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Abstract—Non-intrusive monitoring of vital signs has become
increasingly important in various healthcare settings. In this
paper, we present Pulse-Fi, a novel low-cost system that uses
Wi-Fi Channel State Information (CSI) and machine learning to
accurately monitor heart rate. Pulse-Fi operates using low-cost
commodity devices, making it more accessible and cost-effective.
It uses a signal processing pipeline to process CSI data fed
into a custom low-compute Long Short-Term Memory (LSTM)
neural network model. We evaluated Pulse-Fi using two datasets:
one that we collected locally using ESP32 devices named ESP-
HR-CSI Dataset and another containing recordings of 118
participants using the Raspberry Pi 4B called EHealth, making
it the most comprehensive data set of its kind. Our results show
that Pulse-Fi can effectively estimate heart rate from CSI signals
with comparable or better accuracy than hardware with multiple
antenna systems, which can be expensive.

Index Terms—Heart Rate Monitoring, Channel State Infor-
mation, Wi-Fi Sensing, Deep Learning

I. INTRODUCTION

Non-intrusive monitoring of vital signs such as heart rate
is critical to improving elderly care and early health in-
tervention [1]. Long-term care and healthcare institutions
increasingly need systematic continuous accuracy that is
easy to deploy. Wi-Fi signals offer unique advantages: they
penetrate walls, are ubiquitous indoors, and avoid camera-
based privacy concerns. By analyzing Channel State Informa-
tion (CSI), which captures signal propagation characteristics,
subtle heartbeat movements can be detected [2], [3].

Wi-Fi infrastructure for heart rate detection should ideally
satisfy the following requirements:

o Universality is a challenge due to hardware and
firmware limitations of many Wi-Fi chipsets, restricting
compatibility and accessibility; hence open-source tools
like Nexmon CSI and ESP-32 help address this.

« Robustness to diverse environments is important, as CSI
signals often degrade in real-world settings with noise
and distance, making standard methods less effective.

o Thorough testing across diverse scenarios and partici-
pants to ensure generalization in medical contexts.

« Low computational cost is necessary for widespread
low-cost deployment, especially in everyday devices.

Pulse-Fi fulfills these requirements by: (1) using commod-
ity, low-cost devices, making it more accessible and cost-
effective, AND (2) including a signal processing pipeline to
process CSI data which is then fed into a custom low-compute
Long Short-Term Memory (LSTM) neural network model.
The contributions of this paper can be summarized as follows:

o We describe Pulse-Fi’s design and architecture including:
(1) Pulse-Fi’s CSI data processing pipeline and (2)
Pulse-Fi’s compact LSTM model whose low computing
requirements make it feasible to deploy in resource-
constrained devices such as ESP32 and Raspberry Pi
platforms, enabling real-time, continuous monitoring at
settings other than hospitals and specialized clinics.

o We evaluate Pulse-Fi using two datasets: (1) One CSI
dataset was collected using ESP32 devices with seven
participants in a semi-controlled indoor environment
across varying distances (2) The other CSI dataset uses
118 participants in 17 positions/activities, making it the
most comprehensive dataset of its kind.

e We show that Pulse-Fi can achieve high accuracy and
low Mean Absolute Error (MAE) levels using only
amplitude information from single-antenna systems out-
performing State Of The Art (SOTA) approaches that
need multi-antenna devices to provide phase difference
information.

The remainder of the paper is organized as follows: In Sec-
tion II, we provide an overview of the related work. Section
III provides an overview of Pulse-Fi, while Sections IV and V
describe Pulse-Fi’s functional components in detail and Pulse-
Fi’s CSI processing and heart-rate estimation, respectively.
Section VI outlines the experimental methodology we use to
evaluate Pulse-Fi. Section VII and VIII present results of our
experiments and summarizes our findings, highlighting key
insights. Finally, Section IX concludes the paper.

II. RELATED WORK

Heart rate monitoring techniques can be broadly catego-
rized into contact and non-contact based sensing. Contact-
based sensing include Electrocardiogram (ECG), Photo-
plethysmography (PPG), and Polysomnography (PSG) and



are common in clinics for their accuracy. They require mul-
tiple specialized sensors and therefore are costly. Alternative
techniques (chest straps, pulse oximeters, smartwatches) suf-
fer from long-term discomfort, specialized design needs, and
high costs. Non-contact approacehes that are camera-based
such as remote photoplethysmography (rPPG) and thermal
imaging estimate vital signs without contact but require
expensive equipment and raise privacy concerns, and are
sensitive to lighting and skin tone variations [4], [5].

More recent non-contact approaches have used wireless
signals as they propagate in the environment to monitor heart
rate. In particular, Channel State Information (CSI) telemetry
captures environmental conditions through the phase and
amplitude of different subcarriers, which mitigates the effects
against scattering, fading, and power delays [2]. Although
CSI-based vital sign monitoring has shown great potential,
current state-of-the-art systems have several limitations. Many
rely on discontinued, specialized hardware such as Intel 5300
NICs to extract phase-difference information for accurate
monitoring [6]-[10]. Many existing approaches [1], [3], [6],
[7], [10] have been developed and evaluated using data from
a single individual or a small homogeneous group. Other
limitations include no variation in subject posture/position or
the amount of time over which data needs to be collected
(temporal duration) [6]-[11]. Despite recent advancements in
machine learning (ML) and its proven effectiveness in signal
processing tasks, there has been limited exploration of ML
techniques for heart-rate monitoring [2]. Some more recent
efforts [6], [10] use convolution neural networks (CNNs) to
adapt to environment dynamics however they are computa-
tionally expensive [12]. The work presented in [13], uses
the CSI dataset EHealth, which is one of the datasets that
we use to evaluate Pulse-Fi. To our knowledge, EHealth is
the only dataset with a substantial number and diversity of
participants. The accuracy results presented in [13] show
inconsistencies in various positions / activities with errors as
high as 6.74 bpm. The results in [13] used data from 59
participants, while the current data set has 118.

III. PULSE-FI1: SYSTEM OVERVIEW

Pulse-Fi’s goal is to provide a low-cost, accessible end-to-
end solution to non-intrusive, continuous heart rate monitoring
using Wi-Fi Channel State Information. Fig 1 illustrates
Pulse-Fi’s system architecture which consists of three main
components: data collection using commodity Wi-Fi devices,
a CSI signal processing pipeline, and a custom lightweight
Long Short Term Memory neural network for heart rate
estimation. Pulse-Fi’s design prioritizes accessibility and real
world usability while maintaining high accuracy.

A. CSI Processing Pipeline

Pulse-Fi’s CSI processing pipeline is designed to isolate
and extract subtle CSI variations caused by heartbeats while
removing environmental noise and interference. The pipeline
consists of five stages: 1. Amplitude conversion. 2. Stationary

noise removal. 3. Pulse extraction. 4. Pulse Shaping. 5. Seg-
mentation and normalization. PulseFi’s stages are described
in detail in Section IV.

B. LSTM Network

PulseFi’s heart rate estimation uses an LSTM neural net-
work because it has been shown to handle sequential and
variable-length data, making it effective for inputs with dif-
ferent durations [14]. It has relatively low compute cost and
offers robustness to external noise [15].

IV. CSI DATA PROCESSING

As shown in Figure 1, Pulse-Fi’s CSI data processing
component consists of several steps to improve CSI signal
quality and extract features for heart rate estimation. These
steps aim at isolating the subtle variations in the CSI signal
that correspond to changes caused by heart rate.

1) Amplitude Conversion: Raw CSI data (Fig 2) contains
magnitude and phase information. We extract the amplitude
portion of the CSI since variation in amplitude of the signal
are directly related to physical movements caused by heart-
beats. We chose not to use phase information as Pulse-Fi
employs low-cost, single-antenna devices and thus does not
have access to phase difference information.

2) Stationary Noise Removal: Raw CSI data typically
include different forms of noise caused by hardware imper-
fections, noise from the environment, etc. To remove them,
we eliminate the signal’s Direct Current component. [16].

3) Pulse Extraction: One key challenge in measuring heart
rate from CSI data is to isolate the rhythmic beating of the
heart from various other biological and environmental factors.
To address that, we use a third-order (empirically determined)
Butterworth bandpass filter [17] set to 0.8 - 2.17 Hz (corre-
sponding to 48-130 BPM). This gives sufficient frequency
separation while remaining computationally efficient with no
passband rippling that could introduce artifacts.

4) Pulse Shaping: To further improve the signal and re-
duce high-frequency noise while preserving important fea-
tures, we applied a Savitzky-Golay filter [18]. This filter
performs local polynomial regression on a series of values,
providing smoothing that is very effective at maintaining the
shape of physiological signals. In our current implementation,
we use a window length of 15 and a polynomial order of 3,
which were empirically derived to balancing noise reduction
with signal preservation. Data post processing can be seen in
Fig 2.

5) Data Segmentation and Normalization: To prepare data
for Pulse-Fi’s LSTM heart rate estimator, we segment the CSI
into overlapping windows of fixed packet length. For example,
with a window size of 100, the first window is packets 1-100,
the next is 2—101, etc. The temporal duration of each window
is calculated as the window size in seconds multiplied by the
sampling rate.
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Fig. 1. Pulse-Fi System Architecture
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Fig. 2. CSI data before and after filtering

V. HEART RATE ESTIMATION

Processed CSI data are fed to Pulse-Fi’s heart rate es-
timation module, which uses an LSTM neural network to
continuously estimate heart rate. As discussed previously,
models based on LSTM are well suited for tasks such as
continuous heart rate estimation because they can find long-
term dependencies in time-series data [14], [15].

1) Pulse-Fi’s LSTM Architecture: LSTMs extract the char-
acteristics of long- and short-term data set using memory cells
and gates. Memory cells store dependencies, such as short-
term spikes (e.g., increased heart rate during running) and
long-term trends (e.g., resting heart rate).

After the LSTM layer extracts the important features from
the wireless signal, the dense layer summarizes it and esti-
mates the BPM. After training, the model outputs a vector
indicating relevant features. A higher numerical value indi-
cates relevance in predicting heart rate. A negative number
means the particular feature is irrelevant and an activation
function (ReLU in our case) discards them.

2) Model Training: We train our model using the ADAM
optimizer [19], known to handle large data sets and high-
dimensional parameter spaces effectively by combining mo-
mentum with adaptive learning rates. We empirically set
the learning rate to 0.001, balancing convergence speed and
stability, resulting in stable training and validation losses,
indicating successful convergence. Our loss function is Mean
Squared Error (MSE), which heavily penalizes larger errors.

We use early stopping (Patience 10) and halve the learning
rate if validation loss does not improve to prevent overfitting.

Pulse-Fi’s LSTM models are trained with a 64-16-20% split
between train, validation, and test, ensuring generalization by
shuffling. The accuracy of heart rate estimation is evaluated
using MAE (average error) and MAPE (scale-independent
percentage error), with additional analysis on the percent of
estimations under 1.5 BPM error.

VI. CSI DATA COLLECTION

We evaluate Pulse-Fi using two different datasets. The
first, the ESP-HR-CSI dataset, was collected locally using
two ESP32’s, each with a single antenna. For the second
dataset, we use the EHealth dataset [20] which was collected
by researchers in Brazil using a Raspberry Pi with a single
antenna. We describe these datasets in more detail below.

A. ESP-HR-CSI Dataset

We collected the ESP-HR-CSI dataset from seven partici-
pants (5 male, 2 female) in a room of a public indoor library. It
was collected using two ESP32 devices, one as the transmitter
and the other as the receiver. The sampling rate is 80Hz, with
a 20 MHz bandwidth with 64 subcarriers positioned at dif-
ferent distances. Each participant was measured at distances
of 1, 2 and 3 m for 5 minutes each. The participants sat in a
chair between the devices and wore a pulse oximeter on their
finger to collect ground-truth information as seen in Fig. 4.

B. E-Health Dataset

The E-Health dataset [20] contains CSI collected from
118 participants (88 men, 30 women) in a controlled indoor
environment measuring 3m x 4m (Fig 4). The setup consists
of a router set in the 5GHz band at 80MHz bandwidth
as a transmitter, a laptop as receiver and a single-antenna
Raspberry Pi 4B with NEXMON firmware for CSI data
collection (234 subcarriers). Participants wore a Samsung
Galaxy Watch 4 for the ground truth.

Each participant performed 17 standardized positions or
activities, with each position held for 60 seconds.

VII. RESULTS

1) ESP-HR-CSI Data Performance: We use the ESP-HR-
CSI dataset to evaluate the model on two factors: trans-
mitter—receiver distance and the LSTM window size. Our
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Fig. 4. ESP-HR-CSI (left) and eHealth (right) Dataset Collection Setup

system’s top performance is reached at 30-second windows
where the MAE is 0.459 and the MAPE is 99.45. Table
II summaries the results comparing PulseFi’s performance
against that of previous approaches. When comparing per-
formance at different distances, Pulse-Fi can stay relatively
consistent with a MAE of 0.429 at 1m, 0.482 at 2m, and 0.488
at 3m, a range of only 0.059 between 1m and 3m with 30’s
window. Past approaches have struggled to accurately detect
heart rate at varying distances. Sun et al. [6] reported MAE
of 0.80 at 1m, but the MAE doubled (1.75) at 3m distance.
Similarly, in Khamis et al. [7], the MAE dropped from 1.14
at Im to nearly 3 at 2.5m. Tsubota et al. [8] achieved 1 BPM
error which equals to 98.5% MAPE at 1m distance. Their
MAE dropped to 96% at 3m implying a BPM error of roughly
2.7. Measurements of percent of estimations under 1.5 BPM
error can be found in Table I as <1.5(%).

TABLE I
PERFORMANCE COMPARISON ON ESP-HR-CSI AND EHEALTH DATA

Win (s) ESP-HR-CSI EHealth
MAE | MAPE | <1.5(%) | MAE | MAPE | <1.5(%)

1 1.17 | 98.55 70.9 6.1 | 94.18 | 16.68
5 0.51 | 99.38 96.1 0.78 | 99.23 | 87.85
10 0.55 | 99.33 96.5 0.35 ] 99.64 | 98.94
15 0.51 {99.376 | 96.0 0.2 | 99.81 | 99.62
20 0.53 | 99.36 95.7 024 | 99.77 | 99.45
25 0.51 | 99.34 96.5 0.17 | 99.83 | 99.61
30 0.46 | 99.45 96.8 0.14 | 99.87 | 99.69

2) EHealth Data Performance: We analyzed how different
postures and data window sizes affect performance on the
EHealth dataset. Table I shows the model MAE, MAPE, and
percent of estimations under 1.5 BPM when tested using
different window sizes. The best performance is achieved with
a 30s window with a MAE of 0.14 and MAPE of 99.87. The
performance at 20s window is also notable with a MAE of

0.20 BPM. When looking at how positions affected accuracy
using a 20s window, the best position had an accuracy of
0.19, whereas the worst 0.22. The state of the art had errors
ranging from as low as 0.07 BPM (Position 10) to as high as
6.74 BPM (Position 7 to 9). On average, [13] has an MAE of
2.72 BPM while our proposed method reduces it to just 0.20
BPM.

VIII. DISCUSSION

The results achieved show several key advantages of the
Pulse-Fi system compared to existing approaches. First, the
system shows robustness across both datasets. In the ESP-HR-
CSI dataset, we achieved an MAE of 0.46 BPM with a 30-
second window, and this accuracy was kept nearly consistent
across 1, 2, and 3m, a task previous peak detection-based
models struggled with. This shows the system’s ability to
handle the weaker amplitude and higher noise levels found
at greater distances. This holds true for all window sizes
larger than 1 second. On the larger and more diverse EHealth
dataset, where with a 20s window, Pulsefi had a range of 0.03
across all positions, where the previous SOTA struggled with
this, having an error range of 6.67 BPM. It should also be
noted that the previous SOTA used a specific window setting
for each position, whereas our approach uses one model for all
positions. This significant decrease shows robust results across
different positions and the system’s noise handling abilities.

A key novelty of our work is to analyze how the size of the
LSTM window affects performance. Our results show a clear
trend: while very short windows (1s) yield relatively high
error rates, performance improves dramatically with windows
of 5s or longer. The probable reason for this is that there
are no peaks (those caused by a heart beat) to detect in
such a small window size. The LSTM requires temporal
features which are more prevalent at higher window sizes.
This relationship between window size and accuracy, as seen
in Table I, has not been previously explored in CSI-based vital
sign monitoring, giving possible direction for future system
designs. We observed different patterns of diminishing returns
between our datasets. The ESP-HR-CSI dataset shows optimal
performance at 30s windows with slow improvements until
then, except for the 5s window, which achieved the second
best performance. EHealth showed a consistent improvement
across all lengths. This can be explained by the limited
number of subcarriers on the ESP, making 5 seconds of
data enough to learn and generalize the trend, whereas the
Raspberry Pi has more subcarriers, allowing the model to see
marginal improvements.

Computationally, Pulse-Fi is remarkably -efficient—the
complete model requires only 500-600KB of storage, enabling



TABLE II
COMPARISON OF DIFFERENT HEART RATE ESTIMATION METHODS

Parameters
Name Method Window (s) Chip Ant. | Part. MAE | MAPE (%)
Wang [9] Peaks Sliding Intel 5300 3 4 1.19 95.5
Sun [6] Peaks 12-20 Intel 5300 3 9 0.80 97.1
Zhang [3] Peaks 30 Intel 5300 3 1 3.53 94.7
Khamis [7] Peaks 20 Intel 5300 3 4 1.14 NA
Gouveia [13] Peaks Case specific Raspberry Pi 1 59 2.72 NA
Liu [10] CNN 50 TL-WDR 4300 2 1 0.60 98.58
Tsubota [8] Peaks NA Intel 5300 3 NA 1.00 98.5
Pulse-Fi (ESP-HR-CSI) | LSTM 5 ESP32 1 7 0.51 99.38
Pulse-Fi (EHealth) LSTM 15 Raspberry Pi 1 118 0.20 99.81

deployment on resource-constrained devices like ESP32 or
Raspberry Pi for near real-time monitoring without special-
ized hardware. Our 1.5 BPM error threshold aligns with
clinical standards (1-5% tolerance), with 96.84% of ESP-
HR-CSI and 99.87% of EHealth measurements meeting this
requirement using only commodity hardware.

Pulse-Fi outperforms existing methods in multiple metrics
(Table II). Its MAE of 0.2 BPM improves on the state of
the art peak detection [6] by 75% and recent deep learning
methods [10] by 66.9%. Additionally, its 99.45% MAPE
surpasses all compared methods, reflecting a more consistent
accuracy across heart rate ranges, positions, and distances.

IX. CONCLUSION

This paper presented Pulse-Fi, a novel low-cost system
that uses Channel State Information (CSI) to continuously
and non-intrusively monitor heart rate. Pulse-Fi highlights
that adequate accuracy can be achieved using low-cost, off-
the-shelf commodity hardware amplitude information. Our
experimental results using two distinct datasets demonstrate
that Pulse-Fi’s CSI processing pipeline, combined with its
custom low-compute Long Short Term Memory (LSTM)
neural network, is able to monitor heart rate accurately. We
also show that Pulse-Fi yields heart monitoring accuracy
comparable to or higher when compared with existing systems
that employ more specialized hardware and/or require higher
computational power.
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