

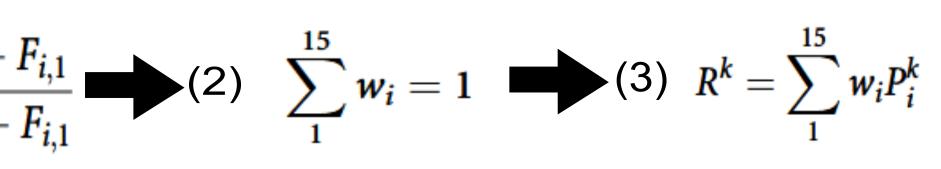
Carbon Capture and Storage (CCS) is essential for reducing carbon dioxide (CO2) emissions from industrial activities. Within the last decade, carbon emissions have seen a large increase in Texas due to the growing demand for energy driven by population growth. While the sedimentary basins in Texas have large potential for CCS, detailed site screening, ranking, and characterization are necessary to identify the most favorable geologic units within each basin for secure, long-term storage of CO2. This project aims to determine the CCS potential of the Fort Worth Basin in North Central Texas. This study first utilizes a modified method of basin screening and ranking for CCS to assess the different geologic units and five areas of the Fort Worth Basin. The ranking considers regional and local geologic and economic factors. The geologic units include the Cambrian and Ordovician dominated by limestone, Mississippian dominated by shale, and Pennsylvanian and lowermost Permian characterized by interbedded shale, sandstone, and limestone. These five areas, including the northeastern, eastern, southern, western and Bend Arch regions, are divided based on the Paleozoic tectonic and subsidence history. Our results show that the Pennsylvanian and lowermost Permian units in the northeastern, eastern, and Bend Arch areas have the highest suitability, and the Cambrian and Ordovician unit throughout the basin have the lowest suitability. The CCS potential of the Pennsylvanian and lowermost Permian in the northeastern part of the basin and the Bend Arch area will be examined in depth to quantitatively estimate the CCS potential.

Use site screening and ranking methods for various geological and economic factors to determine what sections and units of the Fort Worth Basin hold the highest potential for carbon capture and storage geared for use by major power generation stations.

Site Charcterization for Potential Geologic Carbon Capture and Storage in the Fort Worth Basin, Texas

Mary Ann Moody , Majie Fan

Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates St., Arlington Texas, 76019


				Onangi	apiry		Table 1: Site Assessment Criteria								
Seri	es	NA Stage	Group	Formation	Lithology				ssment Cri						
Permi	an	Wolfcampian	Cisco	Harpersville		Harpersville Fm.: Reservoir and Seal	i	Criterion		Classes (j)					
		Virgilian	CISCO	Thrifty Graham		Thrifty Fm.: Reservoir and Seal Graham Fm.: Reservoir and Seal		_	1	2	3	4	5	Weight	
ian		Missourian	Canyon	Home Creek Lm. Colony Creek Sh. Ranger Limestone		Home Creek Lm.: Reservoir Colony Creek Sh.: Seal Ranger Limestone: Reservoir	1	Tectonic Setting	Convergent Oceanic Basin	Convergent Intramontane Basin	Shelf	Divergent Foreland Basin	Divergent Cratonic Basin	0	
	pper			Placid Shale Winchell		Placid Shale: Seal Winchell Fm: Reservoir	2	Depth	Shallow (<1500 m)	Intermediate (1500-3500m)	m)			0.09	
				Wolf Mountain Sh.		Wolf Mountain Sh.: Seal		Geology	Extensively faulted	Moderately faulted and fractured	Limited faulting and fracturing, extensive shales				
				Palo Pinto		Palo Pinto Fm.: Reservoir	3							0	
				Mineral Wells		Mineral Wells Fm.: Reservoir and Seal									
	Middle	Desmoinesian		Brazos River		Brazos River Fm.: Reservoir	4	Reservoir Flow Systems	short range flow systems	Intermediate flow systems	Regional, long range flow				
			Strawn	Mingus		Mingus Fm.: Seal								0.1	
ylvar				Grindstone Creek		Grindstone Creek Fm.: Reservoir		Systems		Moderate	systems				
Pennsy				Lazy Bend		Lazy Bend Fm.: Reservoir and Seal	5	Geothermal	Warm (>35 deg C/km)	(20-35 deg C/km)	Cold (<20 deg C/km)			0.12	
	Mic	Atokan	Bend	Smithwick		Smithwick Fm.: Reservoir and Seal	6	Hydrocarbon Potential	None	Small	Medium	Large	Giant	0.08	
				Big Saline		Big Saline Fm.: Reservoir	7	Maturity	Immature R₀ < 0.6	Mature R₀ 0.6-1.1	Overmature R₀ > 1.1			0.1	
	ower	Morrowan		Marble Falls	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Marble Falls Fm.:Reservoir and Seal	8	Coal and CBM	None	Deep (>800m)	Shallow(200 -800m)			0.06	
rian Ordovician Alississippi	<u>л. Т</u> .	Chesterian		Barnett Shale		Barnett Shale: Seal	9	Lithology	Limestone with no saline water present	Shale or	Alternating sandstone and shale	water		0.12	
	2	Meramecian										present			
	ζĽ.	Osagean	Viola	Chappel Viola		Chappel Limestone through Riley Fm. :Reservoir	10	Onshore/ Offshore	Deep Offshore	Shallow Offshore	Onshore			0	
	:-		Simpson	Simpson	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11	Climate	Arctic	Sub-Arctic	Desert	Tropical	Temperate	0.1	
	M.	Canadian	Ellenburger	Honeycut	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Conglomerate	12	Accessibility	Inaccessible	Difficult	Acceptable	Easy		0.05	
				Gorman		Sandstone	13	Infrastructure		Minor	Moderate	Extensive		0.07	
		Orarkier	C	Tanyard	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14	CO2	None	Few	Moderate	Major		0.11	
		Ozarkian	Moore	Wilberns	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Limestone	14	Sources	NUTIE	I GW	Moderate	wiajui		0.11	
Camb	M.	Upper	Hollow	Riley		Shale	Formulas for Section and Unit $F_{ii} = F_{i1}$								
E_{0} <												$=\sum_{1} w_i P_i^{\kappa}$			

						Re	sul	ts-										-Future Directions				
Table 2: Unit Results Per Section				Cambrian	and Ordovid	cian J Value	es		Miss	issippian J	J Values Pennsylvanian and Lowermost Permian J Values											
Criterion	Maximum J Values	Weight	Section 1	Section 2	Section 3	Section 4	Section 5	Section 1	Section 2	Section	3 Section 4	Section 5		-				 Use well log data from the 				
Tectonic Setting	5	0	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	northeast section of the basin to				
Depth	3	0.09	2	2	1	1	2	2	2	2	1	1	2	2	2	2	2	perform lithologic correlation of				
Geology	3	0	1	1	3	1	3	1	1	3	1	3	1	1	3	1	3	units which have potential to be				
Hydrogeology	3	0.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	used as reservoirs for CCS.				
Geothermal	3	0.12	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2					
Hydrocarbon Potential	l 5	0.08	1	1	1	1	1	4	4	4	2	2	4	4	5	2	2	A Maka ataraga papapitu patimatag				
Maturity	5	0.1	1	1	1	1	1	2	3	2	2	2	2	2	2	2	1	Make storage capacity estimates				
Coal and CBM	3	0.06	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	for promising reservoirs.				
Lithology	4	0.12	4	4	4	4	4	2	2	2	2	2	3	3	3	3	3					
OnShore/Offshore	5	0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Refine storage capacity estimates				
Climate	5	0.1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	using reservoir modeling				
Acessibility	4	0.05	4	4	3	2	2	4	4	3	2	2	4	4	3	2	2	software.				
Infrastructure	4	0.07	4	4	4	2	3	4	4	4	2	3	4	4	4	2	3					
CO2 Sources	4	0.11	4	3	2	2	1	4	3	2	2	1	4	3	2	2	1	References				
	_					<u> </u>	Table 3	Suita	bility Va	alues	Section 1	Section 2	Section 3	Section 4	Section 5	Low' < 40		Alsalem et al. (2017) Late Paleozoic				
	Table 3: Suitability Values Section 2 Section 3 Section 4 Section 5 Low: <.40														Alsalem et al., (2017) Late Paleozoic subsidence and burial history of the							
		-					Cambrian and Ordovician				0.53	0.45	0.4	0.33	0.36	Moderate:	.40 to .59	Fort Worth basin				
1. The Pen	nsylvanian a	and lov	wermc	ost Pei	rmian o	of 🛛	Mississippian				0.54	0.52	0.45	5 0.3 0.28 High: .60 to .79		o.79						
	ast section o		Pennsylvanian and Lowermost Permian				0.63	0.56	0.59	0.47	0.4	0.4 Very High: .80 to 1.00		Bachu S., (2003) Screening and ranking of sedimentary basins for								
I nighest sui	tability with a	a value		03.						1								sequestration of CO2 in geological				
2. Suitability	v decreases	with d	lepth v	within	the ba	sin wi	th the	Camb	orian a	nd O	rdovici	an sh	owina	the lo	west	suitabi	lity for	media in response to climate change				
all sections.	. This is due	to cha	anges	in lithe	ology,	hydro	carbor	n pote	ntial a	nd m	aturity.		0				,	Walper J., (1982) Plate Tectonic Evolution of the Fort Worth Basin				

Stratigraphy-

Doculto

Methodology

