Introduction to Enzymes

Review Macromolecules

- Proteins \rightarrow amino acids
- Carbohydrates → sugars
 - (monosaccharides, polysaccharides, glucose)
- Lipids

 fatty acids and a glycerol
- Nucleotides

 nucleic acids

Proteins

Chains of amino acids

 Many proteins are enzymes

 Enzymes catalyze chemical reactions

Enzymes as catalysts

 Catalyst - Speeds up chemical reactions in living organisms by decreasing the energy needed to start the reaction (activation energy)

Definitions

- Substrate- monomers that bind to the active site of an enzyme
- Active site- area on enzyme where substrate binds
- Product- what the enzyme produces

Lock and Key Model

Lock and Key Model

The substrates fit like a key in a lock Enzyme The active site is like a lock

Lock and Key Model

The activation energy for these substrates to bind together has been lowered by the enzyme.

Basic Enzyme Diagram

In Biology when a word ends in —ase it is more than likely it's an enzyme.

Guess what polymers are broken down by these enzymes and what monomers are created?

	Polymer	Monomer
Protease		
Sucrase		

Dolumer

Lipase

Enzymes are very complex structures whose shapes and functions can be affected by many

What factors affect enzyme function?

pH Temperature

Graphing enzyme activity

The optimal temperature for this enzyme is

