The diversification of viperid venom genes highlights genomic mechanisms underlying transposon-mediated cis-regulatory element evolution

and T.A. Castoe¹

¹University of Texas at Arlington, Arlington, TX; ²University of California, Santa Cruz, CA; ³Broad Institute of Massachusetts Institute of Technology, Cambridge, MA; ⁴University of Northern Colorado, Greeley, CO; ⁵AntlerA Therapeutics, San Carlos, CA

Abstract

hAT-Tip100 transposable elements (TEs) are known to have been co-opted as regulatory loci (i.e., promoters and enhancers) for the snake venom serine protease (SVSP) gene family in a single viper species¹. This is notable because TEs are sequences that are usually silenced after insertion to protect against their many deleterious effects (e.g., disruption of normal gene regulation or protein-coding potential, ectopic recombination etc.). However, the process by which a normally silenced element becomes one that has a defined regulatory role is not well understood. Here, we leverage functional and comparative genomics applied to the hAT-Tip100 SVSP gene regulatory system of rattlesnakes to understand the genomic drivers of TEdriven regulatory element evolution.

S.S. Gopalan¹, S.N. Smith¹, B.W. Perry², K. Ballard¹, Y.Z. Francioli¹, C. Kim¹, E. Betran¹, J.P Demuth¹, D.C Card³, S.R. Kerwin⁴, S.P. Mackessy⁴, S. Seshagiri⁵,

UNIVERSITY OF TEXAS ARLINGTON