Paper Plate Model of Carbon

> Blue = electrons
> Red = protons
> Black = neutrons

> Our scale is: $2 \mathrm{pm}: 1 \mathrm{~mm}$

If the actual atomic radius of carbon is 77 pm, how big should the radius be on this paper plate model?

77 / $2=38.5 \mathrm{~cm}$ in this model

Atomic Radii (all in picometers)

Element	Radius (pm)
H	37
He	31
Li	152
Be	111
B	80
C	77
N	74
O	73
F	72
Ne	71

Element	Radius (pm)
Na	186
Mg	160
Al	143
Si	113
P	110
S	103
Cl	100
Ar	98
K	227
Ca	197

Again, these are all in picometers!!! Remember to scale your model appropriately

The "Shielding Effect"

Are electrons attracted to or repelled from each other?

Repelled

Electrons in shells closer to the nucleus reduce the attraction between the protons and the valence (outer shell) electrons

Carbon

First lonization Energy

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

