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Introduction

* Porous S1CO have a wide range of applications due to
their low density, high specific surface area and
microporous structure

* Impurities can impact the structure and properties of
the material

* Argon and helium are 1nert gases

* Nitrogen 1s considered non-reactive for S1CO materials
below 1000°C

* No 1nert gas 1s truly pure. Just 10 ppm of impurities
can have a large impact

Motivation & Hypothesis

Motivation: Understanding the polymer to ceramic
conversion 1s important to optimize processing routes

Hypothesis: Trace impurities from O,, H,O, and CO,
cause oxidation of the sample resulting in substantial
apparent mass gain

Method

* Porous S1CO gel prepared though hydrosilylation
and condensation with subsequent ambient drying
* Thermogravimetric analysis (TGA) under different
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Scheme 1. Two-step synthesis procedure for the preparation
of the PMHS-based gel.
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Figure 1. PMHS-based gel Figure 2. Image of TGA
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Results

TGA under argon, nitrogen, helium, and air

Large mass gain under inert-conditions between 750 and 900°C

Results confirmed at University of Trento, Italy
Use of 1n-line oxygen trap reduces mass gain

Covering sample with lid (semi-closed system) removes the apparent mass gain

FTIR indicates oxidation in open sample
Oxidation confirmed with chemical analysis
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Figure 3. TGA under argon, nitrogen, helium, and air
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Figure 5. TGA with an open crucible, oxygen trap and lid

Figure 7. Tube furnace for bulk heating
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Figure 4. TGA under nitrogen and helium at U Trento
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Figure 6. FTIR of TGA residue with an open crucible,
oxygen trap and lid

Table 1. Chemical analysis for samples heated to 700 and 800°C

Temperature | C wt-% | O wt-% | H wt-% | S1 wt-% | Composition
initial 32.9 21.9 6.8 38.4 S1,C, O, (Hs
700°C 24.83 | 29.1 4.0 41.07 S1,C,,0,,H,

800°C/4h | 21.60 | 34.2 2.0 42.2 S1,C,,0, ,H, ;

Substantial Weight Gain by Oxidation of a Porous SiCO Gel
under Inert Atmospheres
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Future Work

* Continue collaboration with MPI to get TGA-MS

(evolved gas analysis)
* Study oxidation reaction mechanism and kinetics
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Figure 8. TGA under argon 1nside glovebox at the MPI

Summary

* S1CO material was oxidized due to ppm level
impurities during pyrolysis in TGA

* Mass gain observed under nitrogen, argon, and helium

* Results confirmed on separate imnstruments at Max
Planck Institute and University of Trento

* Addition of oxygen trap within gas stream reduced
apparent mass gain

* Use of lid reduced mass gain further

* Chemical analysis confirmed oxidation
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