Associations between Halogenated Flame Retardants Exposure and Childhood Gut Microbiome Multi-omics Profiles in a Canadian Cohort

Yidan Zhang¹, Feng Gao^{2,3}, Anthony Gagnon⁴, Yihan Fan², Virginie Gillet⁴, Jean-Philippe Bellenger⁵, Andrea Baccarelli⁶, Larissa Takser⁴, Yike Shen¹

¹Department of Earth and Environmental Sciences, University of Texas at Arlington

²Department of Environmental Health Sciences, University of California, Los Angeles

³Department of Molecular and Medical Pharmacology, University of California, Los Angeles

⁴Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada.

⁵Département de Chimie. Université de Sherbrooke. Sherbrooke. Quebec. Canada

⁶Harvard T.H. Chan School of Public Health, Boston

vidan.zhang@uta.edu

Study population

Background & Objective

- Imbalance in the childhood gut microbiota has been linked to long-term adverse health outcomes, including metabolic disorders, infections, and autoimmune diseases. Early-life exposure to halogenated flame retardants (HFRs) may alter the gut microbiota, but this association remains unexplored.
- This study examined the associations of HFRs in plasma and stool with gut microbiome and transcriptome profiles in children aged 8-12 years from a birth cohort in Sherbrooke, Quebec. Canada.

Methods

HERS Detection (%) Mean + SD Characteristics Distributions (ng/g) Sex (%) Plasma Male 106 (44.5) BDE47 83.7 10 04 + 19 77 132 (63.5) 53.5 3.53 ± 12.17 Female BDE99 4.64 ± 8.33 80.2 Family income {1,000\$ (mean (SD))} 104.2 (71.4) BDE100 95.9 1.22 ± 6.93 BDE153 Parents' education level (% 44.7 6.02 ± 7.23 BB153 151 (63.4) College and University Stool 85 (35.7) Vocantional Training or Secondary schoo 78.6 3.57 ± 6.60 BDE47 Other 2 (0.9) 53.4 0.23 ± 0.03 BDE99 Food Frequency Questionnaire Class (%) 71.3 0.09 ± 0.15 BDE100 37 (15.5) Class 1 83.9 0.06 ± 0.09 **BDE153** Class 2 86 (36.1) 154 ± 711 95.4 BDE209 Class 3 115 (48.4) s-DP 77.6 0.04 ± 0.14 34.7 (27.0) t-DP 91.7 0.35 ± 2.84 Metagenomic sequencing depth^a (mean (SD)) Metatranscriptomic sequencing deptha (mean Dec602 35.9 0.006 ± 0.001 33 26 (31 4) (SD)) Dec603 37.5 0.003 ± 0.005 ^aThe unit for sequencing depth is million reads

HFRs ~ microbiome species

HFRs ~ microbiome functional pathways

Associations between childhood plasma and stool HFRs and gut microbial transcriptomic functional pathways: six pathways are associated with stool HFRs, while no significant associations were observed between plasma HFRs and functional pathways.

4-aminobutanoate degradation;

- · Associated with y-aminobutyric acid (GABA) degradation
- CDP-diacylglycerol biosynthesis III · Phospholipid synthesis, cell membrane
- integrity, gut barrier.
- Myo-, chiro- and scyllo-inositol degradation · Enhances lipid absorption and obesity TCA cycle II (plants and fungi)
- · Regulating energy metabolism
- Phosphatidylcholine acyl editing
- Phosphatidvlcholine (PC) metabolism. associated with gut barrier function.

Conclusions

In children from the GESTE cohort, both plasma and stool HFRs exposure were associated with alterations of gut microbiome, with stronger associations observed for stool

Funding: National Institute of Environmental Health Sciences: R01ES027845; P30ES009089: Canadian Institutes of Health Research: MOP-84551: Natural Sciences and Engineering Research Council of Canada: CRC-950-230570; The University of Texas System Rising STARs award

April 2025; Unpublished data, do not copy.