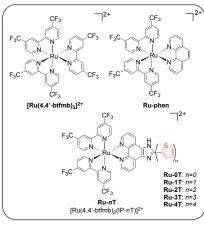


Investigation of photoactive metallodrugs for Photodynamic Inactivation of Bacteria

Gurleen Kaur, Debby Sunday, Ge Shi, Alisher Talgatov, Dalton Lucas, Joshua Rahmon, Abbas Vali, Colin Cameron, Sherri A. McFarland* Department of Chemistry and Biochemistry, The University of Texas at Arlington

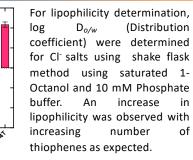

Photodynamic Inactivation

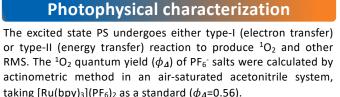
Photodynamic Inactivation (PDI) is a light-triggered therapy to treat antimicrobial infections where a photosensitizer (PS) is activated by light in the presence of oxygen to destroy microbial cells through the generation of singlet oxygen $({}^{1}O_{2})$ and/or other reactive molecular species (RMS). A few key features of PDI include quick burst of cytotoxic species, multi-target approach followed by spatiotemporal selectivity, thus it is suitable as an alternative light-triggered antimicrobial treatment option compared to the use of conventional antimicrobial drugs. PDI produces cytotoxic RMS, such as ${}^{1}O_{2}$ that kill pathogens including antimicrobial resistant (AMR) strains. Therefore, PS with high ${}^{1}O_{2}$ quantum yields (ϕ_{Λ}) are desirable for PDI. H_2O_2

Objective

Conventional antimicrobial drugs rely on inhibiting/blocking steps in metabolic pathways that are crucial for survival of bacteria. Our objective is to develop PSs with longer triplet hv 400-700 nm excited lifetimes for higher yields of cytotoxic ¹O₂ and other RMS to overcome AMR acquired by bacteria through either natural or acquired resistance pathways. ¹PS

Complexes in this study

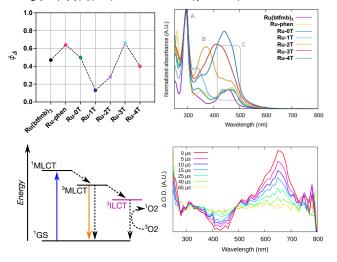

upper pull pull pull pull pull


og D_{olw}

complexes of Ru(4,4'btfmb)₃, Ru-phen and Ru-OT-Ru-4T were studied as racemic mixtures of Δ/Λ enantiomers. The Cl and PF_6^- salts were used based on properties of the compounds under study.

The Ru(II) polypyridyl

Lipophilicity


Type I (Electron transfer)

Type II (Energy transfer)

Antimicrobial activity

.30

BDG

The photophysical model for Ru-4T involves excitation to the ¹MLCT state, which can then form two types of triplet states. The ${}^{3}MLCT$ state (t = 640 ns) is relatively short-lived and populates a much longer-lived ³ILCT state (t = 20 μ s) that can sensitize ¹O₂ but also undergo photoredox reactions.

Photo(antibacterial) activity

The photobiological activities of Ru(btfmb)₃, Ru-phen and Ru-0T-Ru-4T were evaluated in antibiotic susceptible and resistant strains of Enterococcus faecalis under dark and broadband visible light (fluence = 100 J cm^{-2} and irradiance = 28-35 mW cm^{-2}). EC₉₀ is the concentration of compound required to reduce cell viability by 90% whereas PI (Phototherapeutic Index) is the ratio of dark EC₅₀ to Vis EC₅₀.

Future studies

These complexes will be further analyzed for localization and cell uptake studies. For the development of structure-activity relationship (SAR) library, various structural modifications are being designed for photophysical, photochemical, physicochemical and photobiological studies.

Acknowledgements

We thank the Department of Chemistry and Biochemistry at the University of Texas at Arlington. We also thank the National Science Foundation (NSF) (Award NSF 2102459)

References

DEPARTMENT OF

- 1. Cole, H.D. Inorg. Chem. 2023, 62 (51), 21181-21200.
- Arenas, Y. Photodiagnosis and Photodyn. Ther. 2013, 10 (4),615-625 2.
- Monro, S. Chemical Reviews 2019, 119 (2), 797-828. 3.
- 4. Roque, J. A. Inorg. Chem. 2020, 59 (22), 16341-16360.

AЗ

UNIVERSITY OF ARLINGTON

CHEMISTRY AND BIOCHEMISTRY