Control in Eukaryotic Genomes: That's us!

Ch. 19

What makes us different?

- We have a lot more DNA
 - 35,000 genes
- a lot of that doesn't code for anything
- Cell specialization means not all cells have the same DNA
- All that DNA requires major organization
- How would you deal with all that DNA?

How much DNA is that?

- If extended, each DNA molecule would be about 6 cm long, thousands of times longer than the cell
- Each human chromosome averages about 2 x 10⁸ nucleotide pairs
- This chromosome and 45 other human chromosomes fit into the nucleus
- How is this done?

Histones: the first level of packing

- Their positively charged amino acids bind tightly to negatively charged DNA.
- Makes chromatin look like beads on a string
 - Beads called **nucleosomes**, where DNA winds around a core of histone proteins.

Chromatin: the DNA suitcase

Getting down to the DNA level

- In eukaryotes, most of the DNA (about 97% in humans) does *not* code for protein or RNA.
 - Some are regulatory sequences
- Some is repetitive DNA, present in many copies
 - 10-15% is satellite DNA where base pairs are repeated up to hundreds of thousands of times in a row
 - This can cause mental retardation, like repeats of CGG
 - The longer the repeat, the worse the conditions
 - Some is helpful.....

Telomeres and Centromeres

 The DNA at the centromeres separates sister chromatids during cell division

 The telomeres protect genes from being lost by protecting the ends of chromosomes from degradation

Multi-gene families that code

 For example, the three largest rRNA molecules are encoded in a single transcription unit that is repeated thousands of times

- Each antibodies consists of four polypeptide chains, each with a constant region and a variable region, giving each a unique function
 - As a immune cell differentiates, one of several hundred possible variable segments is connected to the constant section by deleting the intervening DNA.

Fig. 19.6

Gene amplification

Happens during development with ribosomes
Why do you think this is?

Where's the regulation?

Now it's your turn!