

Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019; Hannah.hayes@mavs.uta.edu

Introduction

- Porous SiCO have a wide range of applications due to their low density, high specific surface area and microporous structure
- Impurities can impact the structure and properties of the material
- Argon and helium are inert gases
- Nitrogen is considered non-reactive for SiCO materials below 1000°C
- No inert gas is truly pure. Just 10 ppm of impurities can have a large impact

Motivation & Hypothesis

Motivation: Understanding the polymer to ceramic conversion is important to optimize processing routes

Hypothesis: Trace impurities from O₂, H₂O, and CO₂ cause oxidation of the sample resulting in substantial apparent mass gain

Method

- Porous SiCO gel prepared though hydrosilylation and condensation with subsequent ambient drying
- Thermogravimetric analysis (TGA) under different gases and conditions Condensed wet gel

Scheme 1. Two-step synthesis procedure for the preparation of the PMHS-based gel.

Figure 1. PMHS-based gel

Figure 2. Image of TGA

Substantial Weight Gain by Oxidation of a Porous SiCO Gel under Inert Atmospheres

Hannah Hayes and Peter Kroll

- TGA under argon, nitrogen, helium, and air
- Large mass gain under inert-conditions between 750 and 900°C
- Results confirmed at University of Trento, Italy
- Use of in-line oxygen trap reduces mass gain
- Covering sample with lid (semi-closed system) removes the apparent mass gain
- FTIR indicates oxidation in open sample
- Oxidation confirmed with chemical analysis

Figure 5. TGA with an open crucible, oxygen trap and lid

Figure 7. Tube furnace for bulk heating

Results

Figure 4. TGA under nitrogen and helium at U Trento

Figure 6. FTIR of TGA residue with an open crucible, oxygen trap and lid

Table 1. Chemical analysis for samples heated to 700 and 800°C

Temperature	C wt-%	O wt-%	H wt-%	Si wt-%	Composition
initial	32.9	21.9	6.8	38.4	$Si_1C_{2.0}O_{1.0}H_{5.0}$
700°C	24.83	29.1	4.0	41.07	Si ₁ C _{1.4} O _{1.2} H _{2.6}
800°C/4h	21.60	34.2	2.0	42.2	$Si_1C_{1.2}O_{1.4}H_{1.3}$

Future Work

- Continue collaboration with MPI to get TGA-MS (evolved gas analysis)
- Study oxidation reaction mechanism and kinetics

Figure 8. TGA under argon inside glovebox at the MPI

Summary

- SiCO material was oxidized due to ppm level impurities during pyrolysis in TGA
- Mass gain observed under nitrogen, argon, and helium
- Results confirmed on separate instruments at Max Planck Institute and University of Trento
- Addition of oxygen trap within gas stream reduced apparent mass gain
- Use of lid reduced mass gain further
- Chemical analysis confirmed oxidation

References

1. Wen, Q. B.; Yu, Z. J.; Riedel, R., The fate and role of formed carbon in polymer-derived ceramics. *Prog Mater Sci* **2020,** 109.

2. Vakifahmetoglu, C.; Zeydanli, D.; Colombo, P., Porous polymer derived ceramics. *Mat Sci Eng R* **2016**, *106*, 1-30. 3. Zhang, F.; Li, Z. A.; Xu, M. J.; Wang, S. Y.; Li, N.; Yang, J. Q., A review of 3D printed porous ceramics. J Eur Ceram Soc 2022, 42 (8), 3351-3373. 4. Roy, S., Recent developments in processing techniques and morphologies of bulk macroporous ceramics for

multifunctional applications. *Mater Today Commun* **2024**, *38*. 5. Yajima, S.; Shishido, T.; Kayano, H.; Okamura, K.; Omori, M.; Hayashi, J., Sic Sintered Bodies with 3-Dimensional Polycarbosilane as Binder. *Nature* **1976**, *264* (5583), 238-239.

6. Airgas product catalog; at https://www.airgas.com/airgascatalog/catalog/index.html

7. Qu, Y.-X.; Guo, K.-Y.; Pan, H.-T.; Wu, Z.-H.; Guo, B.-F.; Feng, X.-L.; Kong, T.-T.; Zhang, C.; Zhang, G.-D.; Zhao, L.; Gong, L.-X.; Gao, J.-F.; Liu, H.-L.; Mao, Z.-N.; Tang, L.-C. Facile Synthesis of Mechanically Flexible and Super-Hydrophobic Silicone Aerogels with Tunable Pore Structure for Efficient Oil-Water Separation. *Materials Today* Chemistry 2022, 26, 101068.

8. Narisawa, M.; Funabiki, F.; Iwase, A.; Wakai, F.; Hosono, H., Effects of Atmospheric Composition on the Molecular Structure of Synthesized Silicon Oxycarbides. Journal of the American Ceramic Society 2015, 98 (10), 3373-3380.

9. Diem, M., Introduction to modern vibrational spectroscopy. Wiley: New York, 1993.

Acknowledgements

Mikroanalytisches Labor **Pascher**

MAX-PLANCK-GESELLSCHAFT

NSF OISE-1743701