

Introductio	n		Re
mRNA thera	Lipid nanoparticles (LNPs) enable drug delivery for mRNA therapeutics, as demonstrated by the FDA- approved COVID-19 vaccines.		
 LNP component separation is important for quantitation and optimization of lipid composition for desired physical properties, such as surface charge and particle size. 			3500000 3000000 2500000
 mRNA-LNPs are typically analyzed over multiple methods due to the opposing physicochemical properties of their components. 			2000000 1500000 1000000
 Two stationary phase chemistries, C12 and C18/Ar, were used to separate empty LNPs composed of components used in FDA approved LNP formulations within a single method. 			500000
 Mac-Mod EvoSphere columns with nearly monodispersed particle packings were selected to enhance peak shape and efficiency by minimizing eddy diffusion. 			
Methods			-
DSPC (phospholi (PEG-lipid) in a 5	e composed of SM-102 ipid), cholesterol, and D 50:10:38.5:1.5 molar rat n phosphate buffer.	MG-PEG(2000)	2300000 2200000 2100000 1900000 1800000 1700000 1600000 1500000 1400000
	C12 Separation	MAX C18/Ar Separation	1300000 1200000 1100000 1000000
Column	Evosphere C12 (2.1 mm i.d. x 100	Evosphere MAX C18/Ar	900000 - 800000 - 700000 - 600000 -

(2.1 mm i.d. x 100

mm, 3μm)

A: 0.01% TFA

B: IPA, 0.01% TFA

50°C

Gradient, 70-95 B%

(5 min); hold 3

0.20 mL/min

1Q MS, SCAN (+),

SIM (+): m/z 369,

711, 791

Column

Mobile Phase

Oven

Temperature

Time Program

Flow Rate:

Detection:

Sc
1.
2.

500000

400000

300000

200000

100000

-100000

(2.1 mm i.d. x 100

mm, 3μm)

A: 0.1% FA

B: IPA, 0.1% FA

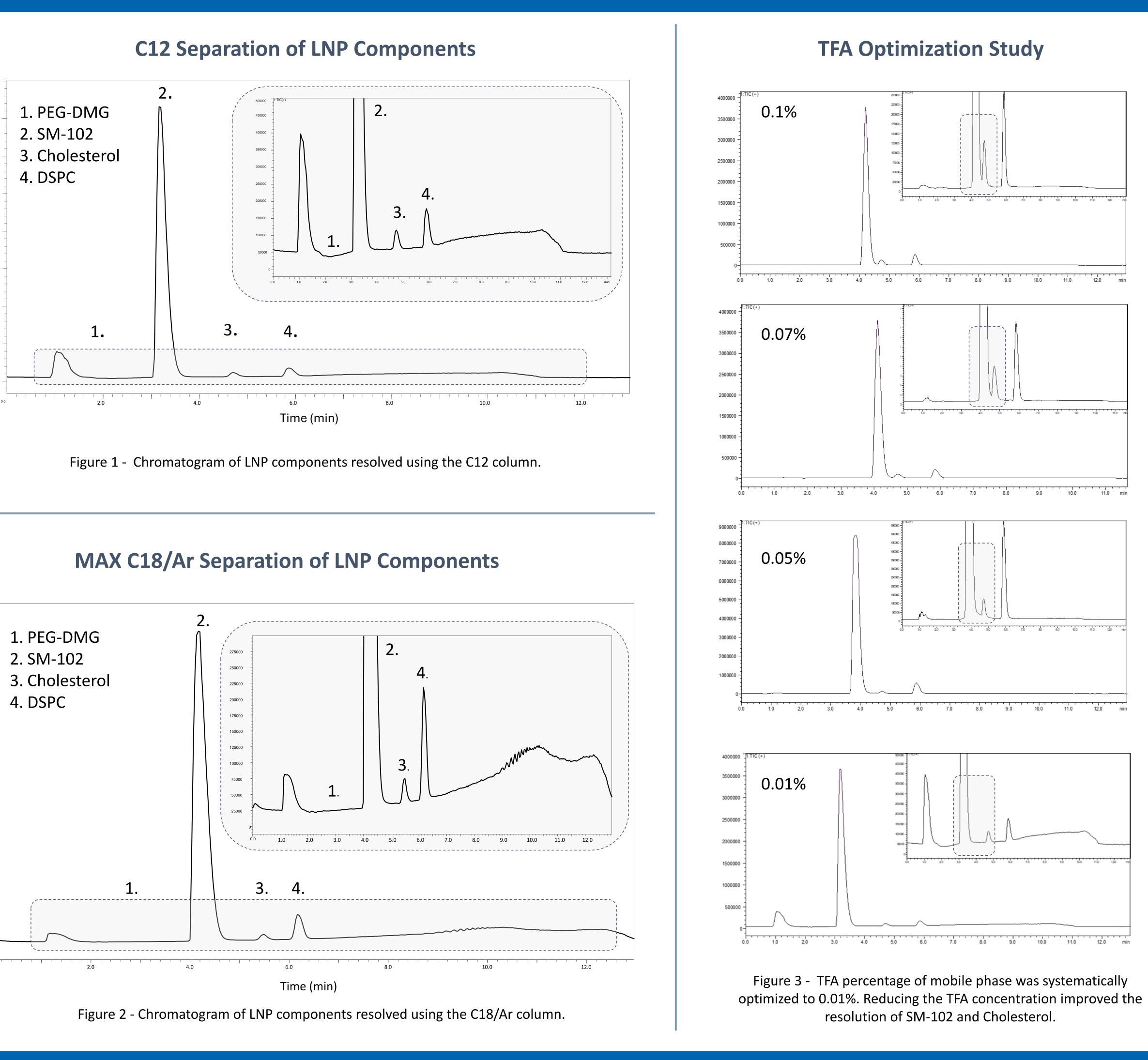
50°C

Gradient, 70-95 B%

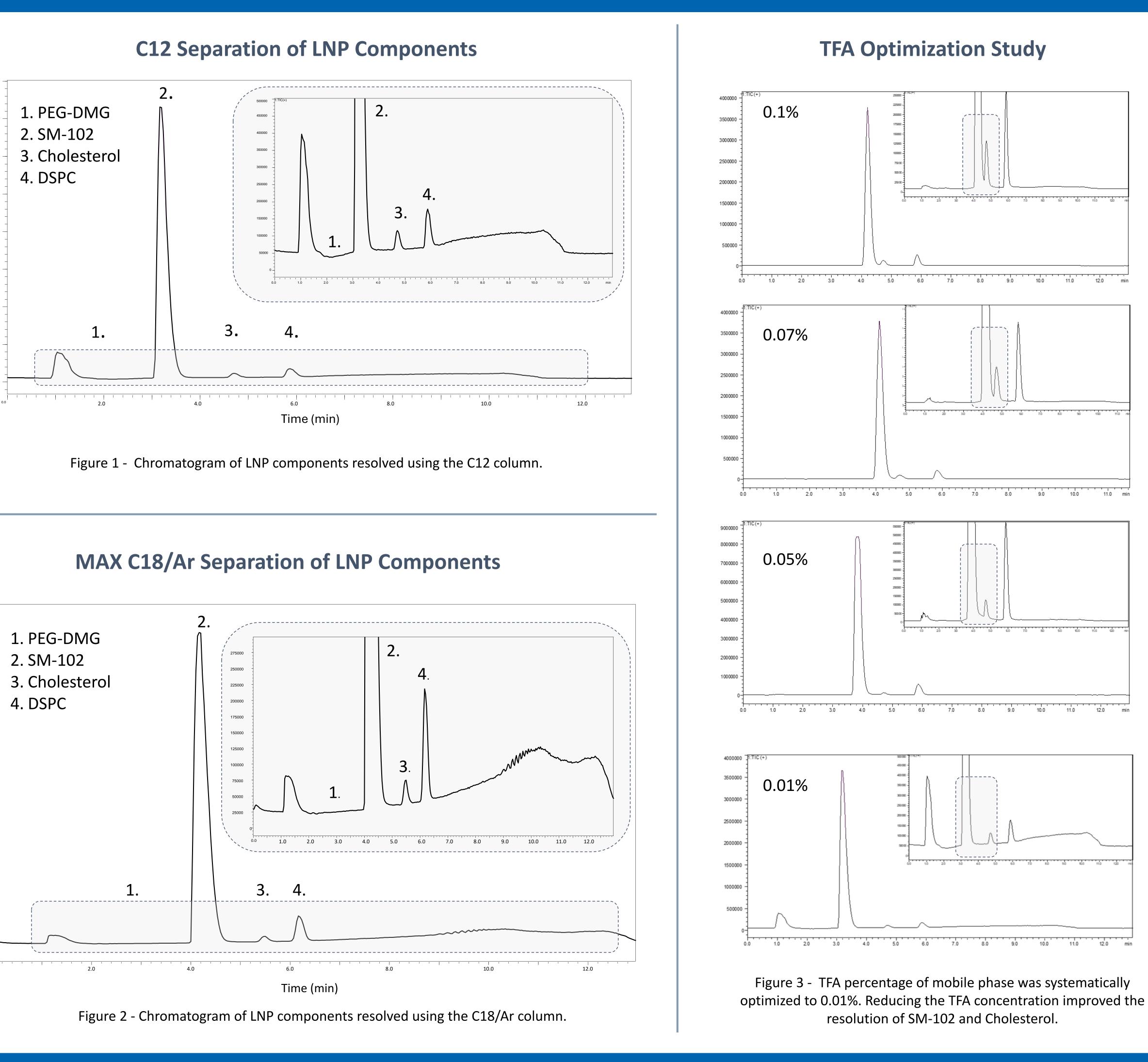
(5 min); hold 3

0.20 mL/min

1Q MS, SCAN (+),


SIM (+): m/z 369,

711, 791


Simultaneous separations of lipid nanoparticle components using nearly monodisperse, mixed-mode stationary phases

Brady W. Drennan, <u>Rebecca L. Taylor</u>, Phat Dinh, Kevin A. Schug Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas

esults

ources

Li Li, Joe P. Foley, Roy Helmy. Simultaneous separation of small interfering RNA and lipids using ion-pair reversed-phase liquid chromatography. Journal of Chromatography A, Volume 1601, 2019, Pages 145-154. ISSN 0021-9673.

Sylwia Studzińska, Szymon Bocian, Luca Rivoira, Ed Faden, Geoff Faden. Separation and identification of oligonucleotides impurities and degradation products by reversed phase ultrahigh performance liquid chromatography using phenyl-bonded stationary phases without ion pairs - A step towards sustainability. Journal of Chromatography A, Volume 1736, 2024, 465380, ISSN 0021-9673.

PEG-DMG Mass Spectra

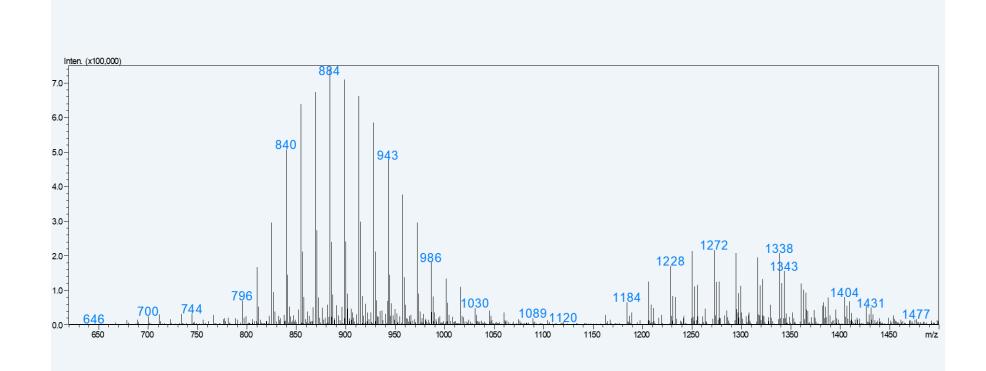


Figure 4 – PEG-DMG mass spectra from the chromatogram in Figure 1 as proof of detection. The diluted PEG-lipid did not present a peak in the chromatogram.

Discussion

C12 separation

- The ion pairing agent, Trifluoroacetic Acid (TFA), improved resolution by increasing the retention time of charged species.
- Initially, SM-102 and cholesterol partially coeluded. A reduction in TFA further improved separation, thus the TFA percentage of the mobile phase was systematically optimized from 0.1% to 0.01%.
- The low concentration and high polydispersity of DMG-PEG led to weak signal response, but was still detectable (Figure 4), eluting before the other components.

MAX C18/Ar separation

- The C18/Ar column provided a comparable lipid separation without the need for a TFA ion pairing agent.
- The aromatic groups provide "ring stacking" interactions with cholesterol, thus retaining longer than SM-102.
- Ion pairing agents can cause column and MS contamination. These reagents are also environmentally toxic.
- This method will be used for lipid quantitation and subsequently optimized for RNA and lipid separations.

Acknowledgements

The authors acknowledge the support and guidance from the University of Texas at Arlington, MAC-MOD Analytical, and Shimadzu Inc.

