

Alexandra May¹, Ricardo Sánchez-Murillo¹, Sarah Gonzalez-Henao², Matthew O. Schrenk², Esteban Gazel³ & María M. Chavarría⁴

¹Department of Earth and Environmental Sciences, University of Texas at Arlington, TX, USA, ²Department of Earth and Environmental Sciences, Michigan State University, MI, USA, ³Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA, ⁴Área de Conservación Guanacaste, Costa Rica

I. Hypothesis

We hypothesize that in tropical monsoonal environments, rainfall amount and seasonality (wet and dry cycles) stimulate groundwater recharge, resulting in more significant i) water-rock interactions (during the wet season) and ii) $GeoH_2/CH_4$ -rich dissolved phase during baseflow conditions (dry season).

II. Study Area

Active tropical serpentinization in the Santa Elena Ophiolite (known as SEO; 250 km² area and ~520 km³ rock volume), exposed along the North Pacific coast of Costa Rica, was discovered by Sánchez-Murillo and Gazel in 2013.

Figure 1. Map of the study area. The pink highlighted area denotes SEO's boundary, dominated by ultramafic rocks.

Partially **A)** serpentinized peridotite. B Alkaline seepage from the Travertine site. white deposits and supernatant crust (calcite/aragonite) are due to

Monsoonal rainfall and natural recharge 'stimulation' drive seasonal GeoH₂ and CH₄ production

Murciélago and Seco watersheds in January, March, and May.

