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Freight consolidation is a logistics practice that improves the cost-e↵ectiveness and e�ciency of transporta-

tion operations, and also reduces energy consumption and carbon footprint. A “fair” shipping cost sharing

scheme is indispensable to help establish and sustain the cooperation of a group of suppliers in freight consol-

idation. In this paper, we design a truthful acyclic mechanism to solve the cost-sharing problem in a freight

consolidation system with one consolidation center and one common destination. Applying the acyclic mech-

anism, the consolidation center decides which suppliers’ demands ship via the consolidation center and their

corresponding cost shares based on their willingness to pay for the service. The proposed acyclic mechanism

is designed based on bin packing solutions that are also strong Nash equilibria for a related non-cooperative

game. We study the budget-balance of the mechanism both theoretically and numerically. We prove a 2-

budget-balance guarantee for the mechanism in general and better budget-balance guarantees under specific

problem settings. Empirical tests on budget-balance show that our mechanism performs much better than

the guaranteed budget-balance ratio. We also study the economic e�ciency of our mechanism numerically

to investigate its impact on social welfare under di↵erent conditions.
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1. Introduction

The recent rapid growth of e-commerce and the accompanying increased demand for moving com-

modities in a reliable, e�cient and secure logistics network have stimulated the transportation

sector in the United States. The transportation sector contributed 8.9% to the Gross Domestic

Product (GDP) of the U.S. economy in 2016 (Bureau of Transportation Statistics 2018). The logis-

tics sector, a part of this transportation sector, however, operates neither e�ciently nor sustainably

(Montreuil 2011). For instance, statistics show that trailers on the road are only approximately
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60% full on average and about 20% of the trailers are traveling completely empty (Montreuil 2011).

Moreover, in 2015, approximately 27% of the total United States CO2 emissions, the biggest source

of greenhouse gases (GHG) emissions, came from transportation, primarily due to burning fos-

sil fuel for cars, trucks, ships, trains and planes (U.S. Environmental Protection Agency 2017).

As a result, cost-e↵ective, e�cient and environmentally friendly logistics practices are urgently

needed. Freight consolidation, the process of assembling and transporting small shipments together

to take advantage of lower freight rates, is an e↵ective strategy to increase capacity utilization,

improve cost-e↵ectiveness of operations, and reduce energy consumption and carbon footprint. To

this end, more and more companies are consolidating and shipping their demands using shared

transportation capacity.

Both academic research and industry practices have demonstrated the e↵ectiveness of freight

consolidation in reducing carbon footprint. Using a discrete-time-based shipment consolidation

strategy, Ülkü (2012) showed that freight consolidation directly helps reduce the emissions of CO2.

At the strategic level, Pan, Ballot, and Fontane (2009) concluded that freight consolidation can

reduce CO2 emissions by 14% based on real data from two French retailers, and this reduction

would be 52% if rail transport is also considered. Moreover, a successful implementation of freight

consolidation between two pharmaceutical companies, UCB and Baxter, achieved approximately a

50% reduction in CO2 emissions (Mènèdéme 2011, Van Breedam, Vannieuwenhuyse, and Verstrepen

2011).

The economic incentive to consolidate freight is significant. Transportation costs play an impor-

tant role in the success of various industries because they often account for a substantial portion

of the product costs. For instance, large portions of revenues have long been paid to transport

products in the agriculture industry (Nguyen et al. 2013). However, the constrained transporta-

tion capacity and the ever-increasing demand for logistics services with high service levels have

contributed to the rise in transportation costs (Ward et al. 2019). Therefore, it is a priority for

companies to reduce their transportation costs in order to remain competitive in the market. Sig-

nificant cost savings have been reported through freight consolidation in various industries, (e.g.

Cruijssen et al. 2010, Vanovermeire et al. 2014). Nguyen et al. (2013) also concluded that a freight

consolidation practice could save $20 million on transportation cost per year for California cut

flower growers.

Although the environmental and economic initiatives to consolidate freight are widely acknowl-

edged, various concerns for establishing successful collaborations have slowed the implementation of

freight consolidation among companies. Cruijssen, Cools, and Dullaert (2007) conducted a survey

with approximately 1500 representative logistics service providers in Belgium and concluded that

a lack of a fair cost/profit sharing scheme is one of the main hurdles that make individual logistics
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service providers decide not to form collaborations. Freight consolidation often takes place among

companies that produce similar products or provide similar services in the same geographical region

and therefore they are also competitors in the market. Establishing cooperation among them is not

possible unless there exists a perceived “fair” way to share the benefit of collaboration to ensure

that each company maintains its competitive advantage over time in the collaboration. Consider-

ing this, solving the consolidation shipping cost allocation problem for potential collaborators is a

fundamental step to encourage freight consolidation with cooperation.

One approach to solve the cost allocation problem is cost-sharing mechanism design. In a cost-

sharing game, there is a set of players who are interested in using a common service from a provider.

Each player has a private valuation of the service and submits its willingness to pay for the service

as its bid to the provider. Players do not know the other players’ valuations or bids. Using the

service costs and the bids solicited from the players, a cost-sharing mechanism helps the provider

decide which players to serve and how much to charge each player for service. In a binary demand

cost-sharing game, each player’s service request is either served or rejected, while in a general

demand game, each player can receive di↵erent levels of service.

Cost-sharing mechanisms are usually designed to possess certain desired properties: truthfulness,

budget-balance and economic e�ciency. A truthful cost-sharing mechanism guarantees that the

solicited bids from the players are their true willingness to pay. In other words, no player can

be better o↵ by submitting false bids. This is important because the cost is shared based on

the information given by the bids. This characteristic of the mechanism is particularly important

for establishing and sustaining cooperation. A cost-sharing mechanism is budget-balanced if the

total cost charged to players recovers the cost of providing the service. An economically e�cient

cost-sharing mechanism maximizes the social welfare of all players. Unfortunately, it has been

proven by Green, Kohlberg, and La↵ont (1976) and Roberts (1979) that it is not possible to

design a cost-sharing mechanism that is simultaneously truthful, budget-balanced and economically

e�cient. When budget-balance is impossible to achieve, we can design approximately budget-

balanced mechanisms to recover as much of the incurred cost as possible. When the mechanism

cannot be economically e�cient, we can design the mechanism to maximize the social welfare as

much as possible. However, many mechanisms yield zero or negative social welfare and thus it

is di�cult to make meaningful relative comparisons between mechanisms in terms of economic

e�ciency. An alternative measure of economic e�ciency, social cost, which is always nonnegative,

was proposed by Roughgarden and Sundararajan (2009) to quantify the ine�ciency of a mechanism.

One of the frameworks that help design truthful and approximately budget-balanced cost-sharing

mechanisms is the Moulin mechanism, which was introduced by Moulin (1999) and Moulin and

Shenker (2001). The Moulin mechanism determines the players to serve and their cost shares using
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a cost-sharing method in an iterative process. A cost-sharing method is a function that assigns a

nonnegative cost share to each player in a set of players to be served. The iterative process starts

with all players in the set to be served. A player is removed from the service set if its cost share

is greater than its bid. The process halts when the cost shares of all players in the service set

are smaller than or equal to their bids. The truthfulness of the Moulin mechanism is enforced by

requiring a cost-sharing method to be cross-monotonic – in other words, a player’s cost shares do

not decrease when another player is removed from the service set. As a result, players are o↵ered

a sequence of nondecreasing cost shares through the iterations of a Moulin mechanism. Approxi-

mately budget-balanced Moulin mechanisms have been applied in a wide variety of applications,

such as scheduling (e.g. Brenner and Schäfer 2007, Bleischwitz and Monien 2009), network design

(e.g. Gupta et al. 2007, Roughgarden and Sundararajan 2007, Roughgarden and Schrijvers 2016),

facility location (e.g. Könemann, Leonardi, and Schäfer 2005, Immorlica, Mahdian, and Mirrokni

2008)), logistics (e.g. Xu and Yang 2009) and online selection problems (e.g. Elmachtoub and Levi

2014).

Applying the Moulin mechanism framework to a cost-sharing problem in freight consolidation

was recently studied by Zhang et al. (2018). In the consolidation system they considered, a set of

suppliers in the same geographical region can use a non-profit consolidation center to have their

demand shipped to a common faraway destination using trucks. Suppliers’ demands can be split

and packed together to fill a truck as much as possible at the consolidation center. The cost of using

a truck depends on the demand volume packed in the truck, the less-than-truckload (LTL) rate,

and the full-truckload (FTL) rate. They found that it is not possible to obtain a simultaneously

truthful and budget-balanced Moulin mechanism. By using a two-slope piecewise linear function

to model the cost function at the consolidation center, they designed a truthful and approximately

budget-balanced Moulin mechanism. Using the social cost as the measure of economic e�ciency,

they analyzed the economic e�ciency of the mechanism computationally.

In this paper, we study a similar cost-sharing problem in freight consolidation, but with the

restriction that the entire less-than-truckload demand of each supplier must be shipped in a single

truck at the consolidation center. That is, the demand cannot be split among multiple trucks if

it can fit into a single truck. There are several reasons to make this assumption. On one hand,

suppliers typically want their demand to be delivered in a single shipment and prefer less handling

of their products to avoid unnecessary damage. For instance, agricultural products – e.g. flowers,

eggs – are prone to damage during handling. Furthermore, a consolidation center can save on the

extra handling costs resulting from separating and combining the demands of di↵erent suppliers.

This small change in the problem setting greatly complicates the decisions that need to be made

by the consolidation center. In the problem that Zhang et al. (2018) studied, demands at the



Zhang et al.: Acyclic Mechanism Design for Freight Consolidation
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 5

consolidation center are packed aggregately, so the way the demand of the suppliers is packed into

trucks does not a↵ect the total outbound shipping cost and cost shares. However, in the problem we

study, the total outbound shipping cost, which is the sum of the shipping costs of each used truck,

heavily depends on how the suppliers’ demands are packed into trucks. Di↵erent combinations of

demands in trucks (i.e. packing solutions) may result in di↵erent total outbound shipping costs and

cost shares. However, the number of possible packing plans grows exponentially as the number of

suppliers grows. Therefore, designing a cost-sharing mechanism under this setting is a challenging

task.

Instead of a Moulin mechanism, we design an acyclic mechanism for the cost-sharing problem

described above. An acyclic mechanism (Mehta, Roughgarden, and Sundararajan 2009) is another

scheme that leads to a truthful and approximately budget-balanced cost-sharing mechanism. It

is a strict generalization of the Moulin mechanism. Unlike the Moulin mechanism, an acyclic

mechanism o↵ers cost shares to the players in each iteration according to a pre-defined order instead

of simultaneously. This additional ordering protocol allows the construction of truthful mechanisms

to be no longer dependent on cross-monotonic cost-sharing methods, which are necessary to induce

truthful Moulin mechanisms. Mehta, Roughgarden, and Sundararajan (2009) point out that a

large number of primal-dual algorithms naturally induce acyclic mechanisms with non-ascending

prices. Meanwhile, acyclic mechanisms have better budget-balance and economic e�ciency than

the Moulin mechanisms for several classes of basic cost-sharing problems, e.g. vertex cover, set

cover, no-metric/metric uncapacitated facility location. Finally, the acyclic mechanism framework

can be extended to solve cost-sharing problems with general demand settings (e.g. Balireddi and

Uhan 2012), in which every player bids for each of the service levels it may receive. Although acyclic

mechanisms have the aforementioned advantages compared to the Moulin mechanism, they achieve

a weaker notion of truthfulness than the Moulin mechanism. The Moulin mechanism achieves a

strong notion of truthfulness – group strategyproofness (GSP) – that ensures that not only can an

individual player not be better o↵ by false bidding, but also a subset of players can never strictly

increase the utility of one of its members without decreasing the utility of some other member

by coordinating false bids. The acyclic mechanism achieves weak group strategyproofness (WGSP),

which ensures that there must exist a member whose utility remains the same, i.e. an indi↵erent

member, if a coordinated false bid can strictly increase the utility of one of its members.

The contribution of this paper is two-fold. We advance the research on cost allocations in freight

consolidation by designing an acyclic mechanism, which has been rarely applied to transportation

settings. Our acyclic mechanism possesses several desirable properties. The packing solutions of

our acyclic mechanism are strong Nash equilibria in a related non-cooperative game. This result

provides an incentive to the suppliers to participate in freight consolidation. Our acyclic mechanism
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is 2-budget-balanced in general, and better budget-balance guarantees can be achieved under spe-

cific problem settings. Furthermore, our empirical tests show that our acyclic mechanism usually

performs at much better budget-balance ratios than 2. Finally, using social cost as the measure of

economic e�ciency, we show that the outcomes of our acyclic mechanism have social cost gaps of

less than 3.8% in our numerical experiments under various problem settings.

The rest of the paper is organized as follows. In Section 2, we formally define our problem.

In Section 3, we briefly review the acyclic mechanism and introduce the design of an acyclic

mechanism based on bin packing solutions. We study the budget-balance of our proposed cost-

sharing mechanism both theoretically and computationally in Section 4. In Section 5, we investigate

the economic e�ciency of the mechanism. We conclude our work in Section 6.

2. Problem Definition

The freight consolidation system we consider consists of a set of suppliers, a consolidation center

and a common destination. Let N denote the set of suppliers who are interested in reducing their

transportation costs by shipping their demands via a consolidation center to a common destination.

These suppliers produce similar products and are all located in the same region. Each supplier i has

a positive demand di (measured in units such as ft3 or pounds) and a private valuation vi for the

service provided by the consolidation center for shipping demand di. Suppliers are self-interested.

Each supplier has two shipping options. One is to ship the demand directly to the destination. We

call this option direct shipping and the corresponding shipping cost stand-alone cost. The other

is to ship the demand via the consolidation center. Supplier i expresses its willingness to pay

to the consolidation center by submitting bid qi at the planning phase of the consolidation. The

consolidation center then charges pi to the selected supplier i. If supplier i is selected to be served

by the consolidation center, then supplier i pays for the inbound shipping (from supplier to the

consolidation center) and is charged pi as its share of the cost of outbound shipping (from the

consolidation center to the destination) with other selected suppliers. We assume that the suppliers’

utility functions are quasi-linear: that is, supplier i’s utility is ui = vixi � pi, where xi = 1 if it

receives service, and xi = 0 otherwise. When selected to participate in the consolidation, suppliers

require their less-than-truckload demand to be shipped in one truck for the outbound shipping.

The consolidation center, as the central planner of the consolidation service, is not profit-driven

in our setting. Its goal is three-fold. First, the consolidation center enables consolidation by imple-

menting a cost-sharing mechanism and incentivizing suppliers to participate. Second, the consoli-

dation center aims to minimize the incurred outbound shipping cost recovered through the prices

charged as much as possible to maintain operational e�ciency, though it can be subsidized by

the government or associated organizations to provide the service. Third, the consolidation center
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intends to achieve good social welfare via consolidation. The consolidation center provides binary 

service to the suppliers, i.e. either a supplier’s entire demand is served or none of its demand is 

served. Although suppliers need to bid for the consolidation service frequently over time, (e.g. 

daily, weekly) the truthfulness of the cost-sharing mechanism allows us to rely on the mechanism to 

solicit suppliers’ truthful bids instead of learning their preferences over time. Each supplier i submits 

a bid for shipping its demand volume di and receives service for shipping exactly di if selected. So, no 

supplier has incentive to misreport their shipping demands. We also assume that the bidding 

demand di of supplier i is decided beforehand and remains fixed within the context of the mechanism. 

As a result, we can assume that the shipping volume of each supplier is known to the consolidation 

center. Based on the above assumptions, we model our problem as a one-time cost-sharing game 

with binary demand.

Both the suppliers and the consolidation center use trucks to ship demands to the destination. 

However, we assume in our setting that neither the suppliers nor the consolidation center owns a 

fleet of trucks. Instead, they ship using third-party logistics, and so the suppliers’ and consolidation 

center’s shipping costs primarily depend on two parameters: the less-than-truckload (LTL) rate cL 

and the full-truckload (FTL) rate cF . The LTL rate is the shipping cost per unit and the FTL rate 

is a fixed cost for using an entire truck. The shipping cost of a truck first increases linearly at the 

LTL rate as the shipping demand volume increases from 0. When the shipping demand volume in 

one truck exceeds a threshold value b, the shipping cost of a truck is always the FTL rate regardless 

of the actual shipping volume. In other words, shipping demand b or more in one truck costs the 

same as if the full truckload is used. We call the threshold value b the FTL equivalent volume and 

it satisfies cF = bcL. Mathematically, the shipping cost of one truck is

c(d) =

(
dcL if 0< d< b,

cF if b d kF ,

where kF denotes the capacity of a truck. We assume that the values of the LTL rate and the

FTL rate are only mileage dependent. Larger distances between the origin and the destination of a

shipment induce greater LTL and FTL rates. Given a destination, let cL1 and cF1 denote the LTL

rate and the FTL rate for the outbound shipping, respectively. The FTL equivalent volume at the

consolidation center is bC = cF1
cL1

.

Suppliers and the consolidation center are assumed to have the same shipping cost structure,

but they do not necessarily share or know each other’s cost parameters or the FTL equivalent

volume. We assume the suppliers have the same cost parameters for inbound shipping and direct

shipping because of their proximity in location. Let gL0 and gF0 denote the LTL rate and the FTL

rate for inbound shipping, respectively, and let gL1 and gF1 denote the LTL rate and FTL rate for
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direct shipping, respectively. Because the destination is always farther from the suppliers than the

consolidation center, we have gL1 > gL0 and gF1 > gF0. We further assume that the FTL equivalent

volume for inbound shipping and direct shipping is the same for the suppliers. Consequently, every

supplier has FTL equivalent volume bG = gF1
gL1

= gF0
gL0

.

Based on the above cost structure, suppliers with multiple truckloads of demand should not

submit bids for full truckloads of demand because they can ship them cheaper on their own at the

direct FTL rate. As a result, these suppliers only submit bids for their remaining less-than-truckload

demand to see if they can save on shipping cost through consolidation. From the consolidation

center’s perspective, full truckloads do not contribute to consolidation but require extra handling to

ship from the consolidation center. Moreover, it is trivial to decide whether full truckloads should be

shipped via the consolidation center because such operations are beneficial for suppliers only when

the savings from the outbound shipping can cover the inbound shipping cost of full truckloads.

Based on the above discussion, the kind of demand profile that is worth studying is the one in

which each supplier has less-than-truckload demand to send through the consolidation center and

consolidating can make a significant di↵erence for them. In addition, we assume suppliers would

bid for all the remaining less-than-truckload demand to achieve operational e�ciency.

In this paper, we solve the cost-sharing problem for freight consolidation for a set of suppliers

N , whose demands satisfy di < kF , 8i 2N . Because each supplier’s demand cannot be split and

must be shipped in a single truck at the consolidation center, determining whose demands to pack

into one truck is a critical decision that a↵ects the outbound shipping cost and thus influences

the cost share of each selected supplier. Let T1, T2 . . . Tl denote a packing solution for the selected

set of suppliers S ✓N using l trucks. In particular, each set Tk, k 2 {1,2 . . . l} contains the indices

of suppliers whose demands are assigned to truck k. Let D(Tk) denote the total demand volume

packed in truck k. Then we define the outbound shipping cost of truck k as:

Z(Tk) =

(
D(Tk)cL1, if D(Tk)< bC ,

cF1, if D(Tk)� bC .

As a result, the outbound shipping cost incurred at the consolidation center for shipping the

demand of suppliers in S using the packing solution T1, T2 . . . Tl is
P

k2{1,2...l}Z(Tk).

3. Acyclic Mechanism Based on Bin Packing
3.1. Acyclic Mechanisms

Acyclic mechanisms were first introduced by Mehta, Roughgarden, and Sundararajan (2009) as an

alternative to the Moulin mechanism for designing truthful and approximately budget-balanced

cost-sharing mechanisms. An acyclic mechanism is induced by a cost-sharing method � and a

corresponding valid o↵er function ⌧ . An o↵er function ⌧(i,S) is a mapping from any given subset
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S ✓N and player i 2 S to a nonnegative o↵er time. The o↵er times reveal the sequence that cost

shares will be o↵ered to the players in each iteration. Players with lower o↵er times are o↵ered cost

shares earlier than the players with higher o↵er times. Players with equal o↵er times are o↵ered

cost shares simultaneously. Although the cost-sharing method � in an acyclic mechanism is defined

in the same way as in the Moulin mechanism, it is not required to be cross-monotonic to induce

a truthful mechanism. This flexibility comes from the o↵er function. In particular, the order of

o↵ers can be designed to suppress the non-cross-monotonicity of the cost-sharing method so that

a player is still o↵ered a sequence of nondecreasing cost shares as the iterations progress. As a

result, designing such an o↵er function ⌧ for a specific cost-sharing method � is critical in acyclic

mechanism design. For a subset S ✓N and a player i 2 S, let L(i,S), E(i,S), and G(i,S) denote

the players of S whose o↵er times are strictly less than, equal to, and strictly greater than ⌧(i,S),

respectively. A valid o↵er function ⌧ for a cost-sharing method � is defined in Mehta, Roughgarden,

and Sundararajan (2009) as follows:

Definition 1. An o↵er function ⌧ is valid for the cost-sharing method � if for every subset

S ✓N and player i2 S,
(a) �(i,S \W ) = �(i,S) for every subset W ✓G(i,S)

(b) �(i,S \W )� �(i,S) for every subset W ✓G(i,S)[ (E(i,S) \ {i})
From the above definition, we can see that the cost shares for a player i cannot decrease if

the players in G(i,S) and E(i,S) are removed from the service set. These two conditions ensure

that cost shares for player i are cross-monotonic when players in G(i,S) and E(i,S) are removed.

However, the definition does not restrict how the cost shares change when players in L(i,S) are

removed.

With a cost-sharing method � and a corresponding valid o↵er function ⌧ , an acyclic mechanism

can be defined as follows.

Definition 2. An acyclic mechanism is a mechanismM(�, ⌧) induced by a cost-sharing method

� and an o↵er function ⌧ that is valid for �. M(⌧,�) operates as follows (Mehta, Roughgarden,

and Sundararajan 2009):

1. Collect a bid qi from each player i2N .

2. Initialize S :=N .

3. If qi � �(i,S) for every i 2 S, then stop. Return the set S. Each player i 2 S is charged the

price pi = �(i,S).

4. If there exist some players j 2 J , J ✓ S such that qj < �(j,S), choose j⇤ 2 J such that

⌧(j⇤, S) ⌧(j,S) 8j 2 J , set S := S \ {j⇤} and return to Step 3.

In Step 4, when there exist players whose cost shares are strictly greater than their bids, the

acyclic mechanism removes the player with the earliest o↵er time and if there is a tie, then breaks
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the tie arbitrarily. If the cost shares for suppliers are always raised to qi for all i 2 S, then based

on Step 3 all suppliers in set S will be served by the consolidation center with �(i,S) = qi.

3.2. Cost-Sharing Mechanism Based on Bin Packing (BBP)

As we have shown in the above section, designing an acyclic mechanism requires a cost-sharing

method and a corresponding valid o↵er function. Since each supplier’s demand cannot be split

among di↵erent trucks in shipping, the outbound shipping cost, which will be shared among the con-

solidation participating suppliers, is determined by how suppliers’ demands are eventually packed

in trucks among the numerous possibilities. Therefore, the packing solution of suppliers’ demands

is crucial to the design of cost-sharing mechanism because it a↵ects the outbound shipping cost and

thus influences each supplier’s cost share and the selection of the suppliers to be served. To obtain

this packing solution, we model our packing problem as a bin packing problem. In what follows, we

will derive the cost-sharing method and the corresponding valid o↵er function for our mechanism

from the subset sum algorithm – the algorithm we use to solve the bin packing problem.

In a standard bin packing problem, given a list of items L, each with a nonnegative size, and the

capacity of each bin H, we want to find a way to pack all the items using as few bins as possible.

Similarly, the consolidation center wants to pack suppliers’ demands using as few trucks as possible

to induce a smaller outbound shipping cost. A smaller outbound shipping cost leads to smaller cost

shares for suppliers and thus encourages more suppliers to consolidate. The bin packing problem

is known to be NP-hard. We solve it using a heuristic approach called the subset sum algorithm

(ss).

The subset sum algorithm is an intuitive way to solve the bin packing problem. It iteratively

fills one bin to its fullest using the unpacked items. Mathematically, in each iteration we solve the

optimization problem:

max
X

i2L

xihi

s.t.
X

i2L

xihi H,

xi 2 {0,1}, i2L,

where xi = 1 means to pack item i in the current bin and 0 otherwise, hi denotes the size of item i

and L is the list of currently unpacked items. This is a special case of the 0-1 knapsack problem in

which the value of each item equals its size, also known as the subset sum problem. Although the

subset sum algorithm is not a polynomial-time algorithm, it is shown in Pisinger and Toth (1998)

that the subset sum problem can be solved to optimality e�ciently even for lists with a very large

number of items.
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Given a set of suppliers N , each with a positive demand, and the capacity of a truck kF , we apply

the subset sum algorithm to solve our packing problem as follows. Let ss(N) denote the number

of trucks required for outbound shipping for the suppliers in N using the subset sum algorithm.

The output of the subset sum algorithm is a packing solution presented in a sequence of ordered

sets T1, T2, . . . , Tss(N); each set contains the indices of suppliers whose demands are assigned to the

same truck.

Algorithm 1 Subset sum algorithm
1: U  N

2: k 1

3: while U 6= ; do

4: Tk argmax
P✓U

{
P

i2P di :
P

i2P dj  kF}

5: U  U \Tk

6: k k+1

7: end while

8: return T1, T2, . . . , Tk�1

The subset sum algorithm packs one truck per iteration. Tk is packed in the kth iteration. We call 

the returned packing solution T1, T2, . .  . , Tss(N) for supplier set N the subset sum packing solution. 

Note that the subset sum packing solution T1, T2 . . .  Tss(N) for any set of suppliers N are ordered

such that D(T1) � D(T2) . . .  � D(Tss(N)).

Having obtained the packing solution, we can now define the cost-sharing method. There are 

many ways to define cost-sharing methods to address di↵erent requirements or preferences. In our 

study, we define a truck-based cost-sharing method that shares the outbound shipping cost of each 

truck among its corresponding suppliers proportional to their demand. Although this way of cost-

sharing may not be universally preferred in practice, this method applies directly in cases where each 

truck is required to be paid separately, as would be the case, for example, if the trucks are operated 

by independent contractors.
With the subset sum packing solution Tk, k 2 {1, . .  . ss(S)} for any set of suppliers S ✓ N , and each 

set Tk of suppliers’ demands is shipped using one truck, we formally define our cost-sharing
method �, which assigns a nonnegative cost share to each supplier i 2 S for every S ✓ N , as follows:

�(i,S) =

(
cL1di, if i2 Tk, D(Tk)< bC ,

di
D(Tk)

cF1, if i2 Tk, D(Tk)� bC .
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In addition, we leverage the packing order that is naturally derived from the subset sum packing 

solution to define our o↵er function ⌧(i, S), which determines the sequence in which the cost shares 

are revealed for the set of suppliers S:
⌧(i, S) = k s.t. i 2 Tk, 8i 2 S.

Because k indicates the iteration in which the supplier’s demand is packed, this o↵er function 

implies that suppliers whose demands are assigned in the earlier iterations in the subset sum algo-

rithm are o↵ered cost shares earlier than those assigned in the later iterations. The suppliers whose 

demands are assigned to the same truck are o↵ered the cost shares at the same time. Note that this 

sequence is only used internally by the mechanism to decide which suppliers’ demands to serve and 

how much cost they share. The final service decision is shared with suppliers simultaneously. In other 

words, the suppliers will not observe this sequence of decision making.

Next, we will show the defined o↵er function ⌧ is valid for our cost-sharing method � following 

Definition 1. We first analyze how the removal of some suppliers influences our subset sum packing 

solutions in Lemma 1 and Lemma 2. (For all proofs, please see the appendix.)

Lemma 1. Suppose W ✓ G(i, S) is removed from S, for some subset S ✓ N and supplier i 2 S. 

Let Tk, k  2 {1, . .  . ss(S)} and Tl
0, l  2 {1, . .  . ss(S \ W )} be subset sum packing solutions for S and 

S \W , respectively. Then, for every supplier j 2 L(i, S) [E(i, S), if j 2 Tk and j 2 Tl
0, then Tk = Tl

0.

Lemma 2. Suppose W ✓ (E(i, S) \ {i}) is removed from S, for some subset S ✓ N and supplier 

i 2 S. In addition, suppose supplier i is packed in truck T in a subset sum packing solution for S, 

and in truck T 0 in a subset sum packing solution for S \ W . Then D(T 0)  D(T ).

Now that we know how the removal of suppliers a↵ects the subset sum packing solution, we show 

that the o↵er function ⌧ is valid for the cost-sharing method �.

Proposition 1. The o↵er function ⌧ is valid for the cost-sharing method �.

With a valid o↵er function ⌧ for the cost-sharing method �, we now formally define the cost-

sharing mechanism Based on Bin Packing (BBP) as the acyclic mechanism M(�, ⌧) induced by

� and ⌧ . Mehta, Roughgarden, and Sundararajan (2009) showed that every acyclic mechanism is

weakly group strategyproof (WGSP). Therefore, our cost-sharing mechanism BBP also achieves

truthfulness.

Proposition 2. Cost-sharing mechanism Based on Bin Packing (BBP) is weakly group strat-

egyproof (WGSP).

Since suppliers bid for outbound shipping cost, we assume that supplier i’s valuation of the con-

solidation service vi is its stand-alone cost minus its inbound shipping cost and thus is its bid qi

submitted under cost-sharing mechanism BBP.
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3.3. Cost-Sharing Mechanism BBP from the Selfish Bin Packing Perspective

The subset sum packing solutions produced by the cost-sharing mechanism BBP not only help to

induce an truthful acyclic mechanism, they also provide an insight from a non-cooperative game

theoretic perspective: the subset sum packing solution for the selected suppliers is a strong Nash

equilibrium. Consider a bin packing game in which each demand is controlled by a self-interested

supplier. Each supplier has complete information about the other suppliers and a set of strategies

corresponding to which truck to pack its demand for each possible packing of all the other suppliers’

demands. The cost of using each truck is shared proportional to demand among the suppliers whose

demands are packed in the same truck.

This game was first introduced and studied by Bilò (2006) and is referred to as the selfish bin

packing problem. Bilò (2006) proved that there always exists a pure Nash equilibrium to the bin

packing game defined above. A strategy profile is a Nash equilibrium if no supplier can strictly

reduce its shared shipping cost by moving its demand to another truck while the packing of other

demands remains the same. A stronger notion is strong Nash equilibrium (Aumann 2016), in which

any subset of suppliers cannot strictly reduce the shared shipping costs of every member by moving

their demands while the other demands are packed in the same way. Epstein and Kleiman (2011)

proved that the packing solutions yielded by the subset sum algorithm for this bin packing game

are always strong Nash equilibria.

Relating the above result to our cost-sharing mechanism BBP, we can conclude that the packing

solutions from our cost-sharing mechanism BBP are strong Nash equilibria in the setting even when

suppliers are allowed to pick or change the truck in which they pack their demands. No subset of

suppliers can move their demands to benefit every member of the coalition. In other words, every

supplier should be satisfied with the subset sum packing solutions provided by the cost-sharing

mechanism BBP. This outcome further motivates the use of the subset sum algorithm to produce

packing solutions.

4. Budget-Balance of Cost-Sharing Mechanism BBP

In this section, we study the budget-balance guarantee of the cost-sharing mechanism BBP under

di↵erent conditions and problem settings. In the literature, there exist di↵erent perspectives for

defining (approximate) budget-balance for cost-sharing mechanisms. One stream of literature (e.g.

Moulin (1999), Brenner and Schäfer (2007), Zhang et al. (2018)) quantifies approximate budget-

balancedness by comparing the total charged price to the minimum possible cost. Here, a cost-

sharing method � is �-budget-balanced if C(S)/� 
P

i2S �i C(S), � � 1, for any outcome set S,

where C(S) is the minimum cost of serving set S. Another stream of literature (e.g. Roughgarden

and Sundararajan (2009), Mehta, Roughgarden, and Sundararajan (2009), Brenner and Schäfer
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(2008), Könemann, Leonardi, and Schäfer (2005), Balireddi and Uhan (2012)) quantifies approxi-

mated budget-balancedness by comparing the total charged price to the actual cost incurred and

the optimal cost to measure the cost recovery and competitiveness, respectively. We follow this

stream of literature and define a cost-sharing method � as �-budget-balanced if CM(S)
P

i2S �i 

�C(S), � � 1, for any outcome set S, where CM(S) is the cost of a feasible solution for serving

set S output by the mechanism. Note that in this definition, the lower bound of the total charged

price is CM(S). This means that we focus on studying the no-deficit cost-sharing methods and

quantifying approximate budget-balancedness from a competitiveness perspective.

4.1. Theoretical Results on Budget-Balance Ratio

Intuitively, packing using a smaller number of trucks leads to a smaller cost. So the minimum

outbound shipping cost should be induced by the optimal bin packing solution. However, this is

not necessarily true with our trucking cost structure. For example, let cL1 = $1, bC = 13, kF = 14,

so cF1 = $13. Assume we have 13 suppliers with 5 units of demand and 6 suppliers with 3 units of

demand. One optimal packing solution, which uses 7 trucks, is to pack 5, 5 and 3 units of demand

in each of the first 6 trucks and 5 units of demand in the last truck. The outbound shipping

cost of this optimal packing solution is $83. The subset sum packing solution of our cost-sharing

mechanism uses 8 trucks. It packs 5, 3, 3 and 3 units of demand in each of the first two trucks, 5

and 5 units of demand in the next 5 trucks and 5 units of demand in the last truck. The outbound

shipping cost of this subset sum packing solution is $81. From the above example, we can see that

although the optimal packing solution uses one fewer truck, it costs more to ship the total demand.

This phenomenon is due to our trucking cost structure, in which shipping 13 units or more in

one truck costs the same. The subset sum packing solution ships two more units of demand in

the first two trucks without paying more. Because of this phenomenon, it is not easy to determine

the minimum outbound shipping cost and use it to study the budget-balance ratio of the cost-

sharing mechanism BBP. However, the outbound shipping cost for a set of suppliers when their

demands can be split and consolidated to fill a truck as much as possible, is a lower bound for

the minimum outbound shipping cost when suppliers’ demands cannot be split. If we compare

the outbound shipping cost incurred by the subset sum packing solution to the lower bound of

minimum outbound shipping cost, we can obtain an upper bound on the budget-balance ratio for

our cost-sharing mechanism BBP.

For the convenience of analysis, we define the budget-balance ratio of S as �(S) = CM (S)
C(S)

and

therefore, � =max
S

⇢
CM (S)
C(S)

�
. Let C⇤(S) denote the lower bound of the minimum outbound shipping

cost for the supplier set S. Its value only depends on the total demand volume for a given set of

cost parameters:
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C⇤(S) =

8
>><

>>:

�P
i2S di
kF

⌫
cF1 +

✓P
i2S di� kF

�P
i2S di
kF

⌫◆
cL1 if

P
i2S di� kF

�P
i2S di
kF

⌫
< bC ,

✓�P
i2S di
kF

⌫
+1

◆
cF1 if

P
i2S di� kF

�P
i2S di
kF

⌫
� bC .

Next we find an upper bound for � using C⇤(S). By definition, C⇤(S) C(S) for any supplier

set S.

Lemma 3. For any set of suppliers S, let m be such that (m� 1)kF <
P

i2S di mkF . Then

ss(S) 2m� 1, and this inequality is tight.

Proposition 3. The cost-sharing mechanism BBP is 2-budget-balanced.

Although we have obtained an upper bound on � for our cost-sharing mechanism, we use the lower

bound of the minimum outbound shipping cost C⇤(S) to obtain this lower bound and sometimes

this cost can be much lower than the minimum outbound shipping cost for our problem. We could

possibly obtain better bounds on the value of � by using the minimum outbound shipping cost

that is induced by a packing solution in which the suppliers’ demands are not split. We cannot

easily find this minimum outbound shipping cost in general, but we can restrict our attention to

special cases for which we can determine this minimum outbound shipping cost. For example, we

can look at certain input demand profiles that produce structured subset sum packing solutions

such that the outcome of the cost-sharing mechanism BBP is budget-balanced. We look into two

scenarios below.

Proposition 4. For a given supplier set S, if the subset sum packing solution uses no more

than two trucks, then �(S) = 1.

Lemma 4. Caprara and Pferschy (2004) Given a set of suppliers S, if no three suppliers’

demands fits in one truck, then ss(S) = opt(S), where opt(S) denotes the minimum number of

trucks that have to be used in order to ship the demands of suppliers in S.

Proposition 5. Given a set of suppliers S, if no three supplier’s demands fit in one truck, then

the subset sum packing solution for supplier set S induces the minimal outbound shipping cost for

supplier set S.

With the result in Proposition 5, we can easily draw the conclusion in Corollary 1.

Corollary 1. If no three suppliers’ demands fit in one truck in supplier set S, then �(S) = 1.

As a summary of the above results, we present Proposition 6.
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Proposition 6. Cost-sharing mechanism BBP is budget-balanced for the demand profiles in

which (1) no three suppliers’ demands fit in one truck or (2) the corresponding subset sum packing

solutions use no more than two trucks.

We can also determine the minimum outbound shipping cost when we have specific values of bC .

Recall the example that shows the minimum outbound shipping cost is not necessarily induced by

the optimal bin packing solution for a given set of suppliers. If we change bC to 7 and cF1 to $7

in that example, we can see now the outbound shipping cost of the optimal bin packing solution

is $47, which is smaller than that of the subset sum packing solution $54. This example seems to

indicate that with a smaller bC the optimal bin packing solutions yield the minimum outbound

shipping cost. Next, we show a su�cient condition for the optimal bin packing solutions to yield

the minimum outbound shipping cost.

Let B1, . . .Bm denote a bin packing solution using m bins, D(Bk), k= 1, . . . ,m denote the total

item size packed in Bk and H denote the capacity of bins. For the sake of analysis, we define

nontrivial bin packing solutions.

Definition 3. A bin packing solution B1, . . .Bm is nontrivial if there are at least m� 1 bins

half filled.

The outcomes of bin packing algorithms are often nontrivial bin packing solutions. The optimal

bin packing solutions must be nontrivial. If they are not, we can easily reduce the solution by one

bin by simply combining the items in two bins that are both less than half filled, contradicting the

fact that the packing solution is optimal. The subset sum packing solutions are also nontrivial. If

there are two bins less than half filled, the subset sum algorithm should pack all the items in these

two bins in one bin to maximize the total size instead of keeping them in separate bins.

Proposition 7. When bC  1
2
kF , the minimum outbound shipping cost C(S) is induced by an

optimal bin packing solution for supplier set S.

Note that the optimal bin packing solution for a supplier set may not be unique. If there are

multiple optimal bin packing solutions, the outbound shipping cost we refer to as C(S) is always

induced by the one whose least filled truck has the smallest total demand among all optimal bin

packing solutions.

As we see above, when bC  1
2
kF , the number of trucks used plays an important role in deter-

mining the outbound shipping costs. In order to study � to induce ↵, we want to know how many

more trucks the subset sum packing solution uses compared to the optimal bin packing solution

for any set of suppliers. For the convenience of the analysis we define the worst-case ratio Rss(S)

for a given supplier set S as the ratio between the number of trucks used by the subset sum pack-

ing solution ss(S) and the number of trucks used by an optimal bin packing solution opt(S), i.e.
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Rss(S) =
ss(S)
opt(S)

. The absolute worst-case ratio is Rss =max
S

{Rss(S)}, which has been proven to be

1.6067 by Epstein, Kleiman, and Mestre (2009).

With Rss ⇡ 1.6067, we can easily calculate the maximum possible number of trucks used by

the subset sum algorithm when given the optimal number of trucks. For a given set of suppli-

ers S, the possible number of trucks used by the subset sum algorithm ss(S) 2 {k|opt(S)  k 

b1.6067opt(S)c, k 2 Z+}. Next we analyze the instance budget-balance ratio for supplier set S for

which opt(S)2 {3, . . . ,8}.

Proposition 8. For a given supplier set S, if bC  1
2
kF and 3 opt(S) 8, then �(S)< 11

6
.

Proposition 9. For a given supplier set S, if bC  1
2
kF , � < 1.8075 when opt(S)� 9.

Combining Proposition 8 and Proposition 9, we obtain the following Corollary 2.

Corollary 2. For any given supplier set S, if bC  1
2
kF , then � < 11

6
.

As a result of Corollary 2, we obtain Theorem 1.

Theorem 1. When bC  1
2
kF , the cost-sharing mechanism BBP is 11

6
-budget-balanced.

4.2. Numerical Results on Budget-Balance Ratio

Although we have obtained an upper bound on the budget-balancedness of the cost-sharing mech-

anism BBP, this upper bound on � may not truly reflect the performance of our cost-sharing

mechanism in practice. In order to reveal a more accurate picture of the budget-balance ratio of

our cost-sharing mechanism, we study the ratio numerically. For each given demand profile, we

obtain a budget-balance ratio by calculating the minimum outbound shipping cost and the out-

bound shipping cost incurred by our cost-sharing mechanism. As we have mentioned before, the

minimum outbound shipping cost is not always induced by the optimal bin packing solution, but

this does not mean that we cannot obtain the minimum outbound shipping cost numerically. The

following proposition helps us find the minimum outbound shipping cost for any demand profile

using the first-fit algorithm.

Proposition 10. For any given supplier set S, the packing solution that induces the minimum

outbound shipping cost for set S can be obtained by applying the first-fit algorithm to a specific

order of the demand profiles in S.

Because of Proposition 10, we can always obtain the minimum outbound shipping cost for a supplier

set by packing the demands using the first-fit algorithm on every possible ordering of the demand

profiles. The number of possible ordering of demand profiles for supplier set S is |S|! and the first-fit

algorithm can be implemented in O(|S|log|S|) elementary operations. Therefore, we can exactly

compute the minimum outbound shipping cost for moderate |S|.
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We compare the minimum outbound shipping costs and the outbound shipping costs incurred by

our cost-sharing mechanism for the demand profiles with 3, 6 and 10 suppliers. For each number of

suppliers, we generate 100 demand profiles. Each supplier has less than truckload demand randomly

generated from the uniform distribution on (0, kF ). The parameters we used to generate the demand

profiles and calculate the shipping cost is shown in Table 1.

Table 1 Experiment parameters

kF (ft3) gL0 ($) gL1 ($)
4000 1 15

Because the value of bC also influences the minimum shipping cost, we run the experiments

with three bC values while setting bC = bG. Given the number of suppliers and the value of bC , we

summarize the results over 100 demand profiles by reporting the statistics of the budget-balance

ratios, which we define as C(S)
CM (S)

for supplier set S.

Table 2 Budget-balance ratio for demand profiles with 3 suppliers

Min ratio Max ratio Avg. ratio # of same cost

bC = 1
4
kF 1 1 1 100

bC = 1
2
kF 1 1 1 100

bC = 3
4
kF 1 1 1 100

Table 3 Budget-balance ratio for demand profiles with 6 suppliers

Max ratio Min ratio Avg. ratio # of same cost

bC = 1
4
kF 1.0507 1 1.0005 99

bC = 1
2
kF 1.2284 1 1.0042 98

bC = 3
4
kF 1.1001 1 1.0021 94

Table 4 Budget-balance ratio for demand profiles with 10 suppliers

Max ratio Min ratio Avg. ratio # of same cost

bC = 1
4
kF 1.2000 1 1.0132 93

bC = 1
2
kF 1.1937 1 1.0160 78

bC = 3
4
kF 1.0913 1 1.0109 62

In Tables 2, 3 and 4, we present the maximum, minimum and average budget-balance ratios

among the 100 demand profiles results for each combination of numbers of suppliers and bC values.
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In addition, we also show the number of demand profiles whose minimum outbound shipping cost

equals the outbound shipping cost of the subset sum packing solution.

From the results in Table 2, we empirically see that when there are three suppliers in the demand

profiles, the subset sum packing solution always yields the minimum outbound shipping cost.

This result aligns with Proposition 4. In Tables 3 and 4, the maximum ratios are much smaller

than the upper bounds we found for � and the average ratios are all bounded above by 1.016.

This empirically demonstrates that our cost-sharing mechanism BBP has good budget-balance

performance by only charging slightly more than the minimum shipping cost on average. Moreover,

we see that the subset sum packing solutions often induce the minimum outbound shipping costs.

However, the number of instances with the same cost decreases as the value of bC or number of

suppliers increases.

5. Economic E�ciency of Cost-Sharing Mechanism BBP

We have shown that our cost-sharing mechanism BBP is truthful and thoroughly studied its

budget-balance guarantees in various problem settings. The desired property left to explore is

economic e�ciency. The economic e�ciency of a cost-sharing mechanism is usually measured by

social welfare. The outcome of an economically e�cient cost-sharing mechanism maximizes the

social welfare, defined as W (S) = V (S) � C(S), where V (S) denotes the total valuation of the

suppliers in S and C(S) denotes the total cost of serving suppliers in S. Intuitively, social welfare

quantifies the savings from providing the common service to a selected set of suppliers. However, it

has been shown that truthful and approximately budget-balanced cost-sharing mechanisms often

yield outcomes with zero or negative social welfare when there exist outcomes with strictly positive

social welfare (Feigenbaum et al. 2003). Therefore, it is di�cult to relatively compare the economic

e�ciency of cost-sharing mechanisms using social welfare.

Social cost ⇡(S) was proposed as an alternative way to measure the economic e�ciency of a

mechanism (Roughgarden and Sundararajan 2009). Instead of quantifying the savings, social cost

is equal to the summation of the cost of serving the selected suppliers S and the total valuation

of players in N \ S. Mathematically, ⇡(S) = C(S) + V (N \ S), where V (N \ S) denotes the total

valuation of the suppliers not in S. By definition, social cost is always a positive value and thus

makes it easier to relatively compare the economic e�ciency of mechanisms with the same budget-

balance guarantee. In addition, social cost can be obtained from social welfare using an a�ne

transformation: ⇡(S) = �W (S) + V (N). This means that minimizing social cost is equivalent to

maximizing social welfare. The outcome of economically e�cient cost-sharing mechanisms should

minimize the social cost.

In this section, we study the economic e�ciency of the cost-sharing mechanism BBP by compar-

ing the social cost of the cost-sharing mechanism BBP to the minimum social cost of our problem.
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The social cost in our problem is the total shipping cost of all suppliers. We minimize the social

cost of our problem using a mixed integer optimization model, in which each supplier ships all its

demand either to the consolidation center or to the destination directly. Each supplier’s demand is

delivered in its entirety, without splitting. The parameters, decision variables, and the model are

presented below.

Parameters:

N : set of suppliers.

T : set of trucks available at the consolidation center.

G0
i : Inbound shipping cost for the entire demand of supplier i 8i2N .

G1
i : Stand-alone shipping cost for the entire demand of supplier i 8i2N .

Decision variables:

xj
CF : Binary variable. If outbound shipping of truck j uses the FTL rate, then xj

CF = 1; otherwise,

0 8j 2 T .
yj
CF : Amount of demand of truck j shipped by the FTL rate from the consolidation center to the

destination 8j 2 T .
yj
CL: Amount of demand of truck j shipped by the LTL rate from the consolidation center to the

destination 8j 2 T .
zij: Binary variable. If the entire demand of supplier i is shipped using truck j, then zij = 1;

otherwise zij = 0.

Model:

min
X

i2N

X

j2T

zijG
0
i +

X

i2N

(1�
X

j2T

zij)G
1
i +

X

j2T

(cF1x
j
CF + cL1y

j
CL) (1)

s.t. yj
CF  kFx

j
CF , 8j 2 T (2)

yj
CL  bC , 8j 2 T (3)

yj
CF + yj

CL  kF , 8j 2 T (4)
X

j2T

zij  1, 8i2N (5)

X

i2N

zijdi = yj
CF + yj

CL, 8j 2 T (6)

xj
CF , zij 2 {0,1}, 8i2N,8j 2 T (7)

yj
CF � 0, yj

CL � 0,8j 2 T (8)

Constraints (2) and (3) ensure that trucks correctly incur the FTL rate or the LTL rate under

our trucking cost structure, respectively. Constraint (4) ensures that the packed demand in each

truck does not exceed kF . Constraint (5) allows each supplier’s demand to be packed in at most



Zhang et al.: Acyclic Mechanism Design for Freight Consolidation
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 21

one truck at the consolidation center. Constraint (6) makes sure that the consolidation center

ships all demands packed in each truck. Constraints (7) and (8) enforce the corresponding deci-

sion variables to be binary and nonnegative reals. For supplier i, if
P

j2T zij = 0, then supplier i

ships all its demand directly. If
P

j2T zij = 1, then supplier i’s demand is shipped using truck j

at the consolidation center. Therefore, in the objective function (1),
P

i2N

P
j2T zijG0

i represents

the total inbound shipping cost for the suppliers who ship their demands via the consolidation

center,
P

i2N(1�
P

j2T zij)G1
i represents the total stand-alone cost for the suppliers who ship their

demands directly to the destination, and
P

j2T (cF1x
j
CF + cL1y

j
CL) is the total outbound shipping

cost. Like our cost-sharing mechanism BBP, the optimization model (1) - (8) also decides which

suppliers participate in consolidation and how their demands are packed in trucks, but with the

objective of minimizing the system’s total cost.

We compare the social cost of our cost-sharing mechanism BBP to that of the optimization model

(1) - (8) for demand profiles with 3, 6, 10, and 15 suppliers, respectively. Again, for each number of

suppliers, we generate 100 demand profiles. Each supplier has less than truckload demand randomly

generated from the uniform distribution on (0, kF ]. We fix the values of kF , bC , bG, cL1 and gL1

(in Table 5), and study how di↵erent numbers of suppliers and di↵erent gL1
gL0

ratios influence the

social cost of cost-sharing mechanism BBP compared to the minimum social cost. Because the

shipping rates are distance dependent, the larger gL1
gL0

is, the farther the destination is compared to

the location of the consolidation center. Our choices of gL1
gL0

are 1.5, 2.4, 3.2, 4.8, 9 and 15. Other

cost parameters are calculated accordingly for each selection of gL1
gL0

.

Table 5 Fixed values for the parameters

kF (ft3) bC (ft3) bG (ft3) cL1 ($) gL1 ($)
4000 2000 2000 1 1

We present the number of instances for which the optimization model and the cost-sharing

mechanism BBP result in the same solution and the average social cost gap in Table 6. For each gL1
gL0

ratio, the first column shows the number of same solutions and second column shows the average

social cost gap. The social cost gap is defined as

mechanism social cost� optimal social cost

optimal social cost
.

In our experiments, when gL1
gL0

= 1.5, solutions from the optimization model and the cost-sharing

mechanism BBP always shows zero participation. This demonstrates that consolidation is more

likely to be beneficial for suppliers when the destination is far (long-haul transportation) compared

with the location of the consolidation center. Hence, it is not surprising that the cost-sharing
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Table 6 Comparison of social cost gaps for cost-sharing mechanism BBP
gL1
gL0

1.5 2.4 3.2 4.8 9 15

3 suppliers 100 0% 97 0.72% 95 2.33% 95 1.97% 98 1.66% 97 0.33%
6 suppliers 100 0% 88 0.70% 86 1.51% 81 3.22% 80 3.79% 79 3.29%
10 suppliers 100 0% 72 0.54% 65 1.10% 64 2.19% 58 2.97% 55 3.17%
15 suppliers 100 0% 50 0.54% 47 1.27% 43 2.08% 45 3.44% 38 3.62%

mechanism BBP is economically e�cient when gL1
gL0

= 1.5. In terms of the number of same solutions,

roughly speaking, it is less likely for the cost-sharing mechanism BBP to yield the social cost

minimizing solution as the number of suppliers and the gL1
gL0

ratio increase. In particular, the number

of same solutions decreases more quickly as the number of suppliers increases. In terms of social

cost gap, all gaps presented in Table 6 are smaller than 3.8%. One interesting phenomenon of the

average social cost gap is that the values are not monotonic in the number of suppliers or the
gL1
gL0

ratios. For some demand profiles, we find that the packing solutions for two “consecutive” gL1
gL0

ratios (e.g. 1.5 and 2.4, 2.4 and 3.2) come from two completely di↵erent sets of suppliers. That

is, it is not always true for a demand profile that as gL1
gL0

increases, zero participation becomes

partial participation or partial participation becomes total participation. Moreover, the social cost

changes are not monotonic in the number of suppliers either. A possible contributing factor of this

phenomenon is that packing the demands in trucks is essentially a combinatorial problem, whose

solution largely depends on the specific composition of the demand profiles rather than the number

of suppliers. As a result, the changes in social cost gap may not be aligned with changes of the gL1
gL0

ratios and the number of suppliers. However, we can still expect that the social cost gap generally

increases as the number of suppliers or the gL1
gL0

increases.

6. Conclusions

In this paper, we study the cost-sharing problem in a freight consolidation system with one con-

solidation center. Self-interested suppliers in the same region have the option to use this nearby

consolidation center to ship their demands together to a common destination with trucks for lower

transportation rates. The entire less-than-truckload demand of each supplier must be shipped in

a single truck. We design an acyclic mechanism to solve this shipping cost allocation problem for

freight consolidation. At the planning phase of each consolidation, the central planner of the con-

solidation collects bids from all the suppliers. Then applying a cost-sharing mechanism, the central

planner decides the set of suppliers who participate in the consolidation and their corresponding

cost shares based on the bids.

In our problem setting, a critical problem we need to solve first is how to pack a set of suppliers’

less-than-truckload demands since the packing solution directly influences the selected set of sup-

pliers and their outbound shipping cost shares. We formulate this problem as a bin packing problem
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and obtain the packing solution using the subset sum algorithm. Based on the obtained packing

solution, we derive the cost-sharing method and the o↵er function that induces our truthful acyclic

mechanism – cost-sharing mechanism Based on Bin Packing (BBP). Our cost-sharing mechanism

BBP is weakly group strategyproof. Additionally, we find that the packing solutions yielded by the

subset sum algorithm are strong Nash equilibria from a non-cooperative game theory perspective.

This outcome supports our use of the subset sum algorithm.

We first study the budget-balance guarantee of the cost-sharing mechanism BBP theoretically,

and we prove that our cost-sharing mechanism BBP is 2-budget-balanced in general. However, the

mechanism BBP is budget-balanced when the demand profiles satisfy either of the two following

conditions: 1) the corresponding subset sum algorithm uses no more than two trucks, or 2) no three

suppliers’ demands can fit in one truck. Additionally, when bC  1
2
kF , the cost-sharing mechanism

BBP is 11
6
-budget-balanced. To comprehensively analyze the budget-balance ratio, we then investi-

gate the ratio empirically. On average, the budget-balance ratio is only slightly above 1. Moreover,

our cost-sharing mechanism BBP always recovers all the incurred costs.

Finally, we study the economic e�ciency of the mechanism BBP numerically. We use social cost

to quantify and compare the economic e�ciency. We obtain the minimum social cost shipping

solution of the consolidation system with a mixed integer optimization model. Compared with the

minimum social cost, the outcomes of our cost-sharing mechanism BBP have an average social cost

gap less than 3.8%. In addition, although the changes in social cost gap are not perfectly aligned

with changes of the gL1
gL0

ratios and the number of suppliers, the social cost gap can be expected to

increase in general as the gL1
gL0

ratio and the number of suppliers increase.

One interesting direction for future research is to model the possibility that suppliers bid for 

having only a fraction of their demand shipped. We have simple examples showing that it may 

be optimal for a supplier to bid less than their total demand; assuming the remainder is shipped 

directly, the supplier’s total cost may be lower than either shipping everything directly or only 

through the consolidation center. This motivates additional interesting directions of research, as a 

supplier does not know other supplier’s valuations or demand quantities in advance, and of course 

each supplier’s cost depends on the other’s quantities.

One possibility is to design a cost-sharing mechanism under a general demand setting (e.g. Mehta, 

Roughgarden, and Sundararajan (2009)). In a general demand setting, each supplier can provide 

di↵erent bids for di↵erent demand volumes or service levels. The mechanism chooses which level of 

service will each supplier receive and the corresponding cost shares. It would be interesting to 

understand when it is optimal for the suppliers to bid for their entire demand or only a fraction; one 

might try to design a mechanism that guarantees the former.
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Appendix

Lemma 1. Suppose W ✓G(i, S) is removed from S, for some subset S ✓N and supplier i2 S. Let Tk, k 2

{1, . . . ss(S)} and T 0
l , l 2 {1, . . . ss(S \W )} be subset sum packing solutions for S and S \W , respectively.

Then, for every supplier j 2L(i, S)[E(i, S), if j 2 Tk and j 2 T 0
l , then Tk = T 0

l .

Proof. The above claim indicates that for subset sum packing solutions, the removal of suppliers who are

packed in iterations later than supplier i does not a↵ect the subset sum packing solutions of the suppliers

who are packed before any of the removed suppliers. Because the demand of any supplier in W ✓ G(i, S)

does not contribute to maximizing the total demand in the iterations in which the demand of supplier

j 2L(i, S)[E(i, S) is packed, the existence of W ✓G(i, S) does not a↵ect the subset sum packing solutions

for the supplier j 2 L(i, S) [E(i, S). As a result, every supplier j 2 L(i, S) [E(i, S), including supplier i,

ends up being packed with the same suppliers when we remove W ✓G(i, S) from S. ⇤

Lemma 2. Suppose W ✓ (E(i, S) \ {i}) is removed from S, for some subset S ✓N and supplier i 2 S. In

addition, suppose supplier i is packed in truck T in a subset sum packing solution for S, and in truck T 0 in

a subset sum packing solution for S \W . Then D(T 0)D(T ).

Proof. We prove by contradiction. If D(T 0)>D(T ), then according to the subset sum algorithm, supplier

i should end up being in T 0 in a subset sum packing solution for S instead of T . This contradicts the fact

that supplier i is packed in T in a subset sum packing solution for S. ⇤

Proposition 1. The o↵er function ⌧ is valid for the cost-sharing method �.

Proof. We first prove part (a) of Definition 1. Part (a) indicates that supplier i’s cost share remains the

same if we remove some suppliers who are o↵ered cost shares after supplier i. According to Lemma 1, all

suppliers j 2 L(i, S)[E(i, S), including supplier i, are packed with the same suppliers when W✓G(i, S) is

removed from S. As a result, supplier i ’s cost share remains the same when we remove W ✓G(i, S) from S,

i.e. �(i, S \W ) = �(i, S).

For part (b), when W ✓G(i, S) [ (E(i, S) \ {i}), we assume there exist two supplier sets P and Q such

that P ✓G(i, S), Q✓ (E(i, S) \ {i}), and P [Q=W . Based on the above argument, we can conclude that

the removal of P results in �(i, S \P ) = �(i, S). Since the cost shares remain the same for supplier i when

P is removed, we can restrict our attention to the setting in which Q is removed from S \P . Let T be the

truck in which supplier i is packed in a subset sum packing solution for S \P . According to Lemma 2, when

Q is removed from S \P , supplier i is packed in T 0 such that D(T 0)D(T ). Since � shares the outbound

shipping cost proportional to demand, the cost share of supplier i dose not decrease when removing Q from

S \P . Therefore, �(i, S \W )� �(i, S \P ) = �(i, S). ⇤
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Lemma 3. For any set of suppliers S, let m be such that (m�1)kF <
P

i2S di mkF . Then ss(S) 2m�1,

and this inequality is tight.

Proof. When m= 1, the subset sum algorithm packs all demands in one truck. So the claim holds. Next,

when m� 2, we prove this claim in two steps. First, we prove the subset sum algorithm uses no more than

2m� 1 trucks. In any subset sum packing solution, the sum of the demands in any two trucks exceeds kF .

Assume the subset sum algorithm uses t trucks. Then there are t(t�1)
2 di↵erent pairs of trucks in the solution.

Summing over all these pairs, we have more than t(t�1)
2 kF units of demand packed in these t(t�1)

2 pairs of

trucks. Each truck participates in exactly t� 1 pairs. As a result, the total demand packed in these t trucks

is strictly greater than t
2kF . Since

t
2kF <

P
i2S di mkF , we have t < 2m. Second, we prove that 2m� 1

is a tight upper bound. Without loss of generality, let
P

i2S di = (m� 1
2 )kF + �, �  1

2kF . We construct a

demand profile with |S|= 2m� 1, and di =
1
2kF + �

2m�1 for all i2 S. Since each supplier’s demand is strictly

greater than 1
2kF , the subset sum algorithm will pack each supplier’s demand in a separate truck and thus

use 2m� 1 trucks. ⇤

Proposition 3. The cost-sharing mechanism BBP is 2-budget-balanced.

Proof. Without loss of generality, assume we have a set of suppliers S such that (m� 1)kF <
P

i2S di 

mkF . When the suppliers’ demands can be split and consolidated into full truckloads, we have at least

m� 1 full trucks in this consolidated packing solution. Therefore, C⇤(S) > (m� 1)cF1. If the subset sum

packing solution uses at most 2m� 2 trucks for the same demand profile, then �(S) = CM (S)
C(S) 

(2m�2)cF1

C⇤(S) <
(2m�2)cF1

(m�1)cF1
= 2. If the subset sum packing solution uses 2m � 1 trucks, we can conclude that

P
i2S di >

(m� 1
2 )kF . This is because the first 2m� 3 trucks must at least be half filled and the total demand of the

last two trucks must exceed kF and so the total demand must be strictly greater than (2m� 3) · 1
2kF +kF =

(m� 1
2 )kF . As a result, the last truck in the consolidated packing solution when demands can be split must

have more than 1
2kF . If bC  1

2kF , then C⇤(S) = mcF1. If
1
2kF < bC  kF , then cF1 = bCcL1  kF cL1 and

thus, C⇤(S)> (m� 1)cF1 +
1
2kF cL1 � (m� 1

2 )cF1. Consequently, when the subset sum packing solution uses

2m� 1 trucks, �(S) = CM (S)
C(S) 

(2m�1)cF1

C⇤(S) < (2m�1)cF1

(m� 1
2 )cF1

= 2. To summarize, � =max
S

{�(S)}< 2. As a result,

the cost-sharing mechanism BBP is 2-budget-balanced. ⇤

Proposition 4. For a given supplier set S, if the subset sum packing solution uses no more than two

trucks, then �(S) = 1.

Proof. If the subset sum packing solution uses one truck to pack all demands in S, then obviously

�(S) = 1. If the subset sum packing solution uses two trucks to pack all demands in S, then any other

packing solution will use at least two trucks to pack all the demands in S. The outbound shipping cost for an

arbitrary packing solution is (
P

i2S di� D̂)cL1, where D̂ is the total demand volume that exceeds bC in each

of the packed trucks. As D̂ increases, the outbound shipping cost decreases. Let T s
1 and T s

2 denote the subset

sum packing solution, and let T a
1 , . . . , T

a
p (D(T a

1 )� . . .�D(T a
p ), p� 2) denote any other packing solution for

supplier set S. Let D̂1 and D̂2 denote the demand volume that exceeds bC in T s
1 and T s

2 , respectively and let

D̂0
1, . . . , D̂

0
p denote the demand volume that exceeds bC in T a

1 , . . . , T
a
p , respectively. Then we have D̂1 � D̂0

1
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according to the subset sum algorithm. Let 0 q p denote the number of trucks that have demand volumes

exceed bC in T a
1 , . . . , T

a
p , i.e. D̂

0
1 � . . .� D̂0

q > 0, and ˆD0
q+1 = . . .= D̂0

p = 0.

When D̂1 = 0, then D̂0
1 = 0. All demands are shipped using the LTL rate in both packing solutions. So the

outbound shipping cost of T s
1 , T

s
2 equals to the outbound shipping cost of T a

1 , . . . , T
a
p .

When D̂1 > 0 and D̂2 = 0, if q  1, then the outbound shipping cost of T a
1 , . . . , T

a
p is greater than that of

the subset sum packing solution because D̂1 + D̂2 > D̂0
1 + . . .+ D̂0

q. If q� 2, then we have,

D̂1 + bC +D(T s
2 ) = (D̂0

1 + . . .+ D̂0
q)+ qbC +

pX

k=q+1

D(T a
k )

=) D̂1 = (D̂0
1 + . . .+ D̂0

q)+ (q� 1)bC �D(T s
2 )+

pX

k=q+1

D(T a
k )

=) D̂1 > D̂0
1 + . . .+ D̂0

q.

Therefore, the outbound shipping cost of T a
1 , . . . , T

a
p is greater than that of the subset sum packing solution.

When D̂1 > D̂2 > 0, if q  1, then the outbound shipping cost of T a
1 , . . . , T

a
p is greater than that of the

subset sum packing solution following the same argument above. If q� 2, then we have,

D̂1 + D̂2 +2bC = (D̂0
1 + . . .+ D̂0

q)+ qbC +
pX

k=q+1

D(T a
k )

=) D̂1 + D̂2 = (D̂0
1 + . . .+ D̂0

q)+ (q� 2)bC +
pX

k=q+1

D(T a
k )

=) D̂1 + D̂2 > D̂0
1 + . . .+ D̂0

q.

Therefore, the outbound shipping cost of T a
1 , . . . , T

a
p is greater than that of the subset sum packing solution.

Based on the above analysis, the subset sum packing solutions always cost no more than any other packing

solutions. Consequently, when the subset sum packing solution uses no more than two trucks, it always yields

the minimum outbound shipping cost, i.e. �(S) = 1. ⇤

Proposition 5. Given a set of suppliers S, if no three supplier’s demands fit in one truck, then the subset

sum packing solution for supplier set S induces the minimal outbound shipping cost for supplier set S.

Proof. We prove the above claim by proving that the subset sum packing solution does not cost more than

any other packing solution for the same set of suppliers. Without loss of generality, let T ss
1 , . . . , T ss

M denote the

subset sum packing solution and T1, . . . , TK denote any packing solution that is di↵erent from T ss
1 , . . . , T ss

M .

For the sake of analysis, we order the packing solution T1, . . . , TK so thatD(T1)�D(T2) . . .�D(TK). Because

of Lemma 4, M K. Recall that each Tk, k 2 {1,2, . . . ,K}, in the solution set contains the suppliers’ indices

whose demands are packed in the kth truck. In order, we compare T ss
m with Tm for m 2 {1,2, . . .M}. Let

m⇤ M be the smallest index such that T ss
m = Tm, m 2 {1,2 . . .m⇤}. Therefore, up to the m⇤th truck,

T ss
1 , . . . , T ss

M and T1, . . . , TK have the same exact packing solution, and thus incur the same outbound shipping

cost. Since T ss
m = Tm, m 2 {1,2 . . .m⇤}, the packing solutions T ss

m⇤+1, . . . , T
ss
M and Tm⇤+1, . . . , TK contain the

demands of the same set of suppliers, whose demands are not packed in the first m⇤ trucks. Consequently,
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D(T ss
m⇤+1)�D(Tm⇤+1). We consider the following four cases based on the relationships between D(T ss

m⇤+1),

D(Tm⇤+1) and bC .

Case 1: when D(Tm⇤+1)  D(T ss
m⇤+1)  bC , packing solutions T ss

m⇤+1, . . . , T
ss
M and Tm⇤+1, . . . , TK incur the

same outbound shipping cost because the demands are all shipped at the LTL rate.

Case 2: when D(T ss
m⇤+1)> bC �D(Tm⇤+1), the outbound shipping cost incurred by T ss

m⇤+1, . . . , T
ss
M is strictly

lower because it ships at least D(T ss
m⇤+1) at the flat FTL rate while Tm⇤+1, . . . , TK ships all demands at the

LTL rate.

Case 3: when D(T ss
m⇤+1) =D(Tm⇤+1)> bC , we prove that we can reconfigure the packing solutions so that

T ss
m⇤+1 = Tm⇤+1 while retaining the same outbound shipping cost of both packing solutions.

When T ss
m⇤+1 = {i} and Tm⇤+1 = {j}, but i 6= j, there must exist Tm⇤+�, � 2 {2, . . .K �m⇤} so that

Tm⇤+� = {i}. Otherwise, if supplier i’s demand is packed with another supplier’s demand, this contradicts

the fact that D(T ss
m⇤+1)�D(Tm⇤+1) and D(Tm⇤+1)� . . .�D(TK). If we switch Tm⇤+1 and Tm⇤+�, we have

T ss
m⇤+1 = Tm⇤+1.

When T ss
m⇤+1 = {i} and Tm⇤+1 = {j, u}, but i 6= j 6= u, there must exist Tm⇤+�, � 2 {2, . . .K �m⇤} so

that Tm⇤+� = {i} for the same reason in the above argument. If we switch Tm⇤+� with Tm⇤+1, we have

T ss
m⇤+1 = Tm⇤+1. Similarly, when T ss

m⇤+1 = {j, u} and Tm⇤+1 = {i}, we can have T ss
m⇤+1 = Tm⇤+1 as well.

When T ss
m⇤+1 = {i, j} and Tm⇤+1 = {u, v} but {i, j} 6= {u, v}, consider the following.

If T ss
m⇤+1 and Tm⇤+1 do not share suppliers, i.e. {i, j}\{u, v}= ;, we can always have a truck that contains

the demands of supplier u and v in the subset sum packing solution without changing the outbound shipping

cost. If there exists T ss
m⇤+�, � 2 {2, . . .M �m⇤} so that T ss

m⇤+� = {u, v}, then the above claim holds. If the

demands of supplier u and v are not packed in the same truck, then either du or dv should be packed in

a truck whose total demand equals du + dv; otherwise the demands of supplier u and v should be packed

together by the subset sum algorithm to yield a truck with greater total demand. Assume dl is packed with

du in T ss
m⇤+�, �2 {2, . . .M �m⇤} such that dl + du = du + dv. Therefore, dv = dl. If we switch dv and dl, we

obtain a T ss
m⇤+� that contains the demands of supplier u and v and retain the outbound shipping cost of the

packing solution. By switching T ss
m⇤+1 and T ss

m⇤+� , we have T ss
m⇤+1 = Tm⇤+1.

If T ss
m⇤+1 and Tm⇤+1 share one common supplier – WLOG, we assume i= u – then dj = dv. dj must be

packed in one of the trucks in Tm⇤+2, . . . , TK . If we switch dv and dj in Tm⇤+1, . . . , TK , we have T ss
m⇤+1 = Tm⇤+1.

Note that all the swaps in Case 3 only change the ordering of trucks with equal demand volume or the

packings of equal demands. The resulting packing solutions are essentially equivalent to T ss
m⇤+1, . . . , T

ss
M and

Tm⇤+1, . . . , TK . Therefore, their outbound shipping costs do not change.

Case 4: when D(T ss
m⇤+1) > D(Tm⇤+1) > bC , we prove that we can always change Tm⇤+1, . . . , TK to have

T ss
m⇤+1 = Tm⇤+1 without increasing the outbound shipping cost of Tm⇤+1, . . . , TK . First, we prove when

D(T ss
m⇤+1)>D(Tm⇤+1)> bC , there must be two suppliers’ demands in T ss

m⇤+1. If T
ss
m⇤+1 contains only one sup-

plier’s demand di, then di must be packed in one of Tm⇤+1, . . . , TK . This contradicts D(T ss
m⇤+1)>D(Tm⇤+1)

and D(Tm⇤+1) � . . . � D(TK). Therefore, T ss
m⇤+1 must contain two suppliers’ demands di and dj . Since

D(T ss
m⇤+1) > D(Tm⇤+1), di and dj are not packed in the same truck in Tm⇤+1, . . . , TK . Let’s assume di is

packed with dp and dj is packed with dq somewhere in the packing solution Tm⇤+1, . . . , TK . Because di and
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dj are packed in T ss
m⇤+1, di + dj > di + dp and di + dj > dj + dq. Thus, dj > dp and di > dq. Now suppose we

modify Tm⇤+1, . . . , TK to pack di and dj together in one truck and pack dp and dq together in another truck.

Because di + dj is the largest demand volume that can be packed in one truck, Tm⇤+1 now becomes {i, j}.
If di + dp � bC , dj + dq � bC , and dp + dq � bC , then packing di and dj together in Tm⇤+1, . . . , TK does not

change the outbound shipping cost of Tm⇤+1, . . . , TK . If di + dp � bC , dj + dq � bC , and dp + dq < bC , then

packing di and dj together in Tm⇤+1, . . . , TK reduces the outbound shipping cost of Tm⇤+1, . . . , TK from 2cF1

to cF1 + (dp + dq)cL1. If di + dp � bC and dj + dq < bC , then dp + dq < bC because dj > dp. Therefore, the

cost for shipping di, dj , dp, dq decreases from cF1 + (dj + dq)cL1 to cF1 + (dp + dq)cL1 after packing di and

dj together. Similarly, if di + dp < bC and dj + dq � bC , the cost of shipping Tm⇤+1, . . . , TK decreases as well

after packing di and dj together. If di+dp < bC , dj +dq < bC and dp+dq < bC , the cost of shipping di, dj , dp,

dq decreases from (di + dp + dj + dq)cL1 to cF1 +(dp + dq)cL1 after packing di and dj together. Thus, having

T ss
m⇤+1 = Tm⇤+1 by switching demands in Tm⇤+1, . . . , TK does not increase the outbound shipping cost of the

packing solution. Finally, if di or dj is packed in a truck alone in Tm⇤+1, . . . , TK , the above conclusion also

holds because it can be seen as a special case of the above situation where dp = 0 or dq = 0.

Comparing T ss
m⇤+� and Tm⇤+�, �2 {2, . . .M �m⇤}, if at any time, D(T ss

m⇤+�) and D(Tm⇤+�) satisfy the

conditions in cases 1 or 2, we can conclude that the outbound shipping cost of T ss
1 , . . . , T ss

M is no more than

T1, . . . , TK . If D(T ss
m⇤+�) and D(Tm⇤+�) satisfy the conditions in cases 3 or 4, we set m⇤ =m⇤+1 and repeat

the above procedures again. If D(T ss
m⇤+�) and D(Tm⇤+�) always fall into cases 3 or 4, we will end up with

T ss
m = Tm, m 2 {1, . . . ,M}. Because we do not increase the outbound shipping cost every time we perform

the above procedures to change T1, . . . , TK toward T ss
1 , . . . , T ss

M , we can conclude that T ss
1 , . . . , T ss

M costs no

more than T1, . . . , TK . ⇤

Proposition 7. When bC  1
2kF , the minimum outbound shipping cost C(S) is induced by an optimal

bin packing solution for supplier set S.

Proof. Let opt(S) denote the number of trucks that the optimal bin packing solution uses for supplier

set S. Because optimal bin packing solutions are nontrivial bin packing solutions, based on Definition 3,

there are at least opt(S) � 1 trucks in the optimal bin packing solutions half filled. Since bC  1
2kF , we

have (opt(S)� 1)cF1 < C(S)  opt(S)cF1. Other nontrivial bin packing solutions that are not optimal use

at least opt(S) + 1 bins and therefore, cost strictly more than opt(S)cF1 to ship all demands. As a result,

the outbound shipping cost induced by an optimal bin packing solution is the smallest among all packing

solutions for supplier set S. ⇤

Proposition 8. For a given supplier set S, if bC  1
2kF and 3 opt(S) 8, then �(S)< 11

6 .

Proof. Assume opt(S) = 3, then ss(S) = {3,4}. We prove �(S) < 3
2 . If opt(S) = ss(S) = 3 and bC 

1
2kF , then �(S) = 2cF1+Z(Tss

3 )

2cF1+Z(Topt
3 )

< 3cF1
2cF1

= 3
2 , where Z(Tk) denotes the outbound shipping cost of truck Tk. If

opt(S) = 3 and ss(S) = 4. Because of how the subset sum algorithm works, D(T opt
1 )D(T ss

1 ). Then it must

be true that D(T opt
2 ) +D(T opt

3 ) �
P4

i=2D(T ss
i ). Additionally, the total demand volume of any two trucks

in a subset sum packing solution exceeds kF , e.g. D(T ss
2 ) +D(T ss

3 )> kF . Then we have D(T ss
2 ) +D(T ss

3 )>

kF , D(T ss
3 ) + D(T ss

4 ) > kF and D(T ss
2 ) + D(T ss

4 ) > kF . Summing up these three inequalities, we obtain
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D(T ss
2 )+D(T ss

3 )+D(T ss
4 )> 3

2kF . Therefore, D(T opt
2 )+D(T opt

3 )> 3
2kF . This implies that D(T opt

3 )> 1
2kF . As

a result, if opt(S) = 3, ss(S) = 4 and bC  1
2kF , then �(S) = 3cF1+Z(Tss

4 )
3cF1

< 4cF1
3cF1

= 4
3 . Finally, we can conclude

that when opt(S) = 3, �(S)< 3
2 .

Applying the exact same technique when 4 opt(S) 8, we are able to obtain the corresponding instance

budget-balance ratios that are summarized in Table 7:

Table 7 Instance budget-balance ratio summary

opt(S) ss(S) �(S)

4 4,5,6 5
3

5 5,6,7,8 7
4

6 6,7,8,9 9
5

7 7,8,9,10,11 11
6

8 8,9,10,11,12 12
7

To summarize, when 3 opt(S) 8 and bC  1
2kF , �(S) =max{ 3

2 ,
5
3 ,

7
4 ,

9
5 ,

11
6 , 12

7 }= 11
6 . ⇤

Proposition 9. For a given supplier set S, if bC  1
2kF , � < 1.8075 when opt(S)� 9.

Proof. Following the same argument in Proposition 8,

�(S) =
(ss(S)� 1)cF1 +Z(T ss

ss(S))

(opt(S)� 1)cF1 +Z(T opt
opt(S))

<
ss(S)cF1

(opt(S)� 1)cF1

=
ss(S)

opt(S)� 1

 b1.6067opt(S)c
opt(S)� 1

 1.6067opt(S)

opt(S)� 1
.

The value of f(x) = x
x�1 decreases as x increases. When opt(S) � 9, the maximum value of 1.6067opt(S)

opt(S)�1 is

obtained when opt(S) = 9. As a result, �(S)< 1.8075 when opt(S)� 9. ⇤

Proposition 10. For any given supplier set S, the packing solution that induces the minimum outbound

shipping cost for set S can be obtained by applying the first-fit algorithm to a specific order of the demand

profiles in S.

Proof. Let T1, . . . , Tk be the packing solution that induces the minimum outbound shipping cost C(S).

Assume Tm, m 2 {1, . . . , k} are ordered such that D(T1) � . . . �D(Tk). The packing solution that induces

the minimum outbound shipping cost may not be unique. We prove that applying the first-fit algorithm on

a specific order of demand profiles leads us to one such packing solution. Among all the packing solutions

that induce the minimum outbound shipping cost, there must exist one T ⇤
1 , . . . , T

⇤
k such that each demand

in T ⇤
m, m2 {1, . . . k}, cannot be moved to T ⇤

m��, �2 {1, . . . ,m� 1} without moving other packed demands.
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Otherwise, we can create a packing solution that induces less shipping cost. If we order the demand profiles of

suppliers S in a sequence of how they are placed in T ⇤
1 , . . . , T

⇤
k , the packing solution of the first-fit algorithm

for this sequence of demand profiles is T ⇤
1 , . . . , T

⇤
k by the definition of the first-fit algorithm. ⇤
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