Conversations on How to Create an Inclusive Environment for Animal Caregivers in Lab Animal Science

Thursday, October 26th 2023
74th National Meeting
October 22-26 | Salt Lake City, UT
DARE 2 CARE
UNIVERSITY of WASHINGTON
Compassion in Science

Preston Van Hooser

- Review Scientist & Compliance Manager, OAW
- Founder & Co-Chair D2C
- Since 2016
- Work with the UW to identify resource priorities and support for the D2C.
Jade Arnold
Bruce Kennedy
Deanne Buffum
Holly Nguyen
Dr. Arnold Arluke
Terry Fritter

AALAS 2023
HAVE THINGS CHANGED?
Informal rules IN BENCH SCIENCE, 40 YEARS AGO

Arnie Arluke
Professor Emeritus of Sociology & Anthropology
Northeastern University
1. Don’t treat lab animals as pets
2. Don’t express troubled or conflicted feelings about animal experimentation
Caring for research animals can take a severe mental toll. Is anyone listening?

9 MAR 2023
BY SIMON FRADIS

Corner Sessions’s decision to combine his love of science and animals nearly destroyed him. Growing up in rural Washington state, he spent his early life surrounded by cows, horses, cats, and dogs. He cared about all of them and considered a career in veterinary medicine. But after graduating with a bachelor’s degree in biochemistry from the University of Washington (UW), Seattle, in 2016, he saw a job ad that changed his mind.

The school needed an animal technician, someone to clean and feed mice, pigs, dogs, and other creatures used in biomedical research. “I wanted to get involved with science, and working with animals was a big plus,” Sessions says. He took the job, spending his shifts feeding and playing with dogs and livestock at the university, an echo of his youth. The sheep would head-but him for snacks.

Sessions grew especially attached to the dogs, which was tough. Some were bred for two different forms of muscular dystrophy, one 100% fatal. He raised the puppies from birth, sometimes taking feeding those that had trouble nursing. “I trained one litter to line up in their kennel for treats,” he says. Then he would walk in one morning and find some of them dead in their enclosures—victims of their disease.

Over the next few years, Sessions came to expect this. But it never got easier. Every time he entered the underground facility where the animals were kept, he panicked, fearful of what he might find. He became anxious and depressed, and began obsessively checking on the dogs throughout the day, a feeling that followed him home. “I’d be doing the dishes at 8 at night and wondering, ‘Should I go back and check if my animals are OK?’” He hesitated to go on vacation or even take weekends off, worried one of the dogs would die or be euthanized while he was away. “I wanted to be there for them,” he says. “It’s almost like they become your pets.”
“Guilt Among Lab Technicians”

“Stress Among Lab Technicians”

“Uneasiness Among Lab Technicians”

“How Researchers Deal with Feelings”
3. Don’t expect to talk about your work without being criticized
4. Don’t admit your work
This analysis extends the notion of occupational stigmatization beyond traditionally low-status, marginal workers to scientists and technicians who conduct biomedical research on animals. Like many "dirty" workers, animal research personnel report that they see themselves as stigmatized by others and sometimes manage information about themselves and their work to avoid unpleasant interactions with those who disapprove of what they do. While information may be managed about their occupational identity through concealment or cautious disclosure, these practices suggest guilt and create a dilemma for some. Nevertheless, the use of information control strategies often seems imperative in the face of a threatening "other," defined as either reproaching, confrontive, dangerous, and/or distorting.

GOING INTO THE CLOSET WITH SCIENCE
Information Control Among Animal Experimenters

ARNOLD ARLUKE

STUDIES OF STIGMATIZED OCCUPATIONS have been limited to endeavors that society traditionally accords little prestige and that enlist workers from low-status backgrounds. In Stigma, Goffman (1963) himself made only rare reference to occupational groups, and then it was to hangmen and prostitutes—both marginal groups for whom stigmatization is nothing new. Those following Goffman have continued to focus on customarily regarded low-status occupations including, but not restricted to, sex work (e.g., Jackman, O'Toole, and Geis 1963; McCaghy and Skipper 1969), criminal work (e.g., Cameron 1964; Lemert 1953), death work (e.g., Pine 1977; Sudnow 1967), cleaning work (e.g., Gold 1964; Perry 1978), and money-lending work (e.g., Davis 1984; Hartnett 1981).

On the whole, these occupational stigmas are relatively profound and unambiguous such that norms are reasonably clear regarding society’s reaction. While stigmatized workers...
Have things changed in labs since my research decades ago?

Are the informal rules I observed only one of many other concerns faced by research and animal care technicians today?
Not valued

Long hours

Isolation

RATs

Not appreciated

Not heard

Animal Care Technician
Audience Participation

Share your thoughts and experiences

- Raise your hand
- Use pen and paper provided
- Post online in Padlet
Institution
- Not acknowledged
- Nothing to show for work

Public
- Negative media and publicity
- Hard to talk about work

Department
- Educational opportunities
- Not valued

Management
- Under staffed
- "Just get it done"

Research Group
- Endpoints
- Not informed of research
- Not seen and not heard

Regulatory
- Not seen
- No regulatory representation
Audience Participation

Share your thoughts and experiences

- Raise your hand
- Use pen and paper provided
- Post online in Padlet
Study endpoint notifications

Pre-endpoint and post-endpoint email notifications acknowledging high level of humane care and the greater purpose the animal served.
IN RECOGNITION TO ALL RESEARCH ANIMALS
AND THE LABORATORY ANIMAL SCIENCE COMMUNITY
WHO HELP ADVANCE HUMAN AND ANIMAL HEALTH
DARE 2 CARE: COMPASSION IN SCIENCE
AUGUST 23, 2023
THE PROSTATE CANCER RAPID AUTOPSY AND DEVELOPMENT OF PATIENT-DERIVED XENOGRAFT MODELS

Nguyen HM, Morrissey C, Corey E
Department of Urology, University of Washington, Seattle, WA

INTRODUCTION
- Prostate cancer (PCa) is the second most common cancer diagnosed in men and leads to about 27,570 deaths in 2017 within the United States.
- PCa is a heterogeneous disease with primary and secondary hormone-resistant variants, a major cause of mortality, and biomarkers to escape mechanisms.
- Nodal and brain metastases are common, and novel therapeutic strategies are needed to improve patient outcomes.
- Here, we present a novel methodology to analyze patient tumor tissues, leading to a better understanding of PCa.

OBJECTIVES
- To develop a rapid autopsy program to accelerate research in PCa.
- To develop patient-derived xenograft (PDX) models.
- To develop clinical and molecular characterization of PCa PDXs.

PDX MODELS
- Tumor xenografts are used to study the biology underlying tumor response and resistance.
- Models provide a valuable resource to generate clinically relevant data with minimal patient risk.
- Models demonstrate molecular features resembling patient tumors, tumor heterogeneity observed in patients, presence of tumor microenvironment architecture, and provide clinical-relevant treatment responses.

MATHEMATICAL METHODS
- Models are used to study the biology underlying tumor response and resistance.
- Models provide a valuable resource to generate clinically relevant data with minimal patient risk.
- Models demonstrate molecular features resembling patient tumors, tumor heterogeneity observed in patients, presence of tumor microenvironment architecture, and provide clinical-relevant treatment responses.

RAPID AUTOPSY—SITE OF METASTASIS

Molecular Analysis

ACKNOWLEDGEMENTS

These studies have been funded by the Prostate Cancer Foundation (PCF), the Richard M Lucee Foundation, NIH P01 (ROI-CA163227), Pacific Northwest Prostate Cancer Score (PSO-CA097181), the Prostate Cancer Biorepository Network (PCBN), and Movember.

With great appreciation we acknowledge the patients and their families for their participation in the UW Rapid Autopsy Program, the animals who have been sacrificed to make these breakthroughs to alleviate suffering and death associated with prostate cancer for fathers, sons, brothers, and husbands around the world, as well as the exceptional daily care of these animals provided by the Animal Caretakers.
Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer
Mark P. Labrecque, … , Peter S. Nelson, Colm Morrissey
Published July 30, 2019 Citation Information: J ClinInvest.2019. https://doi.org/10.1172/JCI128212.

ACKNOWLEDGEMENTS
This work was supported by a Department of Defense Idea Development Award-Partnering-PI (W81XWH-17-1-0414;W81XWH-17-1-0415), W81XWH-15-1-0430, PC170431, the Pacific Northwest Prostate Cancer SPORE (P50CA97186), the Department of Defense Prostate Cancer Biorepository Network (W81XWH-14-2-0183), Department of Defense Prostate Cancer Clinical Trials Consortium W81XWH-15-2-0008, NCI R01 CA230617, NCI P01 CA163227, the Prostate Cancer Foundation, the AACR NextGen Transformative Cancer Research Grant, the Institute for Prostate Cancer Research, and the Richard M. LUCAS Foundation.

We would like to thank the patients who generously donated tissue that made this research possible. We would also like to thank Jennifer Conner, Michiyo Dalos, Daniel Sondheim and the Comparative Medicine Animal Caregivers for assistance with the LuCaP PDX work. Additionally, we would like to thank Paul Lange, Robert Vessella, Funda Vakar-Lopez, Martine Roudier, Xiaotun Zhang, Belinda Nghiem, Jennifer Noteboom and the rapid autopsy teams in the Urology and Pathology Departments at the University of Washington.
Thank you!

VALUE
Thanks so much for everything you do on a daily basis. We are so appreciative of your tireless efforts in making sure our animals are well taken care of. Without you, many groups around campus wouldn’t be able to do the research that has the potential to impact millions of people worldwide. Thanks for making all the difference.

Thank you so much for taking such good care of all the animals.

Amitha Pasupathy (Biological Structure and WaNPRC)

Thanks to all Breeding husbandry staff for your continued dedication to your work for the well-being of all animals. Caitlin Comisky is very competent and very dependable weekend animal care staff.

Many thanks for all your hard work and dedication to caring for the animals, and for making this a great place for scientific research! - Alyza Bar (Biological Structure, and Primate Center)

Clara has been the most thoughtful, diligent tech I have ever had the opportunity to work with. She is observant and clearly cares about her charges, animal and human. We appreciate all her thoughtful touches and her proactive monitoring of our animals, the woman saves our bacon on the regular. Clara, I cannot thank you enough.

We can never say enough how grateful we are for all that you do for the animals in our care. It isn’t an easy job. It requires the physical strength and stamina to transport heavy racks and cages around and the delicate care to avoid pinch ing little fingers and toes. You interpret what the animals are telling you without words. You come in when everyone else is staying home, whether it’s a snowstorm or pandemic. Research that saves lives can happen because of the work that you do. Thank you!
OPPORTUNITY

IACUCs

Conferences

Committees

Classes/Workshops
Audience Participation

Share your thoughts and experiences

Raise your hand
Use pen and paper provided
Post online in Padlet
Closing remarks
Thank you