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Article

A central aim of the current research in moral psychology is 
to characterize a workable dual-system framework (Bartels, 
2008; Cushman, Young, & Hauser, 2006; Greene, 2007; 
Greene, Sommerville, Nystrom, Darley, & Cohen, 2001; 
Haidt, 2001; Pizarro & Bloom, 2003; Young & Koenigs, 
2007). Candidate systems are sometimes described in terms 
of intuition versus reasoning, automaticity versus control, 
and emotion versus cognition. While there is considerable 
agreement that a dual-system framework of some kind is 
necessary, agreement is far from universal; moreover, the 
contours, functions, and relative influence of each are dis-
puted (Haidt, 2001; Huebner, Dwyer, & Hauser, 2009; 
Kvaran & Sanfey, 2010; Moll, De Oliveira-Souza, & Zahn, 
2008; Paxton & Greene, 2010; Pizarro & Bloom, 2003).

Meanwhile, current research into the neurological basis of 
decision making has been transformed by the identification 
of two broad classes of algorithms that structure learning and 
behavioral choice. One algorithm encodes the value of 
actions by associating them with subsequent punishment and 
reward, leveraging prediction error and temporal difference 
learning to efficiently represent whether an action is reward-
ing without representing what makes it so. The other algo-
rithm encodes the value of outcomes and selects actions 
based on their expected value, relying on a probabilistic 
causal model that relates actions, outcomes, and rewards. 
This broad distinction, first identified in the machine learn-
ing literature (Sutton & Barto, 1999), provides a valuable 
description of the two systems of learning and decision mak-
ing in the human brain (Daw & Doya, 2006; Daw & Shohamy, 
2008; Schultz, Dayan, & Montague, 1997).

How can we bridge the gap between these literatures, 
applying insights from computational neuroscience to the 
qualitative distinction between two systems widespread in 
moral judgment research? This requires formulating core 
concepts from each domain in common terms. The approach 
pursued here is to distinguish two systems of value repre-
sentation—action- versus outcome-based—and to show that 
the connection between the computational models and psy-
chological phenomena is more than a loose analogy or fam-
ily resemblance. Rather, the models provide a detailed basis 
for understanding otherwise peculiar facets of moral 
judgment.

Dual-System Morality
The utility of a dual-system framework for understanding 
human judgment, reasoning, and behavior has been force-
fully argued elsewhere (Epstein, 1994; Kahneman, 2011; 
Sloman, 1996; Stanovich & West, 2000). Some of the evi-
dence that motivates a dual-system approach specifically for 
moral judgment is reviewed below, but equally emphasized 
are the shortcomings of the current characterizations of the 
systems (e.g., as emotional vs. rational). I argue for an alter-
native characterization of the systems that distinguishes 
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between valuing the intrinsic status of actions (e.g., “I must 
tell George the truth because lying is wrong”) and valuing 
the expected consequences of actions (e.g., “if I deceive 
George it will ultimately cause him harm”).

My discussion centers largely on the extensive literature 
motivated by moral dilemmas such as the trolley problem, 
but not because the ethics of improbable railway crises carry 
much intrinsic interest. Rather, cases such as the trolley prob-
lem appear to efficiently dissociate between processes of 
moral judgment that apply to a much broader set of empirical 
phenomena, and now constitute the lingua franca of dozens 
of studies. As such, they are a useful proving ground for the 
action/outcome framework.

The Trolley Problem and the Aversion to Harm
The trolley problem contrasts two cases—the “switch” case 
and the “push” case (Foot, 1967; Thomson, 1985). In the 
“switch” case, a runaway trolley threatens five workers 
ahead on the tracks, and it must be decided whether to flip a 
switch that diverts the trolley onto a side track where only 
one person is threatened. In the “push” case, five people are 
similarly threatened but there is no side track—instead, it 
must be decided whether to throw a person in front of the 
trolley to slow it down. A great majority of people say that 
one person should be sacrificed for the sake of five in the 
first case, whereas a small minority say that one person 
should be sacrificed in the second case (Greene et al., 2001; 
Hauser, Cushman, Young, Jin, & Mikhail, 2007; Mikhail, 
2000). Therein lies the problem: Given that in each case one 
person is sacrificed for the welfare of five, what accounts for 
this discrepancy?

An influential answer to this challenge rests on a dual-
system theory that contrasts cognitive and emotional pro-
cessing (Greene, 2007; Greene, Nystrom, Engell, Darley, & 
Cohen, 2004; Greene et al., 2001). The controlled cognitive 
process is posited to underlie the welfare maximizing choice 
in both cases, diverting the train as well as pushing the man, 
because of the greater number of lives saved. The automatic 
emotional process is posited to underlie the aversion to 
doing harm in an up-close and personal manner, and thus to 
be engaged exclusively in the “push” case. Thus, the dual-
system theory explains why the cases are judged differently 
(because the emotional system is more strongly engaged for 
the “push” case), and also why the push case seems to pres-
ent a more difficult dilemma than the switch case (because 
both systems are engaged in the push case, but only the cog-
nitive system is engaged in the switch case). In keeping with 
characteristic positions in the philosophical literature, the 
choice not to push is often referred to as “deontological,” 
contrasting with the “utilitarian” choice to push.

Several sources of evidence support this division between 
the two processes. Utilitarian judgment is associated with acti-
vation in a network of brain regions that enable controlled, 
attentive processing, most notably the dorsolateral prefrontal 

cortex (Cushman, Murray, Gordon–McKeon, Wharton, & 
Greene, 2012; Greene et al., 2004). Under cognitive load, 
deontological judgment becomes more likely (Trémolière, De 
Neys, & Bonnefon, 2012) and utilitarian judgment is slowed 
(Greene, Morelli, Lowenberg, Nystrom, & Cohen, 2008); 
moreover, the latter effect is exclusive to “personal” (i.e., 
push-type) cases. Meanwhile, deontological responding is 
reduced in individuals with damage to the ventromedial pre-
frontal cortex, a brain region thought to play a key role in inte-
grating affect into decision making (Ciaramelli, Muccioli, 
Ladavas, & di Pellegrino, 2007; Koenigs et al., 2007; Moretto, 
Ladavas, Mattioli, & di Pellegrino, 2010); again, this effect is 
selective to personal cases. In addition, deontological respond-
ing is enhanced when serotonin levels are raised pharmaco-
logically, consistent with the role of serotonin in aversive 
learning and inhibitory functions (Crockett, Clark, Hauser, & 
Robbins, 2010). This effect, too, is selective to personal cases. 
These and other findings (Conway & Gawronski, 2013; 
Mendez, Anderson, & Shapria, 2005; Moore, Clark, & Kane, 
2008; Paxton, Ungar, & Greene, 2012; Suter & Hertwig, 2011; 
Valdesolo & DeSteno, 2006) suggest the influence of compet-
ing processes in personal cases.

While it is clear that some division between processes is 
necessary, it is equally clear that the simple division between 
“cognitive” and “emotional” processes is inadequate 
(Cushman, Young, & Greene, 2010; Huebner et al., 2009; 
Kvaran & Sanfey, 2010; Moll et al., 2008; Nucci & Gingo, 
2010). First, both processes must involve affective content, 
in the sense that they do not merely process information but 
also yield competing motivations toward distinct behaviors. 
In particular, the system that supports utilitarian responding 
cannot merely represent the factual content, “5 lives is 
more than 1 life”; rather, it must carry the affective force of 
“choosing to save 5 lives is better than choosing to preserve 
1.” What is required, then, is not a theory distinguishing 
affective from nonaffective processing, but a theory distin-
guishing two processes both of which involve affective con-
tent. For instance, two qualitatively distinct kinds of affective 
response may be at play, or affect may be triggered by dis-
tinct factors in each process.

Second, both processes must involve cognition in the 
sense of information processing. In particular, the psycho-
logical mechanisms responsible for a deontological response 
must be triggered by some set of features that distinguish the 
push case from the switch case and, presumably, many other 
features as well. Two features that differ between these cases 
have been repeatedly demonstrated to trigger deontological 
response. The first is the manner of physical interaction 
between the agent and the victim (Cushman et al., 2006; 
Greene et al., 2009). When the agent directly transfers his or 
her bodily force onto the victim (as in the push case) this 
elicits reliably higher levels of moral condemnation than 
when no such transfer of “personal force” occurs (as in the 
switch case). The second is more subtle: the status of harm as 
a means to saving others versus a side-effect of saving others 
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(Figure 1; Cushman et al., 2006; Foot, 1967; Greene et al., 
2009; Mikhail, 2000; Royzman & Baron, 2002; Thomson, 
1985). In the push case, the victim is used as a “trolley 
stopper”—a necessary instrument to accomplish the goal of 
saving five others. By contrast, in the switch case, the victim 
is merely an unlucky collateral damage. His death happens to 
be an unavoidable consequence of diverting the train, but 
saving the five people is not a consequence of his death. 
Harmful actions are judged more severely when used as a 
means to accomplish a goal than when brought about as a 
side-effect of accomplishing a goal. Because deontological 
judgment is sensitive to these factors and others (Royzman & 
Baron, 2002; Waldmann & Dieterich, 2007), its affective 
component must be triggered by computations performed 
over a detailed representation of the action in question, 
including its physical affordances, goal structure, and so on.

In summary, a simple division between affective and cog-
nitive processes will not suffice. This point is appreciated by 
critics and supporters of dual-process theories in moral psy-
chology. Notably, the most pointed critiques of the dual-
process theory turn on precisely this point, arguing that 
affective and cognitive components must ultimately be inte-
grated (Kvaran & Sanfey, 2010; Moll et al., 2008; L. P. Nucci 
& Gingo, 2010). In this sense the critiques do not necessarily 
dispute the existence of distinct processes that contribute to 
moral judgment, but rather to the characterization of the pro-
cesses as emotional versus cognitive. Likewise, even propo-
nents of a dual-process theory of moral psychology regard 
the cognition/emotion distinction as an imperfect place-
holder. One approach has been to posit that qualitatively dif-
ferent kinds of affective content are involved in each system 
(Cushman & Greene, 2012; Cushman et al., 2010; Greene, 
2007), but the distinction between affective kinds has not 
been precisely articulated, nor has it been firmly linked to 
research in the cognitive and affective neurosciences.

Action Versus Outcome in the Moral Domain
How else might the two processes be framed? One alterna-
tive is to distinguish between a process that assigns value 
directly to actions (e.g., hitting) and a process that chooses 
actions based on the value assigned to their expected out-
comes (e.g., a broken nose). These processes would support 
characteristically deontological and utilitarian judgments, 
respectively. Critically, each process involves elements of 
cognition (the identification of relevant action and outcome 
properties) and affect (the value associated with actions and 
outcomes, respectively). Note that this approach does not 
depend on different kinds of affect (i.e., value representa-
tion). Rather, it depends on different structural targets for 
value representation.

Some evidence for a division between action- and out-
come-based valuation in the moral domain comes from a 
study of people’s aversion to pretend harmful actions, such 
as shooting a person with a fake gun or hitting a plastic baby 
doll against the table (Cushman, Gray, Gaffey, & Mendes, 
2012; see also Hood, Donnelly, Leonards, & Bloom, 2010; 
King, Burton, Hicks, & Drigotas, 2007; Rozin, Millman, & 
Nemeroff, 1986). Performing such pretend actions reliably 
elicits peripheral vasoconstriction, a psychophysiological 
response associated with aversive reactivity (Gregg, James, 
Matyas, & Thorsteinsson, 1999; Mendes, Blascovich, 
Hunter, Lickel, & Jost, 2007). This response is greater when 
performing pretend actions than when witnessing the identi-
cal actions or when performing kinetically matched non-
harmful actions. Two features of these data indicate the 
operation of an action-based value representation. First, the 
aversive reaction occurs despite the absence of any expected 
harmful outcome. (If any expectation existed, presumably, 
participants would not pull the trigger!) Second, to the extent 
that a harmful outcome is imagined or associated with the 
action, it should be equally imagined or associated in the wit-
ness condition. However, peripheral vasoconstriction in the 
witness condition was no greater than in the no-harm control 
condition. The selective autonomic response to performing 
harm thus appears to be tied to features of the action, rather 
than to any real or imagined features of the outcome.

This is not meant to deny that harmful outcomes are aver-
sive. To the contrary, an outcome-based representation pre-
sumably makes all the difference between pulling the trigger 
and not. One can only hope that if the participants were 
handed a real gun, and therefore expected a harmful out-
come, they would spare the experimenter’s life. Rather, the 
aversion to pretend harmful action observed in this study 
provides evidence for an additional mechanism—beyond the 
valuation of outcomes—that assigns value based on proper-
ties of the action under consideration.

A recent series of studies suggest that the personal aver-
sion to performing harmful action constitutes an important 
basis for making moral judgments of third parties (R. Miller, 
Hannikainan, & Cushman, 2013). Participants first rated 

Figure 1. A schematic representation of the causal structure 
and goal structure of the trolley and footbridge cases, modeled 
on a schema developed by Goldman (1971) and applied to the 
moral domain by Mikhail (2000).
Note. In the footbridge case (left) the death of one person plays a causal 
role in saving five people, and therefore it constitutes a means that the 
agent employs toward the end of saving five. In the trolley case (right) the 
death of one person does not play a causal role in saving five people, and 
therefore it constitutes a side-effect of the agent’s actions.
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“How upset would you feel” in several circumstances that 
dissociate aversive action properties from aversive outcome 
properties. For instance, “stabbing a fellow actor in the neck 
using a fake stage knife as part of play” assesses the personal 
aversion to an action divorced from any harmful outcome. 
Conversely, “seeing a football player break his leg during a 
game” assesses the personal aversion to harmful outcomes 
but without performing an action. Then, the participants 
judged the moral wrongness of others’ behaviors in hypo-
thetical moral dilemmas such as the trolley problem. The 
personal aversion to performing harmful action strongly pre-
dicted nonutilitarian moral judgment, even with a 2-year 
delay between the two tasks; in contrast, the personal aver-
sion to harmful outcomes was at best weakly predictive and 
often failed to show any significant correlation. (It did, how-
ever, correlate well with a widely used measure of empathic 
concern.) These data suggest that the moral condemnation of 
harmful actions—even actions performed by third parties—
is partly grounded in our personal aversion to performing 
such actions ourselves (reviewed in Miller & Cushman, in 
press).

Furthermore, evidence that action-based value represen-
tations guide moral judgment comes from the condemnation 
of “victimless” crimes, such as consensual sibling incest 
(Graham, Haidt, & Nosek, 2009; Haidt, Koller, & Dias, 
1993). Although people often try to explain why such behav-
iors are morally wrong by appealing to potential harmful out-
comes (Ditto & Liu, 2011; Haidt, 2001), they often maintain 
moral condemnation even in cases where they accept that no 
harm at all is caused. Presumably, then, these judgments 
depend on intrinsic properties of the action. In the case of 
consensual sibling incest, Lieberman and Lobel (2012) have 
used creative methods to convincingly demonstrate that the 
moral condemnation of a third-party incest is grounded in the 
personal aversion that people feel to engaging in incest 
themselves.

Another source of evidence favoring a distinction between 
outcome- and action-based value representations in the 
moral domain comes from one of the most widely studied 
features guiding patterns of judgment in hypothetical dilem-
mas: the distinction between active and passive harm (Baron 
& Ritov, 2009; Cushman et al., 2012; Cushman et al., 2006; 
DeScioli, Bruening, & Kurzban, 2011; DeScioli, Christner, 
& Kurzban, 2011; Spranca, Minsk, & Baron, 1991). People 
generally consider it morally worse to harm a person actively 
(e.g., by administering a fatal poison) than to passively allow 
a person to suffer harm (e.g., by withholding a life-saving 
antidote).1 Some psychologists and philosophers have con-
sidered this pattern of judgment to be mysterious, as the vic-
tim ends up dead in either case. In other words, this pattern 
of moral judgment is difficult to accommodate on a theory of 
outcome-based value representations. On the other hand, 
positing a distinct action-based value representation provides 
an appealing solution: Action-based valuation systems 
require an action to be triggered.

In certain respects, the action/outcome framework com-
plements the past dual-system approaches. For instance, pre-
vious research on action-based value representation 
associates this mode of decision making with habitual, auto-
matic behaviors, while outcome-based value representation 
has been more often associated with effortful, controlled 
behaviors. (This research is reviewed below.) In this respect, 
the action/outcome framework is a natural complement to 
the automatic/controlled framework. The relationship 
between the action/outcome framework and the reason/emo-
tion framework is more complicated. A virtue of the action/
outcome framework is that it embraces the role of informa-
tion processing and value representation in each of the two 
systems. In this respect, it denies the basic premise of the 
emotion/reason distinction.2 Yet, it also places its emphasis 
on the structural role of value representations in decision 
making, and in this sense it shares with the reason/emotion 
framework a fundamental concern with the relationship 
between knowledge, value, and computation. We will return 
to consider the relationship between these approaches in 
greater detail, seeking a more satisfactory resolution between 
them.

Two Processes of  
Learning and Decision Making
The distinction between action- and outcome-based value 
representations finds a clear parallel in computational 
approaches to reinforcement learning. Two broad classes of 
learning algorithms were first identified by researchers 
working on machine learning (Sutton, 1988; Sutton & Barto, 
1999), and evidence suggests that these algorithms roughly 
characterize distinct systems of human learning and decision 
making.

Reinforcement learning algorithms simultaneously solve 
two problems: learning and deciding. By guiding an agent’s 
choices in an environment and then computing the reward 
value obtained they attempt to specify an optimal policy—
that is, a set of choices that tend to maximize reward over the 
long run. Value representations therefore lie at the heart of a 
reinforcement learning algorithm, serving as a roadmap that 
allows the past experiences of reward to guide the future 
choices of action.

Consider, for instance, the reinforcement learning problem 
depicted in Figure 2. An agent (indicated by a smiley face) 
must navigate a grid by discrete steps. At each position on the 
grid, or “state,” it can choose from up to four actions (move 
north, south, east, or west). It receives a large positive reward 
for arriving at a particular end state (indicated by a star), but 
small negative rewards in every other state to encourage effi-
cient pursuit of the goal (i.e., aimless wandering gets costly). 
The agent is allowed to repeatedly explore this space. Over 
successive rounds of experience, a reinforcement learning 
algorithm must learn to guide action to attain optimal perfor-
mance. It does this by constructing value representations.
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Model-Based Reinforcement Learning
One class of algorithms that solve the reinforcement learning 
problem, “model-based” algorithms, corresponds with what 
we ordinarily recognize as reasoning. In brief, it considers 
different courses of actions based on an internal representa-
tion of its environment, and then tends to choose the course of 
action that is expected to produce the best overall outcomes.

Model-based algorithms learn by building a causal model 
of the world they occupy (hence their name). Therefore, as 
the agent explores the grid world depicted in Figure 2, it con-
structs and stores an internal representation of the world. 
This internal representation includes information about all 
the states, the actions available in each state, the transitions 
to new states produced by selecting each action, and the 
reward associated with each state.

Thus, the agent can retrieve information of the form,  
“I am in State 1, and if I move south I will be in State 6 and 
will receive a reward of −1.” It could retrieve similar infor-
mation about State 6, and so on, allowing it to compute the 
accumulated value anticipated for a sequence of possible 
actions. Using this procedure, the agent simulates various 
paths that it could take and then selects the path that maxi-
mizes reward according to its internal representation. Put 

simply, it calculates expected values of different options. 
This is the element of a model-based algorithm that should 
sound familiar like everyday reasoning. If you have several 
options to choose from, you imagine the likely outcomes of 
each option and then select the option that seems likely to 
deliver the best outcome.

A model-based algorithm operating with a detailed and 
accurate model can make very good choices. Its choices can 
be farsighted, in the sense that they specify policies that 
require many actions to obtain a goal. Its choices can be flex-
ible, in the sense that they can be recomputed at any time to 
reflect updates to the model. And its choices can be goal-
oriented, in the sense that the agent can specify a particular 
desired outcome and then compute the necessary sequence of 
steps to attain the specified goal.

However, there is a high computational cost associated 
with all of these benefits. As the number of the available 
states and actions grows, so grows the space of the possible 
policies over which the model-based algorithm searches. 
This, too, is a familiar property of reasoning. When choosing 
between different mortgages (typically involving a small 
number of discrete, quantitative differences), the limited 
scope of relevant outcome measures allows reasoning to 
guide optimal choice. However, when choosing between dif-
ferent houses (typically involving a large number of interre-
lated, qualitative differences), the vast scope of relevant 
outcomes measure over which to search precludes the appli-
cation of a fully “rational” approach to choice.

Model-Free Reinforcement Learning
The second class of reinforcement learning algorithm, 
“model-free,” does not correspond much at all with our ordi-
nary experience of reasoning; perhaps as a consequence, it is 
a relatively new to the literature (Sutton, 1988). A model-free 
learner does not carry a causal model of the world. Thus, if 
an agent chooses to turn left from State 1, it cannot predict 
what the next state will be, or what reward that subsequent 
state will bring. This means that it cannot make farsighted 
decisions by comparing expected outcomes for sequences of 
actions, as can the model-based learner.

Instead, the model-free learner builds sparse representa-
tions of the value of each action available in a particular 
state. Therefore, for instance, a model-free learner that navi-
gates through the grid world depicted in Figure 2 might asso-
ciate moving south from State 1 with a value of +1, and 
moving west from State 1 with a value of −1. In this case it 
would be more likely to choose to move south than to move 
west. Because the model-free learner only assesses the value 
of the actions that are immediately available, decision mak-
ing is computationally cheap. Rather than performing 
searches over the potentially enormous space of future 
actions in all combinations, it simply queries the values of 
each action that is immediately available.

Figure 2. A simple reinforcement learning problem.
Note. The agent (indicated by a smiley face) can perform the actions of 
moving north, south, east, or west in each of the states denoted numeri-
cally. It gains value by reaching the goal state (26, indicated by a star) and 
loses value on each turn taken before reaching the goal state, thus moti-
vating goal attainment within the minimum possible number of steps.
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The difficulty, of course, is to specify a learning algorithm 
that leads these action-based value representations to pro-
duce optimal sequences of choices. It is especially hard for 
early value representations to appropriately guide the agent 
toward a much later reward. Two tricks allow model-free 
algorithms to accomplish this task. The first, prediction-error 
learning, allows an agent to maintain a representation of the 
value of an action based on the value of the rewards it obtains 
for performing that action on average. It does this by com-
paring its current prediction of the value of the action (e.g., 
1.3) with the actual reward subsequently obtained (e.g., 2.0), 
and then adjusting its value representation of the action by 
some fraction of the error (e.g., from 1.3 to 1.5).

Prediction-error learning has several useful properties. 
For instance, it allows an agent to store a representation of 
the average value of a choice without remembering all the 
past outcomes of that choice.3 It also emphasizes the most 
recent observations over very distant past observations, thus 
efficiently responding to a changing world (Courville, Daw, 
& Touretzky, 2006). In addition, it can help to apportion pre-
dictive power among candidate actions or cues. If a particu-
lar action reliably predicts reward, no prediction error is 
generated for the reward, and this prevents credit from being 
assigned to additional actions or cues that happen to be cor-
related with (but not causative of) the reward (Rescorla & 
Wagner, 1965).

These useful properties make prediction-error signals 
indispensable to model-free learning algorithms. For the 
same reasons, prediction-error signals can be a useful tool 
for model-based learning algorithms as well. A model-based 
algorithm needs to construct a causal model of the world—
the state-to-state transitions brought about by actions and the 
reward values associated with each of those states—and pre-
diction-error learning is an ideal solution to this problem. 
Thus, understanding prediction errors is necessary to under-
stand how model-free algorithms accomplish learning, but it 
is not sufficient to understand how model-free and model-
based mechanisms differ.

The second trick to model-free algorithms is called tempo-
ral difference reinforcement learning, TDRL, (Sutton, 1988). 
It solves the critically important temporal credit assignment 
problem: How to get a value representation for an early choice 
(e.g., the first move out of the starting position in grid world) 
to reflect the rewards obtained at a much later point in time 
(e.g., the last move, upon which the goal is attained). 
Somehow, value representations must be made to bridge tem-
poral differences.

TDRL involves an adjustment to the prediction-error 
learning procedure: In essence, TDRL treats the value of an 
action as if it were itself a reward. For instance, if pressing a 
lever (an action) leads to eating food (a reward), TDRL 
begins to treat the action as if it were itself a reward—as if 
pressing the lever had an intrinsic value. This allows produc-
tive actions to string together: D is valuable because it leads 
to reward, for instance, but C is valuable because it leads to 

D (which has value), B because it leads to C, and A because 
it leads to B.

Consider the grid world depicted in Figure 2. The first 
time that the agent moves east from State 24, it obtains a 
reward. Thus, it assigns a positive value representation to 
moving east from State 24. Subsequently, suppose it happens 
to move east from State 23 into State 24. Although there is no 
reward directly available in State 24, there is an action avail-
able to which it has assigned value: moving east from State 
24. Treating this value representation as if it were itself a 
reward, the agent associates value with moving east from 
State 23. This process can repeat itself indefinitely, eventu-
ally establishing a path of intrinsically rewarding actions that 
guides the agent efficiently through the maze. Critically, 
however, the agent has no knowledge that “east at 24” leads 
directly to reward, or that “east at 23” leads to 24. It performs 
these actions because of their intrinsic value representations 
(established by a history of reward) and not because of any 
association with a specific outcome. Put simply, a model-free 
algorithm knows that moving east at State 23 feels good, but 
it has no idea why.

Over time, a model-free algorithm will lead an organism 
to make adaptive choices, just like a model-based algorithm. 
Yet, the two algorithms differ in very fundamental respects. 
Unlike a model-based agent, a model-free agent cannot make 
flexible choices, in the sense that a local change to a specific 
value representation cannot immediately be used to adjust 
behaviors globally. This is impossible because the model-
free learner has no representation of the causal structure that 
links one value representation to another. The links are 
forged only through trial-and-error learning, as an agent 
notes the value representations that follow on each of its 
behavioral choices. Moreover, a model-free agent cannot be 
goal-oriented, in the sense that the agent cannot select a par-
ticular goal to be obtained and then select the necessary 
sequence of actions to obtain that particular goal. Again, 
goal-oriented planning demands a model of the environment 
that a model-free learner simply lacks.

However, along with these costs comes one tremendous 
benefit: Model-free algorithms can be extremely computa-
tionally light. At no point does an agent’s decision to act 
involve anything more than querying the value representa-
tion associated with each immediately available choice. This 
stands in contrast to the model-based algorithm, which 
demands a computationally intensive search over a poten-
tially large space of available actions, states, and rewards 
over many successive choices.

Action- Versus Outcome-Based Value 
Representations
Can the distinction between model-based and model-free 
algorithms be equated with the distinction between action- 
and outcome-based value representations? This is not a com-
mon approach, and there are reasons to doubt the mapping. 
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In some sense, for both types of algorithm, value ultimately 
represents reward. Moreover, a reward function for either 
type of algorithm could be defined over outcomes (e.g., hav-
ing food in one’s belly) or over actions (e.g., shoveling food 
in one’s mouth). After all, the reward function is a subjective 
mapping of events onto internal hedonic states, not an objec-
tive property of the world itself, such as biological fitness.

Yet, there is an important and very fundamental difference 
between the value representations involved in each system. 
Consider the agent depicted in Figure 2 who starts his jour-
ney across a grid world. Suppose this agent has substantial 
experience in the maze and is now using its value representa-
tions to guide choice. As noted above, a model-free agent 
will select its first action with something like the following 
in mind: “Here in State 1, among the actions available to me, 
moving south is associated with the highest value,” or per-
haps “moving south is my preferred choice of action.” In any 
state, the choice among available actions depends solely on 
the representations tied directly to those specific actions 
(moving south), in that particular state (State 1)—there is no 
“look forward” to the anticipated outcomes of the actions. 
(Of course, past outcomes are causally responsible for estab-
lishing the action-based value representation; the point is 
that the current representation itself makes no reference to 
particular outcomes.)

In contrast, a model-based agent has the capacity to select 
its first action with something like the following in mind: “A 
sequence of actions beginning with moving south will maxi-
mize the total amount of reward obtained in the long run 
because this move will lead to,” followed by a specification 
of the full sequence of actions and their individual outcomes. 
Unlike the model-free agent, it can specify both the precise 
sequence of actions and the precise rewards that are expected. 
In this sense, the value representation that it uses is linked 
not to the immediate choice of an action but to the expected 
outcomes.

The contrast between these algorithms is elegantly cap-
tured by the devaluation procedure, a well-studied behav-
ioral paradigm (e.g., Dickinson, Balleine, Watt, Gonzalez, & 
Boakes, 1995). A rat is trained to press a lever to obtain a 
food reward. During training, the rat is kept on a restricted 
diet to motivate performance. But then a critical test is per-
formed: The rat is taken out of the apparatus, fed until it 
shows no more interest in food, and then immediately 
returned to the apparatus. Under some conditions, it is 
observed to resume pushing the lever, even though it now 
has no desire for food. In other words, although the food 
reward has been “devalued” through satiation, the habitual 
behavior remains intact. This apparently irrational action is 
easily explained by a model-free mechanism. The rat has a 
positive value representation associated with the action of 
pressing the lever in the “state” of being in the apparatus. 
This value representation is tied directly to the performance 
of the action, without any model linking it to a particular 
outcome. The rat does not press the lever expecting food; 

rather, it simply rates lever pressing as the behavioral choice 
with the highest value. A model-based algorithm, in contrast, 
has the capacity to recognize that the specific outcome asso-
ciated with pressing the lever is food. Thus, because the rat 
does not desire food, it would place little value on the action 
of pressing the lever. In fact, under some conditions, rats’ 
behaviors are more consistent with this alternative possibil-
ity. This suggests that rats, like humans, have cognitive 
mechanisms of both types.

In summary, the functional role of value representation in 
a model-free system is to select actions without any knowl-
edge of their actual consequences, whereas the functional 
role of value representation in a model-based system is to 
select actions precisely in virtue of their expected conse-
quences. This is the sense in which modern theories of learn-
ing and decision making rest on a distinction between 
action- and outcome-based value representations.

Neural and Psychological Correlates
The distinction between model-based and model-free algo-
rithms first identified in the machine learning literature 
now assumes a very large profile in neuroscience and psy-
chology (reviewed in Daw & Shohamy, 2008; Dayan & 
Niv, 2008). This is largely due to the discovery of neural 
signatures of a model-free learning algorithm encoded by 
dopaminergic neurons in the midbrain and their targets and 
associated circuits in the basal ganglia (Houk, Adams, & 
Barto, 1995; Montague, Dayan, & Sejnowski, 1996; Schultz 
et al., 1997).

Early experiments indicate model-free learning in the 
dopamine reward system recorded from neurons in the mid-
brain of the rhesus macaque (Fiorillo, Tobler, & Schultz, 
2003; Schultz et al., 1997; Schultz & Dickinson, 2000). The 
monkeys were given rewards in the form of juice and these 
rewards were predicted by preceding visual cues. Initially, 
dopaminergic neurons fired when the juice was obtained, 
but not when the cues were presented; however, consistent 
with the operation of the TDRL algorithm, these neurons 
eventually stopped firing when the juice was perfectly pre-
dicted by a preceding cue (indicating the operation of a 
prediction-error signal), and instead fired when the cue 
itself was presented (indicating the operation of temporal 
difference learning; see Figure 3). In other words, the pre-
dictive cue began to operate as if it had intrinsic reward 
value. Subsequent experiments demonstrated that this pat-
tern of cell firing can “migrate” back further to a cue that 
predicts reward, and so on, as specified by TDRL (e.g., 
Seymour et al., 2004). Similar studies have been conducted 
in humans using functional magnetic resonance imaging 
(fMRI; for example, McClure, Berns, & Montague, 2003; 
J. P. O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003), 
and these consistently indicate analogous neural signals 
that are predicted by the operation of model-free algorithms 
for reward prediction.
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Most of these studies cannot be characterized directly in 
terms of action-based versus outcome-based value represen-
tation because they involve classic rather than instrumental 
conditioning. In studies of classic conditioning, the experi-
mental subject is not required to perform any action at all and 
the target of the value representation is instead a predictive 
cue. However, a number of other studies use instrumental 
rather than classic paradigms, which confirm the operation 
of action-based, model-free learning that relies on similar 
neural mechanisms (Bayer & Glimcher, 2005; Morris, Nevet, 
Arkadir, Vaadia, & Bergman, 2006; Roesch, Calu, & 
Schoenbaum, 2007). Moreover, recordings from macaque 
striatum identify neurons that encode the distinct value rep-
resentations associated with individual actions (as opposed 
to their aggregate effect, observable in fMRI; Samejima, 
Ueda, Doya, & Kimura, 2005). Finally, optogenetic tech-
niques have been used to directly invigorate dopaminergic 
pathways in the rodent brain following the performance of an 

action, which is observed to increase the subsequent perfor-
mance of that action in the same state, just as would be 
expected if the dopaminergic signal were used to increase the 
value directly associated with that action by TDRL (Kravitz, 
Tye, & Kreitzer, 2012).

Although most studies of the neural basis of reinforce-
ment learning have rewarded people with money or juice, 
equivalent patterns are obtained when using social rewards 
and punishments, including facial expressions of emotion 
(Lin, Adolphs, & Rangel, 2012), the comparison of the self 
to others (Fliessbach et al., 2007), social approval for chari-
table giving (Izuma, Saito, & Sadato, 2010), the reward of 
seeing antagonists or competitors suffer (Takahashi et al., 
2009), and so on. Thus, there is every reason to expect these 
mechanisms of learning and decision making to operate in 
the social and moral domains.

A major focus of recent research has been to individuate 
the component processes in the human brain that accomplish 
learning and decision making by applying the broad frame-
work specified by the model-based and model-free rein-
forcement learning mechanisms. Neural signatures of 
model-free mechanisms are most consistently associated 
with dopaminergic neurons in the midbrain and their targets 
in the basal ganglia (Houk et al., 1995; McClure et al., 2003; 
Montague et al., 1996; J. P. O’Doherty et al., 2003; Schultz 
et al., 1997). Meanwhile, neural signatures of model-based 
mechanisms are often associated with lateral prefrontal cor-
tex (Glascher, Daw, Dayan, & O’Doherty, 2010; Li, Delgado, 
& Phelps, 2011).

Interactions Between  
Model-Based and Model-Free Systems
The emerging picture is not, however, as simple as “two 
independent systems: model-based and model-free.” For one 
thing, each of the “systems” clearly comprises multiple dis-
sociable components. For instance, independent regions of 
the striatum are responsible for classic and instrumental 
learning (J. O’Doherty et al., 2004; Yin, Knowlton, & 
Balleine, 2004; Yin, Ostlund, & Balleine, 2008). In addition, 
decision making in the model-free system appears to involve 
independent and opponent “go” and “no-go” processes 
(Cools, Robinson, & Sahakian, 2007; Crockett, Clark, & 
Robbins, 2009; Frank, Seeberger, & O’reilly, 2004; Guitart-
Masip et al., 2011; Kravitz et al., 2012). More critical to the 
current discussion is the evidence that model-free and model-
based systems interact closely. The successful operation of 
each system largely depends on interactions with the other 
(Dayan, 2012). Three specific examples help to illuminate 
this codependent relationship and also play an important role 
in extending the reinforcement learning framework to the 
moral domain.

First, representations of potential but unrealized rewards 
(sometimes called “fictive rewards”) generated by a causal 
model can be used to establish the action-based value  

Figure 3. Idealized firing rates of midbrain dopamine neurons in 
response to reward and to cues that predict reward with differing 
probabilities.
Source. Adapted from Daw and Shohamy (2008).
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representations used by the model-free system. For exam-
ple, suppose an individual chooses action A and receives no 
reward but is then informed that B would have provided the 
reward had it been chosen. Striatal reward prediction-error 
signals track the values of A (the real reward) and B (the fic-
tive reward) in these paradigms, and the magnitude of the 
neural response to each predicts subsequent choice behavior 
(Lohrenz, McCabe, Camerer, & Montague, 2007). These 
fictive reward signals must originate from outcome-based 
value representations derived counterfactually—that is, 
from a causal model—and yet they drive subsequent model-
free response. Similarly, social learning depends on “obser-
vational” and “instructed” knowledge—that is, on 
information about rewards and punishment derived from 
watching other people or listening to their advice. Here, too, 
evidence suggests that cortical representations embedded 
within a casual model relating action, outcome, and reward 
are used to train action-based value representations (Biele, 
Rieskamp, Krugel, & Heekeren, 2011; Doll, Hutchison, & 
Frank, 2011; Doll, Jacobs, Sanfey, & Frank, 2009; Olsson, 
Nearing, & Phelps, 2007).

A second form of interaction between the two systems 
works in the opposite direction: Model-free value representa-
tions guide mechanisms central to model-based reasoning 
processes. For instance, model-free circuitry in basal ganglia 
appears to gate the flow of abstract representations into and 
out of working memory (Frank, Loughry, & O’Reilly, 2001; 
Gruber, Dayan, Gutkin, & Solla, 2006; O’Reilly & Frank, 
2006). The maintenance of information and rules afforded by 
working memory systems is a hallmark of controlled cogni-
tion (Miller & Cohen, 2001). However, some processes must 
be responsible for recognizing which representations should 
be introduced into working memory, when they should be 
introduced, and when they should subsequently be removed. 
For instance, it is helpful to maintain the rule “suppress 
emotions” when playing poker with friends, but to remove it 
from working memory when the poker game is over and 
jokes are shared over beers. Evidence suggests that model-
free mechanisms operating in basal ganglia perform this gat-
ing function by associating value with the action of introducing 
or removing information contents from working memory 
given a particular state (e.g., playing poker vs. sharing jokes; 
Cools, Sheridan, Jacobs, & D’Esposito, 2007; McNab & 
Klingberg, 2007). Thus, model-free learning mechanisms are 
not restricted to implementing low-level motor routines; to 
the contrary, they appear to play a pervasive role in regulating 
the use of arbitrarily complex cognitive abstractions. This 
concept, too, is critical to the moral domain: The “actions” 
that are valued by a model-free system include not just overt 
bodily movements but also the internal manipulation of con-
cepts, rules, and abstract representations (Dayan, 2012).

Third, model-based and model-free mechanisms interact 
in planning and executing hierarchically organized behav-
iors. The hierarchical organization of information—and 
especially of behaviors into superordinate and subordinate 

routines or goals—is a recurrent and fundamental theme in 
psychology (Chomsky, 1957; Lashley, 1951; G. A. Miller, 
1956) and machine learning (Barto & Mahadevan, 2003; 
Dietterich, 2000; Parr & Russell, 1998). Even a moderately 
complex task such as making a sandwich involves a nested 
sequence of hierarchically dependent goal-directed actions: 
putting cheese on the bread within making the sandwich, 
obtaining cheese within putting cheese on the bread, opening 
the refrigerator within obtaining cheese, and so forth. A 
growing family of hierarchical reinforcement learning mod-
els specify several related approaches to this problem (Barto 
& Mahadevan, 2003; Bornstein & Daw, 2011; Botvinick, 
Braver, Barch, Carter, & Cohen, 2001; Dietterich, 2000; 
Frank & Badre, 2012; Parr & Russell, 1998; Ribas-Fernandes 
et al., 2011). In essence, each of them allows a subgoal to 
occupy the role of an “action” and a superordinate goal to 
occupy the role of a “state,” and then leverages standard 
TDRL to select appropriate subgoal routines given a particu-
lar superordinate goal state. Thus, for instance, a model-free 
system could learn that in the state “goal: make sandwich,” 
the action “select goal: obtain cheese” is associated with 
reward. Recent evidence suggests that is may be accom-
plished by looped corticostriatal circuits that build hierarchi-
cal levels of representation descending along a rostrocaudal 
gradient in prefrontal cortex (Badre & Frank, 2012; Frank & 
Badre, 2012).

In these cases, model-free mechanisms perform the func-
tion of helping a model-based planner to select appropriate 
subgoals without exhaustively searching the space of all 
available subgoals and computing their expected results. It 
accomplishes this by treating the superordinate goal as a 
“state” (analogous to Position 6 on grid world) and then 
treating the selection of a subordinate goal as an “action” 
(analogous to moving south). This trick—treating internal 
mental representations and states and actions—affords 
model-free mechanisms a potentially fundamental role in 
facilitating the complex thinking processes orchestrated by a 
model-based system (Bornstein & Daw, 2011; Dayan, 2012; 
Graybiel, 2008).

In each of these cases, model-based and model-free sys-
tems appear to interact. Research on these topics is still very 
much at an early stage, but a core theme is that model-free 
systems operate over arbitrarily abstract cognitive units, and 
thus facilitate model-based planning. Because model-free 
algorithms are well-equipped to learn and regulate low-level, 
habitual motor responses (e.g., typing words) and model-
based algorithms are well-equipped to learn and regulate 
high-level, controlled planning (e.g., writing a manuscript), 
it can be tempting to map each category of algorithm exclu-
sively to more “low-level” or “high-level” behaviors and 
representations. This mapping is flawed. Rather, mecha-
nisms of cognitive control, goal-oriented planning, and 
model-based decision making operate in part by making 
abstract representations available for valuation and selection 
by model-free systems.
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The lesson is not that model-free mechanisms are 
“smarter” than we thought. They remain just as dumb, exe-
cuting actions in particular states given a past history of 
reward. Rather, the point is that these dumb mechanisms 
actually play an important role in facilitating smart behav-
iors. Thus, when we observe goal-oriented actions or highly 
abstract, productive thought processes, we have a good rea-
son to believe that model-free mechanisms alone cannot be 
responsible, but that they play a contributory role.

Drawing on evidence that demonstrates a codependent 
relationship between automatic and controlled processes in 
the human brain, it has been argued that a dual-system 
framework for decision making generally—and moral deci-
sion making in particular—is both inaccurate and counter-
productive (Kvaran & Sanfey, 2010; Moll et al., 2008; 
Moll, Zahn, de Oliveira-Souza, Krueger, & Grafman, 2005; 
Nucci & Turiel, 1993). Often, this skepticism is rightly 
directed at the distinction between “cognitive” and “emo-
tional” systems of decision making; as we have seen, this 
instantiation of a dual-system framework suffers from some 
conceptual and empirical difficulties. But does the evidence 
for integration between model-free and model-based mech-
anisms argue against any dual-system model of human 
decision making?

It is telling that the very research that best demonstrates 
these interactions between systems also demands the dis-
tinction between systems in the first place. Consider an 
analogy to politics. There is no sharp dividing line between 
Republican and Democrat. Multiple subdivisions exist 
within each group, and compromise, collaboration, and 
areas of ideological agreement exist between the two 
groups. So, on one hand, it would overstate the case to 
claim that the American political landscape is characterized 
by exactly two well-defined ideologies that interact exclu-
sively in competition. But, on the other hand, without dis-
tinguishing between the two political parties it would be 
impossible to understand the American politics at all. So it 
goes with dual-system theories of learning and decision 
making. As illustrated by the case studies described above, 
only through a coarse division between two systems can the 
more fine-grained matters of subdivision and integration be 
understood.

Applying Reinforcement Learning 
Models to the Moral Domain
The distinction between model-based and model-free rein-
forcement learning provides a promising foundation on 
which to build a dual-process model of moral judgment. 
First, it accounts for the distinction between action- and out-
come-based value representations. Second, it aligns this 
action/outcome distinction with mechanisms for automatic 
versus controlled processing. Third, it specifies precisely 
how cognitive and affective mechanisms contribute to both 
types of process.

Trolley Cases and “Personal” Harms
Can the distinction between model-free and model-based 
learning mechanisms account for the trolley problem? 
Specifically, can it explain why conflict between systems is 
engendered in the push case, but not in the switch case, typi-
cally leading people to judge the cases differently? It is easy 
to see how a model-based system could support the character-
istically utilitarian response to both cases, favoring the lives 
of five individuals over the life of one individual. The rele-
vant model of the trolley problem is small and easily explored: 
One branch involves five deaths, the other just a single death. 
Of course, it is not necessary that a model-based system dis-
value death above all; it could be apathetic about others’ lives, 
or could value nearby and faraway lives differently, or apply 
a steep temporal discounting function that places much value 
on the single life lost immediately and little value on five 
lives lost a few moments later. It could also value social repu-
tation, abiding by the law, and so forth, more than lives. But if 
we assume that the lives matter the most, and each matters 
roughly equally compared with the others, a utilitarian resolu-
tion to the trolley problem looks likely.

In contrast, a model-free system does not have access to a 
representation of the likely outcome of each action as speci-
fied in the scenario. Instead, it depends on a value represen-
tation of the action itself, and this value representation 
reflects the past history of outcomes that have followed from 
that action. A model-free system might assign negative value 
to “pushing,” for instance, because it typically lead to nega-
tive outcomes such as harm to the victim, punishment to the 
perpetrator, and so on. That is, most of the time that a person 
has personally pushed another (e.g., on the playground) or 
has witnessed one person push another (e.g., in a movie), this 
action lead to negative consequences. Meanwhile, a model-
free system might not assign much value at all to flipping a 
switch because it does not typically lead to a negative out-
come. In essence, the distinction between the push and 
switch variants of the trolley problem is proposed to be that 
pushing a person is a typical kind of moral violation, and 
thus carries an action-based negative value representation, 
while flipping a switch is an atypical kind of moral violation, 
and thus does not.

Past theories of the distinction between push and switch-
flipping have emphasized physical contact between the per-
petrator and the victim (Cushman et al., 2006) and the direct 
transfer of bodily force (Greene et al., 2009) as key variables. 
Insofar as direct physical contact and the transfer of bodily 
force are typical features of moral violations, these past pro-
posals are easily reconciled with the current one. However, a 
key prediction of the current proposal is that typically harm-
ful acts (e.g., pushing a person with your hands) will be con-
sidered morally worse than atypically harmful acts (e.g., 
pushing a person with your buttocks), even when the degree 
of physical contact and direct transfer of bodily force are 
equated. This is an important area for future research.
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A similar analysis applies to experimental evidence that 
people are averse to performing pretend harmful actions, 
such as hitting a person’s “leg” with a hammer when it is 
known that the “leg” is really a PVC pipe worn beneath the 
pants (Cushman et al., 2012). A model-free system will 
assess the action in terms of the value representation typi-
cally associated with hitting an apparent body part with a 
hard object, thus providing a natural explanation for the 
aversion to pretend harmful actions (or, for that matter, pre-
tend disgusting ones; Rozin et al., 1986).

This analysis highlights an important feature of model-
free reinforcement learning that is obscured by its character-
ization as “action-based”: It represents the value of actions 
contingent on the context in which the action is performed. 
Thus, for instance, swinging a hammer at a body can carry a 
negative value representation, while swinging a hammer at a 
nail carries a positive value representation. In some sense the 
action is identical across the cases, but the context differs. 
Sensitivity to context (or “state”) is critical for model-free 
reinforcement learning to work—the smiley learner on the 
grid depicted in Figure 2 clearly cannot learn “that east is 
good” as a general rule, but rather must learn that east is good 
in specific states. Applying this logic to the case of the aver-
sion to harmful action, information about the target of a ham-
mer (shin vs. nail) comprises an integral part of the value 
representation (shin/hammer = bad vs. nail/hammer = good).

Blair and colleagues have developed a similar theoreti-
cal model of the cognitive and neurobiological basis of psy-
chopathy (Blair, 1995; Blair, 2007). They propose that 
distress cues—crying, expressions of pain, or fear, and so 
on—constitute an unconditioned aversive stimulus and 
motivate disengagement from aggressive actions. Over the 
course of development, normal individuals form a condi-
tioned aversion to actions that typically lead to distress, 
such as hitting, insulting, deceit, and so on. Thus, normal 
individuals exhibit a basic, affective aversion to hitting, 
insulting, and deceit. Substantial evidence points to a pair 
of deficits in psychopaths that compromise this learning 
process: First, they fail to exhibit the ordinary aversive 
response to distress cues (Blair, Colledge, Murray, & 
Mitchell, 2001; Blair, Jones, Clark, & Smith, 1997) and 
second, they have difficulty learning to avoid actions that 
lead to aversive states (Blair et al., 2004; Blair, Morton, 
Leonard, & Blair, 2006)—a deficit that is not specific to the 
moral domain but rather affects their capacity for decision 
making generally.

Harm as Means Versus Side-Effect
A second dimension commonly implicated in moral dilem-
mas is the distinction between harm brought about as a 
means and harm brought about as a side-effect (Cushman & 
Young, 2011; Cushman et al., 2006; Hauser et al., 2007; 
Mikhail, 2000; Royzman & Baron, 2002). Philosophers refer 
to this moral distinction as the “doctrine of double effect” 

(Foot, 1967; Kamm, 1998; McIntyre, 2004; Thomson, 1985), 
and it appears to account for approximately half of the differ-
ence in judgment between the push and switch variants of the 
trolley problem (Greene et al., 2009). In the push variant, the 
victim is used as a “trolley stopper”—a tool and one that 
forms a necessary part of the plan for action to stop the train. 
Without using one person as a means of stopping the train, 
the other five are doomed. In the switch variant, however, the 
victim is merely a collateral damage—a side-effect of divert-
ing the train but not a means of stopping it (Figure 1). This 
dimension of means versus side-effect can be isolated from 
motor properties of pushing a person versus flipping a switch, 
which continues to exert a substantial influence on moral 
judgment (Cushman et al., 2006; Greene et al., 2009; Hauser 
et al., 2007). This influence demands explanation.

Philosophers and psychologists have noted that harming 
as a means to an end demands that a person represent the 
subordinate goal of causing harm (Borg, Hynes, Van Horn, 
Grafton, & Sinnott-Armstrong, 2006; Cushman & Young, 
2011; Cushman et al., 2006; Foot, 1967; Greene et al., 2009; 
Mikhail, 2000; Thomson, 1985). In other words, to accom-
plish the superordinate goal of stopping the train, the person 
must represent and pursue the subordinate goal of harming a 
person by putting them in the train’s path. This is not the case 
for harming as a side-effect: The agent does not have a sub-
ordinate goal that the person on the side track be hit by the 
train. Consequently, a system that represents action plans in 
terms of their hierarchical structure must necessarily repre-
sent switch-flipping in terms of “harming a person” in the 
means case, whereas it can merely represent switch-flipping 
in terms of “diverting a train” in the side-effect case.

Yet, on its face, it’s not clear why this feature should mat-
ter to moral judgment. What difference does it make whether 
you are using a person’s death as a means or causing it as a 
side-effect? Surely it doesn’t matter to the victim! In both the 
cases, you know you are killing a person and do so out of 
concern for others rather than malice.

One possible explanation for the means/side-effect dis-
tinction derives from the model of hierarchical reinforce-
ment learning that we considered above. For instance, a 
model-free mechanism might assign positive value to the 
action “set subgoal: get milk” in the state “goal: make coffee.” 
It does not represent how the subgoal supports the goal, or 
what the subgoal will accomplish, but rather values selecting 
this subgoal because doing so has been rewarding in past 
similar states. Turning to moral domain, consider cases 
where harm is used as a means to an end. This requires the 
cognitive action “select subgoal: harm a person.” A model-
free system will associate the execution of the subgoal with 
subsequent rewards or punishments. Generally, executing 
“select subgoal: harm a person” leads to aversive outcomes 
such as victim distress, reprimand, and so forth. Thus, a 
model-free system will tend to associate negative value with 
executing subgoals of the form “harm a person.” By contrast, 
it will tend not to associate negative value with executing 
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subgoals of the form “divert a train” or, more abstractly, 
“divert a threat,” “save several lives,” and so on, because 
these subgoals are not typically associated with aversive 
outcomes.

In the “push” variant of the trolley problem, then, a 
model-based system constructs the subgoal “harm a person” 
and endorses it based on an overall representation of the 
expected value of executing it (a net gain of four lives). By 
contrast, a model-free system will evaluate the subgoal 
“harm a person” as negative and disprefer this option. In col-
loquial terms, the model-based system reasons “that harming 
a person achieves a necessary part of the plan to ultimately 
save five others,” while the model-free system reasons that 
“when the subgoal ‘harm a person’ gets executed, things tend 
to turn out poorly.”

Active Versus Passive Harm
A third dimension commonly implicated in moral dilemmas 
is the distinction between action and omission. Specifically, 
people tend to consider it morally worse to harm a person 
actively (e.g., by administering a fatal poison) than to pas-
sively allow them to die (e.g., by deliberately withholding a 
life-saving antidote; Baron & Ritov, 2004, 2009; Cushman 
et al., 2006; Spranca et al., 1991). Such an effect is explained 
by the fact, noted above, that model-free value representa-
tions preferentially encode the value associated with the 
available actions in a state (either promoting or inhibiting 
those actions) but not with the ever-available option to omit 
action.

Specifically, in the basal ganglia, behaviors are regulated 
by opponent “go” and “no-go” processes that promote and 
inhibit actions, respectively (Frank et al., 2004; Guitart-
Masip et al., 2011; Hikida, Kimura, Wada, Funabiki, & 
Nakanishi, 2010). Thus, if an action is consistently punished 
in a particular state, the model-free value representation pref-
erentially encodes “negative value for action” rather than 
“positive value for inaction.” Conversely, if an action is con-
sistently rewarded, the model-free value representation pref-
erentially encodes “positive value for action,” rather than 
“negative value for inaction.” This property may account in 
part for the asymmetry in moral evaluation between actions 
and omissions: An action can carry a forceful negative valu-
ation signal via a model-free system while an omission can-
not. By contrast, the capacity to fully evaluate the likely 
consequences of an action afforded by a model-based system 
would allow the value of actions and omissions to be 
represented.

Recent evidence from functional neuroimaging demon-
strates a positive correlation between activation in the fron-
toparietal control network—a set of brain regions implicated 
in cognitive control—and the condemnation of harmful 
omissions (Cushman et al., 2012). No such relationship is 
evident for the condemnation of harmful actions. This pro-
vides some evidence that relatively automatic processes are 

sufficient to condemn harmful actions, while controlled pro-
cesses play a necessary role in fully condemning harmful 
omissions. This finding is consistent with the proposal that 
model-free systems provide a negative value representation 
for harmful actions, while model-based systems are required 
to represent the negative value associated with harmful 
omissions.

Observational Learning
If model-free reinforcement learning principles account for 
core elements of our aversion to harmful action, it is clear 
that they cannot rely exclusively on direct personal experi-
ence. For instance, people are averse to pushing a person off 
a footbridge and into the path of a train but few people have 
performed this action before. Perhaps the relevant represen-
tation is simply “pushing a person”—a behavior performed 
frequently in early childhood and extinguished as children 
experience the negative outcomes of punishment and the dis-
tress of their victims (Tremblay, 2000). But, consider the 
action of “shooting” an experimenter point-blank in the face 
using a weighty metal replica of a gun (Cushman et al., 
2012). Qualitative observations suggest that participants 
found this to be among the most aversive actions performed 
in this study. Presumably, however, most participants in the 
study (principally Harvard undergraduates) had never per-
sonally shot a person.

Critically, several lines of evidence indicate that model-
free value representations can be constructed on the basis of 
observational learning (e.g., seeing the consequences of gun 
violence in a movie) or instruction (e.g., being told what hap-
pens when somebody is shot point-blank in the face). In the 
domain of aversive learning, where, for instance, a neutral 
cue might be paired with a painful shock, social learning and 
direct experience are sufficient to produce a galvanic skin 
response (Olsson & Phelps, 2004) and activation in the 
amygdala (Hooker, Verosky, Miyakawa, Knight, & 
D’Esposito, 2008; Olsson et al., 2007; Olsson & Phelps, 
2007) in response to the cue. In the domain of reward learn-
ing, several studies have shown striatal activations during 
observational experience that appear to encode prediction-
error signals analogous to those obtained during direct expe-
rience (Bellebaum, Jokisch, Gizewski, Forsting, & Daum, 
2012; Cooper, Dunne, Furey, & O’Doherty, 2012; Li et al., 
2011); however, these appear to be attenuated in magnitude 
compared with direct experience. Thus, although the litera-
ture on observational reward learning is still relatively young, 
representations of others’ actions and experiences appear to 
modulate reward learning in a model-free system.

Conclusion
Ordinary human moral judgments are rife with apparent 
inconsistency. We sometimes consider utilitarian harm 
wrong and other times do not. The difference often boils 
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down to seemingly irrelevant factors, such as sensorimotor 
properties such as a push.

We can understand these apparent inconsistencies, how-
ever, through the lens of model-free reinforcement learning 
and, specifically, through the concept of action-based value 
representation. Such value representations can be defined 
over relatively concrete features (e.g., pushing a body) and 
relatively abstract features, such as the selection of particular 
subgoal (e.g., harming a person). Critically, action-based 
value representations allow us to explain strong, systematic 
patterns of nonutilitarian choice in moral judgments and 
behaviors.

It is the role of action-based value representation that 
affords model-free algorithms a special explanatory role in 
the moral domain compared with alternative models of asso-
ciative learning. Consider, for instance, the Rescorla-Wagner 
(1965) model. It is a model of associative learning and, in 
some respects, resembles TDRL. It is not equipped, how-
ever, to associate value with actions, or to pass value repre-
sentations backward to successively earlier predictive actions 
or states via TDRL, or to use those value representations to 
guide future action. In other words, it can associate actions 
with outcomes but some other system must then be respon-
sible for making decisions based on the predicted outcomes. 
In the context of the trolley problem, then, it would associate 
pushing with harm but would not directly represent the nega-
tive value of pushing. This leaves it poorly equipped to 
explain nonutilitarian patterns of moral judgment. After all, 
an association between pushing and harm is superfluous—
the trolley problem specifies that harm will result from push-
ing and, moreover, that five times as much harm will result 
from not pushing. In other words, any outcome-based asso-
ciative system will face a challenge explaining patterns of 
moral judgment that are not, themselves, outcome-based. 
Nonutilitarian moral judgment is best described as action-
based judgment, and model-free algorithms are therefore 
especially useful because they posit action-based value 
representations.

Finally, a clear goal for any theory of moral judgment is to 
explain dilemmas: the conflict between distinct psychologi-
cal systems in cases such as the push version of the trolley 
problem. While I have emphasized the role that model-free 
mechanisms may play in selecting nonutilitarian options, 
equally important is the natural explanation that model-based 
mechanisms provide for explaining utilitarian choice. It is 
the contrast between model-free and model-based systems—
or between action- and outcome-based valuation—that can 
explain the conflict engendered by moral dilemmas.

Broader Applications to the Moral 
Domain
I have explored connections between reinforcement learning 
algorithms and moral judgments of trolley-type dilemmas in 
great detail, but this particular connection is of limited 

intrinsic interest. Ideally, it offers a case study of the utility of 
framing a dual-system theory of decision making in terms of 
action- and outcome-based value representations, highlight-
ing the advantages of this approach over the more traditional 
distinction between emotion and reasoning. How well does 
the framework extend to further dimensions of moral 
domain?

Automaticity and Control
A cornerstone of current research in moral judgment is the 
distinction between automatic and controlled processes. The 
phenomenon of moral dumbfounding, discussed more fully 
below, reveals that people often arrive at moral judgments 
through automatic processes and then use controlled cogni-
tion to construct an explicit rationale (Haidt, 2001). The dis-
tinction between automatic and controlled processes is also 
fundamental to the research on trolley-type dilemmas. 
Evidence from functional neuroimaging (Cushman et al., 
2012; Greene et al., 2004), cognitive load manipulations 
(Greene et al., 2008; Trémolière et al., 2012), timing manipu-
lations (Suter & Hertwig, 2011), and priming (Valdesolo & 
DeSteno, 2006), all suggest that characteristically utilitarian 
(i.e., outcome-based) judgments rely relatively more on con-
trolled processes, while characteristically deontological (i.e., 
action-based) judgments rely relatively more on automatic 
processes (but see Kahane et al., 2012).

We should therefore expect model-free mechanisms to be 
relatively more automatic and model-based mechanisms to 
be relatively more controlled, and indeed, this prediction is 
borne out. Most notably, the basal ganglia circuits character-
ized by model-free TDRL support habitual (i.e., automatic, 
or default) behavioral response (reviewed in Graybiel, 1998). 
A recent study used a behavioral paradigm specifically 
designed to dissociate model-based from model-free 
response and found a shift toward model-free response under 
cognitive load (Otto, Gershman, Markman, & Daw, 2013).

Rationalization
In addition to the trolley problem, recent studies of moral 
psychology have orbited around a second case with tremen-
dous gravitational pull: that of Julie and Mark, adventurous 
siblings who try out sexual intercourse with each other for 
fun. They do it once, consensually, secretly, nonprocre-
atively, and quite passionately. The key finding is that many 
people consider it wrong but few can say precisely why, a 
phenomenon termed moral dumbfounding (Bjorklund, Haidt, 
& Murphy, 2000; Haidt & Hersh, 2001; Haidt et al., 1993). 
Dumbfounding has been demonstrated with a host of differ-
ent cases such as eating a dead family pet or burning the 
national flag, and also in some versions of the trolley prob-
lem (Cushman et al., 2006).

Notably, the cases used to elicit dumbfounding typically 
involve ostensibly harmless actions such as incest. This is no 
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accident; when a harmful outcome occurs, people readily 
point toward the harm as the basis of their moral verdict. 
Studies on moral dumbfounding show that before people 
give up on explaining why sibling incest is wrong they often 
attempt to explain their judgment precisely in terms of harm-
ful outcomes, invoking the potential for birth defects, regret, 
family shame, and so forth (Bjorklund et al., 2000; Haidt & 
Hersh, 2001). In fact, this reflects a general property of the 
relationship between moral judgment and moral justification 
(Ditto & Liu, 2011). Specifically, we often consider actions 
morally right or wrong for reasons other than the outcomes 
they produce, but then rationalize justifications for those 
moral judgments that appeal to outcomes.

A potential explanation for this puzzling mismatch is that 
judgments often depend on model-free mechanisms that 
directly value actions, while justifications are produced by 
mechanisms of controlled reasoning that operate in a model-
based manner. Consequently, the process of justification may 
entail a search for outcome information that supports an 
action-based moral aversion.

Some caution is warranted in understanding the incest 
taboo, in particular, as a product of model-free learning, 
however. While it does appear to depend on action-based 
value representation, it probably does not derive model-free 
reinforcement learning—at least, not exclusively. Rather, 
evidence suggests that it depends, at least in part, on a bio-
logically evolved mechanism for kin detection that is sensi-
tive to early childhood cohabitation as well as shared 
maternity (Lieberman & Lobel, 2012; Lieberman, Tooby, & 
Cosmides, 2003; Lieberman, Tooby, & Cosmides, 2007). 
This highlights an important limitation of the current pro-
posal: It attempts to account for some automatic, action-
based value representations in the moral domain by appeal to 
model-free learning, but there are surely many action-based 
moral aversions that are not derived from model-free learn-
ing mechanisms.

Moral Philosophy
Greene (2007) has proposed that emotionally-grounded intu-
itions associated with nonutilitarian moral judgment play a 
critical role in explaining the origins of deontological philo-
sophical theories—those concerned with rights, categorical 
obligations, and prohibitions, and associated most famously 
with the philosophical contributions of Kant. Meanwhile, he 
proposes that processes of cognitive control and reasoning 
associated with utilitarian moral judgment play a critical role 
in explaining the origins of consequentialist philosophical 
theories—those concerned with maximizing welfare and 
associated most famously with the philosophical contribu-
tions of Bentham and Mill.

The mapping of a dual-system psychological framework 
onto discrete philosophical positions has considerable appeal, 
yet the emotion/deontology and reasoning/utilitarianism link-
ages have been met with some skepticism, especially among 

philosophers (e.g., Kahane et al., 2012). Kant’s deontological 
moral theory, for instance, places an extreme premium on the 
derivation of moral principles from processes of reasoning. 
Meanwhile, utilitarian moral theories are grounded in senti-
mental concern for others’ welfare.

The alternative linking of deontological theories with 
action-based value representation and utilitarian moral theo-
ries with outcome-based value representation is truer to the 
core philosophical positions. Whether derived from emotional 
or rational processes, Kant’s moral theory undeniably elevates 
the intrinsic moral quality of actions above the expected con-
sequences of those actions. For instance, he advocated that the 
categorical prohibition against lying would make it immoral to 
deceive a murderer about the location of his would-be victim 
(Kant, 1785/1983). Likewise, whether derived from emotional 
or rational processes, consequentialist moral theories clearly 
operate by maximizing expected value over a causal model of 
the likely consequences of action.

Associating characteristically deontological judgments 
with model-free reinforcement learning helps to illustrate 
their functional rationale: They are an efficient compression 
of past experience into a simple representation of a policy 
that tends to maximize reward. Through this lens, model-free 
value representations might also be associated with rule utili-
tarianism (choosing the set of efficient and simple rules that 
tend to maximize welfare). This highlights the important 
sense in which deontological rules—and action-based value 
representations—can be normatively justified (see also 
Bennis, Medin, & Bartels, 2010).

Sacred Values
Intense focus on a single case of nonutilitarian choice—the 
trolley problem—has the ironic effect of obscuring just how 
deeply nonutilitarian choice pervades moral decision making 
(Baron, 1994). Moral norms frequently place categorical pro-
hibitions on action, specifically proscribing the possibility of 
engaging in utility-maximizing tradeoffs. Such norms have 
been called “sacred” or “protected” values (Baron & Spranca, 
1997; Fiske & Tetlock, 2000; Ritov & Baron, 1999; Tetlock, 
2003). For instance, most people consider it categorically 
wrong to buy or sell organs on an open market, although this 
may facilitate the efficient distribution of resources. Political 
liberals sometimes regard certain forms of environment 
destruction or the disparate treatment of racial groups to be 
categorically prohibited no matter what the net benefits, while 
political conservatives sometimes exhibit equivalent patterns 
of judgment regarding abortion and homosexuality. As 
George W. Bush wrote in an op-ed column in the New York 
Times justifying his prohibition of embryonic stem cell 
research, “There is at least one bright line: We do not end 
some lives for the medical benefit of others.”

Sacred values are complex and multifaceted phenomena, 
implicating concepts of purity and profanity, routines of 
cleansing, and a division between distinct relational 
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schemata (Fiske, 2004; Fiske & Tetlock, 2000). It would be 
an error to suggest that they can be fully captured within a 
simple computational framework. Nevertheless, a core fea-
ture of sacred/protected values is the taboo against tradeoffs—
in other words, a categorical prohibition of some category of 
action that maintains insensitivity to the ultimate outcome of 
that action (Baron & Ritov, 2009; Bartels & Medin, 2007). 
As such, a key contributor to sacred/protected values as a 
psychological kind may be action-based value representa-
tion. A particularly intriguing connection may be drawn 
between the proscription of impure thoughts (Tetlock, 2003) 
and the role of model-free systems in gating information held 
in working memory (O’Reilly & Frank, 2006).

More broadly, the landscape of moral obligation and pro-
hibition is abundantly populated with rules defined over 
action types. Sexual taboos against incest, masturbation, sod-
omy, intercourse during menstruation, and so forth are predi-
cated on the type of action performed rather than the expected 
outcome of that action. The same is true of many taboos con-
cerning consumption and cleanliness (rules defining what is 
kosher, halal, etc.). Rituals (taking communion, doing a team 
cheer before a game, etc.) and rules of etiquette (eating with 
the fork in the right hand, not cursing, etc.) are also com-
monly defined over actions rather than outcomes, and it has 
been suggested that these may rely on model-free value rep-
resentation (Graybiel, 2008).

Norms of charitable giving present a more ambiguous 
case. Is a 10% tithe to the church conceptualized principally 
as an instrumental action aimed at the betterment of the insti-
tution, or more simply as a mandatory norm of action? What 
about the 2-year commitment to missionary work in the 
Mormon faith, or secular norms such as bringing a bottle of 
wine to a dinner party, or purchasing a birthday gift? Such 
behaviors may feel compulsory because of our interest in the 
welfare of nonbelievers, dinner hosts, and birthday boys; 
alternatively, they may feel compulsory because processes of 
social learning assign value directly to the actions them-
selves. Consistent with this possibility, research finds that 
among more religious individuals, compassion plays less of 
a role in explaining variance in prosocial behavior (Saslow et al., 
2012); this may be because rituals, rules, and social pressures 
of religions establish value in prosocial actions intrinsically 
rather than deriving value from prosocial outcomes.

Each of the cases described above involves an apparent 
commitment to explicit norms, or deontological rules. One 
interpretation of these rules is that they are nearly always 
posthoc rationalizations constructed in response to affec-
tively laden intuitions (Cushman & Greene, 2011; Greene, 
2007; Haidt, 2001) or, in the terms pursued here, the value 
assigned intrinsically to certain actions. An alternative pos-
sibility is also quite consistent with the reinforcement learn-
ing perspective but accords rules in a causal role in moral 
judgments. As noted above, many current models accord 
model-free mechanisms in basal ganglia a role in selecting 
the contents of working memory—that is, a cognitive action 

rather than a motor action. Thus, the selection and execution 
of explicitly represented rules may depend on model-free 
value representations, explaining the association of canoni-
cally “controlled” mechanisms with characteristically deon-
tological moral judgment.

Conclusion
Dual-system theories are widely used in the moral domain, 
yet there is pervasive disagreement about the nature of the 
two systems. I have noted a few of the most common con-
trasts offered in the decision-making literature: automatic 
versus controlled processes, intuitive versus rational pro-
cesses, and emotional versus cognitive processes. Dissatisfied 
with these terms, many have taken to referring simply to 
System 1 and System 2 (Stanovich & West, 2000); this 
opaque nomenclature is a faithful reflection of murky theo-
retical waters. Some form of dual-system theory is indis-
pensable for explaining core features of moral judgments. 
These include the nature of moral dilemmas, as well as the 
relationship between moral judgment and justification. The 
automatic/controlled and intuitive/rational distinctions are 
appropriate at a descriptive level but lack explanatory preci-
sion. By analogy, a subway operates automatically while a 
bicycle requires manual operation; yet, these superficial 
descriptions fail to explain the actual mechanics of either 
mode of transportation. Meanwhile, the emotion/cognition 
distinction can be misleading because both systems involve 
information processing and value representation.

A more precise characterization of the two systems within 
the moral domain distinguishes between mechanisms of 
value representation: one that assigns value directly to 
actions, and another that selects actions based on the value 
assigned to their likely outcomes. This same distinction cap-
tures an essential difference between the two families of 
reinforcement learning algorithm. The basic principles of 
these reinforcement learning algorithms—and specific 
details of their neural implementation—provide an explana-
tion for several otherwise puzzling phenomena of moral 
judgments, and of human judgment and decision making 
more broadly. Their explanatory power becomes especially 
broad when conceiving of certain internal mental representa-
tions as constituting “states” and certain processes of thought 
as constituting “actions.”

At the same time, clear limitations of this approach must be 
emphasized. The role of learning—and more specifically, of 
TDRL—is clearly limited to a subset of moral norms. For 
instance, evidence suggests that the aversion to sibling incest is 
grounded in an action-based aversion (Bjorklund et al., 2000; 
Haidt & Hersh, 2001; Haidt et al., 1993), and that this aversion 
has an innate basis (Lieberman et al., 2003). Thus, it is unlikely 
that TDRL contributes strongly to the aversion to incest. Innate 
and learned action-based aversions may or may not draw on 
similar psychological mechanisms; at present there is little rel-
evant evidence (but see Delgado, Jou, & Phelps, 2011). In any 
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event, the mapping between action-based value representation 
and model-free TDRL is not perfect.

A second limitation of this approach concerns the oppo-
site mapping between cognitive control, model-based rea-
soning, and the valuation of outcomes. I have emphasized 
the role of cognitive control in overriding model-free habits 
(E. K. Miller & Cohen, 2001); however, controlled cognition 
can be used much generally to impose rule-like structure on 
decision processes (Sloman, 1996). Humans have the capac-
ity to specify action-based rules; above, I noted categorical 
prohibitions against lying, cursing, homosexual sex, the con-
sumption of pork, and so on. These kinds of rules play a 
common and crucial role in human moral judgments and 
behaviors, as evidenced by their ubiquity in law, religion, 
custom, and etiquette. The cultural transmission of these 
rules depends, at least partially, on their explicit representa-
tion and communication using controlled cognitive pro-
cesses; presumably, the application of the rules in specific 
circumstances often does as well. Thus, action-based rules 
present an apparent case of action-based valuation operating 
via characteristically model-based mechanisms as follows: 
namely, working memory and executive function. This 
apparent conflict can be reconciled in at least two ways. 
First, as with implementation intentions, the power of the 
action-based rules may lie precisely in their ability to be 
assimilated into an automatic system supported by model-
free value representations. Second, as noted above, the 
engagement of rule-based processing may be due to model-
free mechanisms valuing the cognitive “action” of imple-
menting the rule.

There is an inherent tension in any attempt to account for 
complex psychological phenomena in terms of relatively 
simple and computationally precise mechanisms. The more a 
specific mechanism is isolated and understood the less the 
general phenomenon is explained; yet, unless specific mech-
anisms are isolated and understood, the general phenomenon 
cannot be explained at all. This tension bedevils research in 
moral judgment, which necessarily draws upon multiple lev-
els of analysis: evolutionary, cultural, historical, social, 
mechanistic, and neural among them. Yet, philosophers 
(Hume, 1739/1978; Kant, 1785/1959) and psychologists 
(Greene, 2007; Haidt, 2001) alike have often concluded that 
moral psychology cannot be understood with a broad divi-
sion between the two systems of decision making, and the 
attraction of the emotion/reason division has repeatedly 
proved irresistible. Current research in computational neuro-
science can improve on this old division by formalizing the 
two targets of value representation and the systems that sup-
port them: action and outcome.
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Notes
1. There are, however, a number of contexts in which this dis-

tinction between active and passive harm is not observed (see, 
for example, Mandel & Vartanian, 2008; Patt & Zeckhauser, 
2000).

2. It is important to recognize that emotion, affect, and value 
representations are not identical psychological constructs. 
One dimension of the current proposal is to propose that the 
motivational response identified as “emotional” in prior litera-
ture is in fact better characterized as a form of negative value 
representation.

3. For example, imagine that a particular choice leads to a reward 
of 0 half the time, and a reward of 1 half the time. An agent 
could store the full past history of reward values (0, 1, 0, 0, 1, 
1, 1, etc.) but this would require a large amount of memory and 
computation. Or, it could just remember the very last reward 
obtained, but this will lead to overestimate the value half the 
time (at 1) and to underestimate the value half the time (at 
0). Using a prediction-error mechanism, the agent will tend 
to have a value representation around 0.5 at any given time 
(because of the combined effects of small adjustments upward 
or downward), and yet does not have to remember the full his-
tory of the past choices.
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