

Modeling

$$\frac{\partial \alpha}{\partial T} = \frac{1}{\beta} \cdot A e^{-\frac{E_a}{RT}} \cdot f(\alpha)$$

 β = Heating Rate A = Pre-Exponential Factor

Common Model Functions include

First Order (F1) $F(\alpha) = (1-\alpha)$

Second Order (F2) $F(\alpha) = (1-\alpha)^2$

Third Order (F3) $F(\alpha) = (1-\alpha)^3$

A(m) Model Form F(α) = m (1-α) $[-ln(1-α)]^{(1-(1/m))}$

Simplified Sestak-Berggren Form $F(\alpha) = \alpha^m (1 - \alpha)^n$

Kinetic Analysis of Single Processes in Mathematica Keeley Williamson and Peter Kroll Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019; kpw7831@mavs.uta.edu

process with a maximum around 800° C

 $E_a \sim 170 \text{ kJ/mol}$

 $E_a \sim 185 \text{ kJ/mol}$

 $E_a \sim 170 \text{ kJ/mol}$

AC Process

Asymmetry Parameters

Model Functions	β=5°C/min	β=125°C/min
F1	-0.326	-0.319
F2	0.089	0.098
F3	0.335	0.343
A1	-0.326	-0.319
A2	-0.362	-0.359
A3	-0.375	-0.373
D2	-0.979	-0.966
D3	-0.512	-0.500
AC	-0.083	-0.076

Summary

Peak fitting using Frazier-Suzuki (FS) functions is a standard approach to analyzing TGA data. The FS fitting addresses four (4) parameters simultaneously. It is known that a_0 , a_1 , and a_2 change significantly with changing heating rates β . Our goal was to test the dependency of the asymmetry parameter a_3 on the heating rate β . We pursue the target using Mathematica to model TGA data and subsequently fit the data using Frazier-Suzuki functions. We find that a_3 reflects the choice of conversion model: each model relates to a characteristic value of a_3 . Furthermore, a_3 's dependency on the heating rate β is small, even if β varies by two orders of magnitude. Hence, the asymmetry parameter a_3 is a valuable tool for determining the conversion model and reaction order based on TGA data. In the future, we will use the knowledge to characterize multi-process conversions.

References

• Criado J.M; Ortega A; Gotor F. Correlation Between The Shape Of Controlled-Rate Thermal Analysis Curves And The Kinetics Of Solid-State Reactions; Thermochimica Acta, 157; Elsevier Science Publishers. 1990; 171-179.

• Svoboda R. Fraser-Suzuki Function as an Essential Tool for Mathematical Modeling of Crystallization in Glasses. Journal of the European Ceramic Society. 2024; Volume 44, Issue 1: 401-407

• R.D.B Frazer, E. Suzuki; Resolution of Overlapping Absorption Bands by Least Squares Procedures; Anal. Chem., 38(1966), 1770-1773