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Introduction
• Venom represents a powerful model for studying the evolution of novel 

organismal traits due to its tractable number of gene families that have a 

direct effect on fitness1–4. 

• Snake venom has been the subject of considerable study in recent 

years4,5, with recent work finding that the unfolded protein response 

(UPR) and the extracellular signal-regulated kinase (ERK/MAPK) 

pathways have been co-opted to regulate venom gene (VG) expression 

pre-transcriptionally5. 

• There is also evidence that VGs are post-transcriptionally regulated 

through microRNA (miRNA) binding and degredation6–9. 

• miRNAs are small RNA molecules ~22 nucleotides long that are 

known to act as post-transcriptional repressors10. 

• Conversely, other work has indicated that post-transcriptional regulation 

has little effect on protein abundance3.

Methods
• We collected seven snakes from three different species (Crotalus 

viridis viridis, C. oreganus lutosus, and C. o. concolor), gathering 

RNA-Seq, small RNA-Seq (smRNA-Seq), and protein mass 

spectroscopy data from each. 

• We normalized both the smRNA-Seq and RNA-Seq using 

DESeq210 for downstream analysis. 

• Using ShortStack11 and miRanda12 we quantified miRNA 

expression and putative targets.

• We used these results to generate inferences about how miRNAs 

affect venom composition within and between species. 

Fig. 2. Inferred venom gene – miRNA 
regulatory network. A) Network of all 
VGs with detectable expression and the 
miRNAs that target them in the 3’UTR 
region. Node size represents average 
expression level. B) High confidence 
network of 3’UTR targeting miRNAs and 
the venom genes they target (binding 
score ≥ 155; binding energy ≤ -7).

Fig. 1. Variation in venom gene expression in both the transcriptome and 
proteome and variation in miRNAs that target them. A) Variation in mRNA 
and protein expression for all paired samples. B) Variation in expression for 
miRNAs that target the above VGs.
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Conclusions
• Venom gene expression and venom targeting miRNAs vary considerably within and between species (Fig. 1).

• We find an extremely complex network between miRNAs and target loci (Fig. 2), with relationships being highly variable within and between 

venom gene families.

• There is a subset of venom genes that have considerable evidence for miRNAs modulating expression levels for at both post- and pre-

transcriptionally (Fig. 3).
• Venom genes and the miRNAs that target are generally co-expressed, and we were able to detect this despite small sample size (Fig. 4).

• The likelihood that a venom gene is expressed, in either the transcriptome or proteome, decreases as the number of miRNAs that target it 

increases (Fig. 5). 
• In totality of the evidence available, it is likely that miRNAs play notable role in the modulation of venom gene expression, despite previous 

work indicating post-transcriptional control mechanisms contributed little to venom variation3.
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Fig. 3. Subset of venom genes and miRNAs predicted to interact that have 
strong evidence for expression modulation. A) Two VGs (SVMP7 and SVSP7) 
and the miRNAs that target the. Results show a general pattern of higher 
expression of miRNAs in samples with lower venom expression. All loci present 
were significantly differentially expressed. B) VGs with venom protein residuals 
that were strongly correlated (r > ±0.5) with miRNAs that target them. 

Fig. 5. Probability of mRNA and protein expression vs. the number of miRNAs that target a given VG. 
A) Probability that an mRNA is expressed (expression threshold > 1000 raw counts) against the number of 
miRNAs that target a given gene. B) Probability that a VG protein is expressed against the number of 
miRNAs that target it.

Fig. 4. Hive plot of WGCNA modules containing both miRNAs and VGs. miRNAs and VGs WGCNA 
modules, with miRNAs and VGs split between tracks to show intra-module targeting relationships. On 
average, intra-module putative target relationships are more numerous than inter-module target 
relationships (correct for module size).
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