - PENULT = SCHWA
 - *CLUSTER

Constraints

- *Cluster: Assign one violation for every coda cluster.
 - Well-documented effects across French, most famously Grammont's (1894) La Loi de Trois Consonnes (An early constraint: *CCC)
- Abstracting away from the effects of sonority, which have been noticed as early as Grammont
 - (The cluster in *livre* [livr] is more marked than peste [psst])

Constraints

- PENULT = SCHWA: Assign one violation if the penultimate syllable of the Phonological Phrase is a non-schwa vowel
- Restated: pre-tonic syllable should contain the least sonorous vowel
 - Common across stress systems (de Lacy 2006)
 - Stress is phrase-final in French, and schwa ([ø]~[œ])
 is the closest thing in French to a mid central vowel

Calculating Harmony

/gaʁd+fu/	*CLUSTER w=20	PENULT=9 w=10	DEP w=25	Harmony
gar.q ə .fu	0	О	-1	–25 (0*20)+(0*10)+(–1*25)
gard.fu	-1	-1	0	-30 (-1*20)+(-1*10)+(0*25)

Exponentiating

/gaʁd+fu/	*CLUSTER w=20	PENULT=9 w=10	DEP w=25	Harmony	eHarmony
gar.q ə .fu	0	О	-1	– 25	1.39 x 10 ⁻¹¹
gard.fu	-1	–1	0	-30	9.35 x 10 ⁻¹⁴

Natural exponential function

Probabilities

/gaʁd+fu/	*CLUSTER w=20	PENULT=9 w=10	DEP w=25	Harmony	e ^{Harmony}	Probability
gaĸ.d ə .fu	0	Ο	-1	-25	1.39 e ⁻¹¹	0.99
gard.fu	–1	–1	0	-30	9.35 e ⁻¹⁴	<0.01

Normalize: divide each candidate's e^H by sum of all candidates' in set

Both constraints violated: epenthesis

/gaʁd+fu/	*CLUSTER w=20	PENULT=9 w=10	DEP w=25	Harmony	e ^{Harmony}	Probability
gaĸ.d ə .fu	0	0	-1	-25	1.39 e ⁻¹¹	0.99
gard.fu	-1	–1	O	-30	9.35 e ⁻¹⁴	<0.01

Ganging: two weaker constraints (*Cluster and Penult=0) overcoming stronger constraint (Dep)

Just Penult=0: no epenthesis

/kas+nwa/	*CLUSTER w=20	PENULT=0 w=10	DEP w=25	Harmony	Probability
ka.s <u>ə</u> .nwa	0	O	-1	– 25	<0.01
kas.nwa	O	–1	O	–10	0.99

Just *Cluster: no epenthesis

/gard+malad/	*CLUSTER w=20	PENULT=ə w=10	DEP w=25	Harmony	Probability
gar.q ə .ma.lad	0	–1	–1	- 35	<0.01
gaʁd.ma.lad	-1	_1	O	-30	0.99

Summary of the MaxEnt analysis

- Two independent markedness constraints
 - *Cluster
 - PENULT = θ
- Weighted to produce a ganging effect: epenthesis only applies if it avoids violations of both constraints

Alternative accounts

- To compare: other accounts of French epenthesis capture the pattern without ganging or cumulativity
 - Charette 1991: (in GP) Epenthesis occurs after clusters, and epenthetic schwa is only licensed in the penultimate syllable
 - Coté 2007: (in OT) Cluster-driven epenthesis only occurs within PWds. *Garde-fou* is parsed as one PWd, *garde-malade* is parsed as two.

Why MaxEnt?

- All three accounts can handle the basic pattern
 - MaxEnt with two constraints and a ganging effect
 - Licensing in Charette (1991)
 - Prosodic analysis in Côté (2007)

Why MaxEnt?

- The MaxEnt analysis captures the pattern through the cumulative interaction of two independent constraints
 - If we find independent evidence for *Cluster and Penult=schwa in French, the MaxEnt account is on the right track
 - If we need *Cluster and Penult=schwa independently, why not take advantage of their cumulative interaction?

Why MaxEnt? Empirical arguments

- The rest of today: both *Cluster and Penult=schwa play a role in variable epenthesis and deletion
 - Independently of each other
 - Outside of the context VCC_σ
- We need **both** of the constraints to capture the full set of data

Variable epenthesis and deletion

Variation and epenthesis

Côté (2007) describes epenthesis as variable

(m) la sect<u>e</u> part l'Aztèqu**e** part

[la s**ɛ**kt<u>ə</u> pa**ʁ**] la sect(e) partait [la sεkt(ə) pa**κ**tε] [lazt**e**k pa**r**]

CC<u>e</u> σ CC(e) oo C**¢** σ

- Epenthesis most likely after clusters and followed by one syllable
- Generally occurs after clusters, regardless of position
- No independent effect of position

Clusters and deletion

 Schwa deletion is optional after a single consonant, but only if it doesn't create a coda cluster

```
    [th le retrand] *[th le retrand] *[th le retrand]
    th le retrand *[th le retrand] *[th le retrand]
    th le retrand *[th le retrand] *[th le retrand]
    th le retrand *[th le retrand] *[th le retrand]
    th le retrand *[th le retrand] *[th le retrand] *[th le retrand *[th le retrand] *[th le retrand *[th le retrand] *[th le retrand *[th le r
```

- Doesn't matter where the resulting cluster is
 - la queue de ce renard
 la kø de se kenak/
 *[la kø de se kenak]

Cluster and position

- Some coda clusters are possible outcomes of deletion, and these clusters show an effect of prosodic position (Dell: 231, citing Morin 1974)
 - la terre se vend

/la tɛk sə vã/

• la terre s(e) vend bien /la tɛʁ s(ə) vã bjɛ̃/

Position alone

 There's an effect of position outside of coda clusters, although this effect is much more subtle

venez in Dell: 227:

/vəne isi/

v**e**nez ici

/vəne/

v**e**nez

<- Less schwa

More schwa ->

Summary of previous literature

- In both epenthesis and deletion:
 - Schwa is most likely to be pronounced in CC_σ
 - Schwa is generally more likely after clusters
- In deletion: schwa is more likely in C_σ than C_σσ (but the effect is weak)
- In epenthesis: C_σ and C_{σσ} are equal

Next

- Although there are hints of independent effects of both constraints in descriptions, we don't know the actual probabilities of schwa
- An experiment to estimate the rates of deletion and epenthesis

Experiment

Experiment

- Web-based, through IbexFarm
- Two alternative forced choice, with confidence rating

Design

- 2 x 2 x 2 factorial design
 - Cluster (C_ or CC_)
 - Position (_σ or _σσ)
 - Epenthesis / Deletion

Design: epenthesis

- Noun + Adjective
 - Noun: C-final or CC-final, all final Cs obstruents
 - Adjective: σ or σσ, all obstruent-initial

```
C_{-} une bott(e) jaune une vest(e) jaune [yn vɛst _ ʒon]

une bott(e) chinoise une vest(e) chinoise [yn bɔt _ ʃinwaz] [yn vɛst _ ʃinwaz]
```

Design: deletion

- Name + te + Verb (e.g. Maurice te cite)
 - Name: C-final or V-final, all final Cs obstruents
 - Verb: σ (present) or σσ (imperfect), all obstruent-initial

	C_	CC_
_σ	Eva t (e) choque [evat _ ∫ok]	Maurice t (e) cite [mo ʁ ist _ sit]
_σσ	Eva t (e) choquait [evat _ ∫ok ε]	Maurice t (e) citait [mo ʁ ist _ sit ɛ]

Design

- 78 judgments per participant
 - 24 deletion (6 per condition, no name or verb repeated)
 - 24 epenthesis (6 per condition, no adj. or noun repeated)
 - 30 fillers
 - Different tenses (future, past) and contexts (V_, _V, _σσσ)
 - 20 fillers for deletion (e.g. Anna s(e) est levée)
 - 10 fillers for epenthesis (e.g. un iguan(e) solitaire)

Predictions

- Cumulativity: schwa is most likely when it avoids violations of both constraints
- Independence: schwa is more likely when it avoids a violation of a single constraint
- Predicted probabilities of schwa:

```
C_{\sigma\sigma} < CC_{\sigma\sigma}, C_{\sigma} < CC_{\sigma}
Neither < *Cluster, Penult=0 < Both
```

Participants

- Recruited online through word of mouth
- 51 respondents (ongoing)
- Preliminary results for 33 native French speakers who aren't from Canada

Results

- A lot of experimental noise schwa is conditioned by geography, social factors, register
- Reaction time cutoffs
 - min RT = 100 ms, max RT = 9.3 hrs
 - Only considered responses between 3000s-7500s

Rate of schwa from experiment: deletion

Effect of position in deletion

^{* =} p < 0.05 in chi-square test

Effect of cluster in deletion

^{* =} p < 0.05 in chi-square test

Rate of schwa from experiment: epenthesis

Effect of position

^{* =} p < 0.05 in chi-square test

Effect of cluster

^{* =} p < 0.05 in chi-square test

Epenthesis and deletion

Mixed effects logistic regression

Fixed effects:

Epenthesis/deletion

Cluster

Position

Cluster x Position

 Random effects: intercepts for Subject & Item, random slopes for Subject for all fixed effects

Findings

- sig. effect for Cluster
 Pr(schwa): CC_ > C_
- sig effect of Position
 Pr(schwa): _σ > _σσ
- sig effect of Deletion/Epenthesis: Pr(schwa): deletion > epenthesis
- Effect of Cluster is greater than the effect of Position
- Interaction of Cluster x Position is not significant

Data from Racine (2008)

- 12 speakers from Nantes
- Frequency judgments for single words with schwa
 - 1 = infrequent schwa, 7 = very frequent schwa
- Judgments for nearly 2,000 words with orthographic 'e'

Ratings for deletion

Ratings for epenthesis

A model of variable epenthesis and deletion

Epenthesis and deletion

- Epenthesis and deletion obey similar tendencies with respect to schwa
 - Not often modeled together
- A single weighted constraint grammar can model both epenthesis and deletion
 - The model captures all target generalizations
 - and generates probabilities close to experiment probabilities (within 5 percentage points)

Qualitative goals of the model

- Pr(schwa) $C_{\sigma} < C_{\sigma} < CC_{\sigma}$
 - Cumulativity and independence:
 - Schwa is most likely when two conditions are met Schwa is least likely when zero conditions are met Both requirements have an effect (across all contexts)
- Cluster plays a bigger role than position
- Pr(schwa)
 Epenthesis < Deletion

Fitting the actual values

- *CLUSTER
- PENULT = θ
- *Schwa Need some constraint to drive deletion
- Max Constraint against deletion
- DEP Constraint against epenthesis

Target probabilities

Taken directly from experiment

Deletion: p(schwa)

Epenthesis: p(schwa)

		_σ
CC_	0.86	0.90
C_	0.42	0.59

	_σσ	_σ
CC_	0.56	0.75
C_	0.13	0.17

Target probabilities

Taken directly from experiment

Deletion: p(schwa)

Epenthesis: p(schwa)

,	_σσ	_σ	
CC_	0.86	0.90	
C_	0.42	0.59	

Learning

- Constraint weights found using MaxEnt grammar tool
 - http://www.linguistics.ucla.edu/people/hayes/ MaxentGrammarTool/
- Learner is supplied target probabilities, inputs, outputs, and constraint violations
- Objective: maximize likelihood: find a set of weights that matches the target probabilities as closely as possible

Model probabilities (Target probabilities)

Constraint Weight *Cluster 2.16

Deletion: Pr(schwa)

Epenthesis: Pr(schwa)

PENULT=0 0.69

*SCHWA 0.27

MAX 0.00

DEP 1.66

	_σσ	_σ
CC_	0.87 (0.86)	0.93 (0.90)
C_	0.43 (0.42)	0.60 (0.59)

	_σσ	_σ
CC_	0.55 (0.56)	0.71 (0.75)
C_	0.13 (0.13)	0.22 (0.17)

Constraints have weaker effects at the margins

- In the data and model, PENULT=0 has a weaker effect when the rate of schwa is closer to 0% and 100%, and a stronger effect when closer to 50%
- This falls out of the math of the MaxEnt model, without interaction terms or special constraints (see McPherson & Hayes 2015 for an application of this)

Deletion (model)

_σσ _σ Diff CC_ 0.87 0.93 **0.06** C_ 0.43 0.60 **0.27**

Epenthesis (model)

Modeling summary

- Model captures cumulativity in both epenthesis and deletion
 - Both processes are conditioned by *Cluster and PENULT=0, most likely when both constraints are applicable
 - Both constraints have independent effects
- The fact that the constraints have weaker effects at margins falls out of MaxEnt

Conclusion

- Two types of analysis for epenthesis in VCC_σ
 - MaxEnt: Two constraints and ganging effects
 - Others: Constraints specific to VCC_σ
- For the categorical data, these approaches are equal
- For the variable data, MaxEnt captures the fact that both constraints have independent effects
 - Condition both epenthesis and deletion, outside of context VCC_σ

General conclusion

- Weighted constraints allow us to capture patterns with fewer constraints
 - Thanks to ganging effects
 - In this case, matching probabilities for 8 inputs with a simple 4 constraint grammar
- Weighted constraints provide a straightforward model of variation, with machine-learnable parameters

Thank you

http://www.linguistics.ucla.edu/people/bsmith/

Acknowledgments

 Thanks to many French speakers and learners for help with stimuli and recruitment, especially:

Magda Oiry Isabelle Lin
 Yu Tanaka Kie Zuraw

Thanks to Isabelle Racine for sharing French data

- Charette, Monik (1991). Conditions on Phonological Government.
 Cambridge, UK: Cambridge University Press.
- Côté, Marie-Hélène (2007). Rhythmic constraints on the distribution of schwa in French. In Romance Linguistics 2006, José Camacho, Nydia Flores-Ferrán, Liliana Sánchez, Viviane Déprez & María José Cabrera, eds. Amsterdam: John Benjamins, 79-92.
- de Lacy, Paul (2002). The formal expression of markedness. PhD Dissertation. University of Massachusetts Amherst.
- Dell, François (1985). Les règles et les sons, 2nd ed. Paris: Hermann.
- Goldwater, Sharon, & Mark Johnson (2003). Learning OT constraint rankings using a maximum entropy model. In Jennifer Spenader, Anders Eriksson, and Osten Dahl (eds.), Proceedings of the Stockholm Workshop on Variation within Optimality Theory, 111– 120.
- Grammont, Maurice (1894). La loi des trois consonnes. Mémoires de la société de linguistique de Paris 8, 53-90.
- Léon, Pierre (1966). Apparition, maintien et chute du e caduc. La linguistique 2, 111-122.

Thank you

http://www.linguistics.ucla.edu/people/bsmith/