Abstract:

- \Rightarrow Delta Scuti δ -Scuti are a type of variable star that show detectable brightness fluctuations obeying a period-luminosity relationship
- ☆ The brightness fluctuations are caused by unstable excited mode oscillations (fluid waves)
- \updownarrow The Kepler space telescope has observed around 1000 δ -Scuti stars, over half of which exhibit large amplitude variations and evidence for nonlinear mode coupling
- \Rightarrow We demonstrated that this type of nonlinear coupling occurs often δ -Scuti models and can be utilized to explain these observations that contradict the linear theory.
- \bigstar We utilized a second nonlinear mechanism to stabilize the excited waves and showed that we can study the evolution of these modes through time

Direct Coupling in δ -Scuti

- \bigstar We construct 14 δ -Scuti models from four different mass stars using the stellar evolution program MESA
- ☆ With effective temperatures ranging from 7500 K to 8500 K and surface gravity 3.8-4.3 (cgs)

Nonlinear Wave Dynamics in *δ***-Scuti Stars**

Mohammed Mourabit | Nevin N. Weinberg **University of Texas at Arlington**

Mixed Coupling System

- the system
- parametric instability, to stabilize the system
- properties of direct coupling

Nonlinear Mode Coupling:

- ☆ Direct coupling consists of two linearly driven parents (by the kappa-mechanism for δ -Scuti) nonlinearly exciting a third daughter wave
- ☆ For the parametric instability only one parent wave nonlinearly couples to two daughter waves
- no additional assumption than for the direct coupling.
- between the three wave that is observable in these stars:

ApJ- Mohammed Mourabit and Nevin N. Weinberg ARLINGTON 2023 ApJ 950 6

☆ Under the direct coupling nonlinear mechanism, the linearly unstable parents growth needs to be stopped in order to study the evolution of

☆ We propose the use of another nonlinear mechanisms, called the

This offers an elegant solution making use of nonlinear coupling only to study these δ -Scuti stars while conserving the observable

> Fig. 2: From Mourabit & Weinberg 2025 (submitted ApJ), this figure demonstrates the stable limit cycle solution of a simple mixed coupling systems. With the mode amplitude adopting the behaviors we expect from observations

☆ In the mixed coupling model, the parents of the directly coupled triplets are stabilized by parametric daughters. This system requires

☆ The mixed coupling system also retains the amplitude relationship

Fig. 3: Mode coupling with δ -Scuti model parameters. The left panel show the evolution of a simple directly coupled system. The right panel show the evolution of a mixed coupling system as a stable limit cycle

Results:

 \star We find that a large number of triplets have coupling strength $\mu > 10^3$ for all models ☆ Mixed coupling systems in stabilizing the direct coupling mechanism and conserving its observable quality

Conclusion:

- triplets ($\mu > 10^3$)
- ☆ These results are broadly consistent with the coupling strengths from Kepler observations (Breger et al. 2014, Bowman et al. 2016)
- ☆ The Mixed Coupling system allows us to study the evolution of nonlinearly coupled modes without any additional assumptions for δ -Scuti stars.
- ☆ These two works represent a proof of concept for nonlinear wave coupling in δ -Scuti stars and as a following project we will model mixed coupling as a large network of hundreds of modes and their evolution, to simulate the condition of δ -Scuti stars,
- nonlinear coupling

References:

Breger, M., & Montgomery, M. H. 2014, ApJ, 783, 89 Burkart, J. 2012, ApJ, 751, 136

 \Rightarrow In all of our δ Sct models, we find many strongly coupled

 \bigstar We are in the process of analyzing Kepler and TESS data for

Bowman, D. M., Kurtz, D. W., Breger, M., Murphy, S. J., & Holdsworth, D. L. 2016 MNRAS, 460, 1970,

Duguid, C. D., Barker, A. J., & Jones, C. A. 2020, MNRAS, 497, 3400 Weinberg, N. N., Arras, P., Quataert, E., & Burkart, J. 2012, ApJ, 751, 136 This work was supported by NASA ATP grant 80NSSC21K0493.