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RMB markets under asymmetric volatility spillovers 
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Abstract:  
The exchange rate system in China is unique, where onshore and offshore markets exist for a 
single currency. This paper investigates the evolution of information transmission for each 
market and explores their relative roles in driving price discovery and volatility spillovers as the 
RMB becomes more market oriented. We find that onshore returns and volatilities are 
increasingly influenced by the offshore market, with differences across various exchange rate 
policy phases. Using a novel method to capture asymmetric spillovers, the findings also show 
that the volatility of the onshore market is much more susceptible to offshore shocks when the 
RMB depreciates. To determine the factors influencing the strength of volatility spillovers, we 
provide additional regression analysis. The results show that capital flows and the degree of 
intervention are important determinants of information flows under unexpected RMB weakness 
in recent samples.  
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I. Introduction 
 
There are few events in international finance over the past two decades that have been more 

remarkable than the ascendancy of the renminbi (RMB) on the global stage. Internationalization 

has been accomplished through the establishment of satellite markets in offshore centers rather 

than through liberalization of the capital account. The co-existence of two currency markets, 

with onshore and offshore exchange rates referred to as CNY and CNH, provides opportunities 

to officials to test-pilot programs and expand the use of China’s currency, while avoiding the 

consequences of too quickly liberalizing capital flows in a domestic financial market that has not 

fully matured. However, challenges exist if speculation could be channeled onshore, especially if 

the offshore market dominated information flows. As liberalization accelerates, spillovers into 

China can create unsettling exposure to international financial risk, threatening RMB stability. In 

the opposite direction, impacts flowing from the mainland could convey information to the 

global economy as the exchange rate system in China evolves. More generally, spillovers 

provide crucial information that can be used by currency traders and policy makers in 

understanding price discovery and assessing new risks (see Ross, 1989 and Hong, 2001). 

The special case of segmentation of two markets for one currency has attracted growing 

academic attention, yielding a new flourishing research area. There have been a small number of 

studies focusing specifically on return differentials (Funke et al., 2015, Liang et al., 2019, and 

Sun et al., 2020), and a larger literature has studied information transmission between the two 

markets. In terms of the latter line, several studies concentrate on the state of return and volatility 

spillovers (see Maziad and Kang, 2012, Cheung and Rime, 2014, Ding et al., 2014, Ho, Shi, and 

Zhang, 2018, and Hu et al., 2023). Other studies have analyzed the impact of specific economic 

events or changes in policy. For example, Chen and Xu (2021) explore the impact of the 
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inclusion of the RMB in the IMF’s special drawing rights basket, while several studies 

specifically analyze the effect of the milestone exchange rate reform on August 11, 2015 (see, 

for example, Chen 2020, Li et al. 2021, and Xu et al., 2021). Within the literature, a consensus 

has emerged that spillovers exist and are time varying (see, for example, Xu et al., 2017, Wan et 

al., 2020, Zhao et al., 2021 and Tian et al., 2023).  

Although research has shown that the relationship between the two markets has changed 

over time, few studies explore the evolution of the relative strength of each market in 

information flows. Existing research has also not addressed what factors drive volatility 

spillovers. We contribute to the existing literature by specifically exploring how and why the 

strength of the relationship between the two markets has changed. We are motivated by the fact 

that exchange rate policy within China has continually shifted, with a general move to a more 

flexible currency. Trading bands for CNY rates have gradually widened and there have been 

additional reforms associated with establishing a more market based central parity rate (see, Das, 

2019). While the onshore exchange rate system has changed, the offshore market has also grown 

in importance and is likely populated with heterogenous traders, some of which are more 

sophisticated compared to relatively uninformed agents. In this environment, asymmetric herding 

and enhanced volatility can occur under negative shocks when uninformed traders mimic the 

behavior of leading agents in offshore markets as official support is withdrawn (see Park, 2011).  

The continual evolution of exchange rate policy within China and emergence of the 

offshore market calls for study of the dynamics of the intermarket information spillovers 

between the two markets. International investors are certain to monitor changes to PBoC policy 

in forming expectations regarding the RMB. When officials are heavily involved, traders in the 

offshore market are more likely to receive and process information from the mainland. However, 
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during periods when intervention falls, information embedded in onshore rates declines, and a 

potential vacuum is created.  This is particularly true as market forces have historically been less 

responsible for movements in the onshore rate. The void can be filled by offshore centers, where 

trade occurs in unregulated markets, allowing the RMB to quickly reflect global changes in 

demand and supply (see, Funke et al., 2022).  

Considering the unique environment for the RMB and the continual evolution of the two 

trading centers for the currency, several important questions emerge. First, how has the relative 

importance of each market changed across different exchange rate policy phases as the RMB 

transitions toward a more flexible, market-oriented currency? Are there any general patterns that 

can be observed in the evolving relative roles of CNY and CNH rates in price discovery and 

information flows? In analyzing information flows through volatility spillovers, do we observe 

that the offshore market is more likely to dominate under RMB weakness as the PBoC 

withdraws support? And finally, what factors drive the strength of volatility spillovers from one 

market to the other, under both RMB weakness and strength? 

An understanding of the importance of each market has vital implications for traders and 

policy makers. Recently, exchange rate management in China has been described by Jermann et 

al. (2022) as a two-pillar policy, with officials aiming to balance exchange rate flexibility with a 

currency relative to those of major trading partners that is more generally stable. An 

investigation of the evolution of the relative strength of each market, along with an 

understanding of the factors that impact volatility spillovers reveals the potential risk with 

establishing a link between the onshore and offshore. It can also provide information on the 

relationship between RMB flexibility and overall stability, which has obvious implications for 

exchange rate management. The use of a parallel offshore market for internationalization is 
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unprecedented, providing a learning opportunity for other countries where there is little empirical 

or theoretical guidance. An understanding of the evolutionary features of the intermarket 

relationships, particularly under currency weakness, could allow authorities to foresee and assess 

the consequence of “one currency, two markets.” Policy makers are especially keen to 

understand how the onshore exchange rate will be impacted by shocks from international 

markets under capital account liberalization and a more flexible currency. 

In this paper, we provide a comprehensive empirical analysis of the evolution of 

information and volatility spillovers between onshore and offshore spot RMB markets. To 

accommodate shifting policies and economic conditions, we use rolling samples of 250 daily 

observations. Our approach uses a system with the asymmetric BEKK model of Grier at al. 

(2004) applied to all subsamples. Given evidence of time varying kurtosis and skew in our data, 

we use the multivariate skew-Student density function introduced by Bauwens and Laurent 

(2005).  We further test for breaks in the variance using the modified iterative cumulative sum of 

squares methods pioneered by Inclan and Tiao (1994) and Sansó et al. (2004). Based on these 

tests and changes in policy in China, most notably the August 11, 2015 exchange rate reform 

(hereafter “8-11 reform”), we identify four distinct periods.1 We compute volatility impulse 

response functions (VIRFs) to isolate volatility spillover dynamics under both unexpected RMB 

strength and weakness. The associated VIRFs are used to calculate directional statistics based on 

the analysis of Diebold and Yilmaz (2012), which allows us to quantify both the relative strength 

of each market and to analyze the factors driving volatility spillovers. 

 
1 The use of subsample analysis allows us to study the evolution of spillover dynamics and is also vital to ensure 
robust conclusions. For example, Caporin and Malik (2020) show that the existence of time varying parameters and 
breaks in the conditional variance of financial assets can induce evidence of spurious volatility transmission. 
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Our primary findings can be summarized as follows. We provide compelling evidence 

that during periods when the exchange rate policy in China matures, offshore markets dominate 

the dynamics of the Chinese currency. Whereas evidence from earlier subsamples demonstrates 

that CNY returns are weakly exogenous, results for more recent periods show that the onshore 

market is much more likely to respond to disequilibria. Evidence also shows that when short-run 

mean equation and volatility spillovers exist, information flows are now substantially more likely 

to run from offshore to onshore markets. We further find that asymmetry has become a vital 

feature of volatility dynamics. For example, for the last policy period considered in our sample, 

the offshore market dominates spillovers with near unanimity under unexpected RMB weakness. 

The results suggest onshore investors have increasingly followed offshore investors in RMB 

pricing at the time PBoC support is being withdrawn. Finally, we find that increased capital 

flows and a decline in official intervention are important factors driving information flows from 

the offshore to onshore market under unexpected RMB weakness. 

Our manuscript provides several important breakthroughs that complement the existing 

literature. Our paper is one of only a handful of studies that analyzes volatility spillovers between 

onshore and offshore spot markets and is particularly novel in exploring the evolution of the 

relationship over a sample that spans numerous policy changes. For example, Maziad and Kang 

(2012), Liang et al. (2019), Funke et al. (2022), and Hu et al. (2023) estimate multivariate 

GARCH methods using returns from two markets, sometimes exploring only limited 

subsamples.2 Other studies, such as Funke et al. (2015), consider how the conditional variance of 

 
2 Other studies, including Ho et al. (2018) and Wan et al. (2020) consider the relationship between the volatilities of 
spot and NDF forward markets, where Wan et al. (2020) include policy dummies in relevant GARCH equations. 
Neither study explores the time varying nature of the strength of volatility spillovers. 
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return differentials was influenced by various policy reforms.3 As discussed above, for studies 

such as Liang et al. (2019) that employ subsample analysis, a common theme that emerges is that 

the underlying volatility interactions are likely sample specific. Thus, our use of rolling 

subsamples will allow to avoid spurious volatility interactions, while also exploring the evolution 

of the relationships across a variety of policy changes. 

Second, we appear to be the first paper to study how RMB depreciations differentially 

impact the strength of volatility interactions. As discussed above, under asymmetric herding, 

unexpected currency weakness is expected to impact currency markets differently relative to 

strength. Additionally, as official support is withdrawn, the epicenter of information regarding 

RMB dynamics appears to have gradually shifted to the offshore market where potentially more 

informed agents trade in an unregulated market. In this context, it is worth noting that policy 

makers see asymmetric herding as an especially relevant issue. For example, according to 

China’s Q2-2017 Monetary Policy Report, “pro-cyclical” herding and “irrational” depreciation 

expectations create elevated risks that are more likely to appear during episodes of RMB 

weakness. Anecdotally, episodes illustrating the potential for enhanced spillovers under 

depreciationary shocks are common.4  

Third, we use the multivariate skew Student density to model residuals, whereas many 

studies within the literature use standard inference, despite obvious violations of normality for 

returns.5 This innovation is important, since correct modelling of the underlying density is 

 
3 To our knowledge, using non-econometric methods for volatility, only Zhao et al. (2021) explores the time-varying 
nature of the evolution of the strength of onshore and offshore volatility spillovers without statistical tests. 
4 For example, after the China Foreign Exchange Trade System published the currency basket used in setting the 
daily parity rate in late 2015, traders perceived that it signaled an official intent to weaken the RMB. Subsequently, 
volatility rose, and the currency continued to weaken into early January 2016, falling more than 2% in one week 
alone (see, Cheung et al., 2018). 
5 See, for example, Hu et al. (2023), who estimate a multivariate BEKK model under the assumption of Gaussian 
disturbances and then provide evidence of bilateral spillovers using Wald test statistics. A handful of studies have 
used a standard Student t-distribution in estimation, including Ho et al. (2017) and Funke et al. (2022). 
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known to generate estimators that are asymptotically normal and can yield huge efficiency gains 

relative to the use of QMLE (see, Engle and Gonzalez, 1991). Additionally, more general 

assumptions allow us to employ impulse response analysis using shocks drawn from empirical 

distributions with varying kurtosis and skew. Our findings demonstrate that the expected 

dominance of one market versus the other can depend on how shocks are drawn. 

Finally, we study the factors that drive the strength of volatility spillovers, both under 

unexpected RMB depreciations and appreciations. Several important contributions have shown 

that variables related to exchange rate reform and economic fundamentals are relevant for RMB 

differentials and their volatilities.6 However, we are unaware of any study that seeks to 

understand the factors that specifically impact why one market dominates spillovers during 

specific periods. Additionally, we demonstrate that the same variables can impact the volatility 

relationships differently under unexpected RMB weakness as compared to strength. 

The rest of the paper is organized as follows. In Section 2, we provide background 

information on the unique exchange rate system in China. Section 3 describes the data and 

provides statistical support for the selected split of our subsamples. Section 4 discusses our 

methodology, and Section 5 includes our estimation and testing results. Section 6 contains VIRF 

analysis and discusses the determinants of the relative role of the CNY and CNH exchange rates 

in volatility spillovers. A final section concludes. An appendix is provided, which describes 

implemented tests for breaks in the unconditional variance, technical details related to our 

distributional assumptions, and a thorough description of the algorithms we employ to calculate 

volatility impulse response functions. The appendix also provides details on data we used for 

regression analysis associated with volatility spillovers. 

 
6 Specifically, Funke et al. (2015), Sun et al. (2020), and Liang et al. (2019) show that variables connected to 
changes in policy and liquidity can impact return differentials, their intervals, or associated volatilities.  
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2. Background: Two Markets for One Currency 
 
Exchange rate management of the RMB is quite unique, with the existence of parallel markets 

for the same currency. After the global financial crisis, the introduction of trading in Hong Kong 

set the stage for internationalization of the RMB and establishment of offshore trading centers. 

Although full current account convertibility has largely been achieved, China has effectively 

implemented capital controls that has resulted in two segregated markets for the RMB (see 

Funke et al., 2015).7 Both the onshore and offshore markets constitute the pricing of one fiat 

currency, where each market has unique characteristics. Within the onshore market, an active 

PBoC can have vital impacts on RMB pricing, although regulation might impact the capacity of 

the CNY rate to respond to information. In contrast, a major advantage for the offshore market 

lies in its information efficiency. 

 Although still regulated, the onshore exchange rate has gradually become more market 

oriented as RMB internationalization has also started to materialize. The current environment for 

CNY rates has emerged after continual change in the RMB exchange rate formation mechanism 

(see, Sun et al., 2020). For example, official trading bands relative to the central parity rate 

against the US dollar were widened from 0.50% to 1% on April 16, 2012, before reaching 2% on 

March 17, 2014.8 Subsequently, the PBoC used the exchange rate reform on August 11, 2015 to 

eliminate the convention of an opaque setting of the central parity rate in favor of an objective 

and transparent way to align the exchange rate with market forces. Another major policy 

 
7 China’s capital account has still been ranked among the least open in the world according to the Chinn–Ito index, a 
widely used indicator for capital account openness (Chinn and Ito, 2006).  
8 Lei et al. (2022) argue that China’s exchange rate regime is characterized by evolving De Facto bandwidths that 
are endogenously determined by RMB volatility. After 2017, for example, the authors estimate that bandwidths 
were reduced to +/- 0.80% against the central parity rate. The authors also show that the size of the bandwidths is 
negatively correlated with offshore volatility, suggesting policy makers are aware of the potential for spillovers. 
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occurred on May 25, 2017, when a countercyclical factor (CCF) was introduced. The CCF 

variable was added to offset perceived herding behavior and overshooting that may have been 

present when daily rates heavily weighted the previous day’s closing price. After the CCF factor 

was introduced, the modern system for setting the central parity rate has largely been established. 

The currency still trades within bands of +/- 2% relative to the central parity rate, although 

regular currency interventions have gradually been withdrawn. Broadly speaking, the onshore 

rate has been increasingly determined by market forces. 

In an aim to internationalize the currency and seed the offshore market, several capital 

account restrictions have slowly been lifted and cross-border flows have materialized. Offshore 

settlement began with a small number of currencies in July 2009, and subsequently, cross-border 

flows via international trade have rapidly developed. Capital account liberalization has been 

slower due to capital controls, although several policy changes have further contributed to the 

offshore use of RMB. For example, the RMB qualified foreign and domestic institutional 

investment programs (RQFII and RQDII) were established in December 2011 and November 

2014, and the free trade zone in Shanghai was launched in September 2013.9  

As a free market, offshore trading centers for the RMB can be used for trade settlement, 

investment, hedging, and speculative purposes. Here, the currency can be openly traded globally 

24 hours a day without capital controls or reference to trading bands and the onshore central 

parity rate. The CNH rate is determined by market forces, free from direct intervention from the 

PBoC or entities such as the Hong Kong Monetary Authority.10 Additionally, offshore centers 

 
9  For additional discussion related to changes in Chinese policies impacting capital flows, see Funke et al. (2015), 
Ito (2017), Liang et al. (2019), and Lai (2021) who provides an outstanding history of offshore development. 
10 Liquidity in the offshore market can be impacted through indirect channels. For example, on Jan. 11, 2016, 
HIBOR rates spiked after the Bank of China in Hong Kong withheld funding from the market (see, Funke et al., 
2022). 
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are populated with traders that possess experience and knowledge, such that it is not surprising 

that prior research has found that the CNH rate responds more efficiently to economic and 

financial shocks (see, Funke et al., 2022). Not surprisingly, the size of the offshore market has 

gradually grown, where according to the 2022 BIS triennial survey, roughly 78% of RMB 

transactions occur outside the mainland. 

As the management of the RMB has evolved, it seems natural to question how the 

underlying relationships between the two parallel markets might be impacted. As official 

onshore support is withdrawn, information flows from the source with the comparative 

advantage in market pricing. Although efforts are in place to liberalize the RMB, as discussed 

above, time is needed to allow interbank systems to fully mature. Overall, as China gradually 

transitions more to a market-based system already in place in offshore markets, we expect the 

dynamics of the RMB are increasingly determined by CNH rates. Additionally, traders in 

offshore markets are likely more informed and might be seen as leading agents in the context of 

the heterogenous agent model of Park (2011). As anecdotal evidence above suggests, herding 

develops under negative shocks and onshore investors might follow more informed offshore 

agents. Under RMB internationalization and a more market-oriented onshore rate, the ability for 

information to flow from offshore centers is enhanced. Therefore, we expect that negative CNH-

based shocks associated with unexpected RMB weakness will have a larger impact on CNY 

volatilities than positive shocks. We further posit that the relative impacts of negative shocks are 

even stronger during the same periods where the onshore rate is determined more freely. 

3. Data and Methodology  

For our empirical analysis, we use daily closing spot USD prices of the RMB for both markets. 

Our data begins with the launch of the CNH market on August 23, 2010, ending on July 7, 2023. 
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After taking log differences of the exchange rates and eliminating data due to holidays and 

weekends, we have 3144 observations. The log exchange rates of onshore and offshore markets 

are denoted 𝑠!"#$ and 𝑠!"#%, respectively, where 𝑟!"#$ and 𝑟!"#% yield corresponding returns, with 

𝑟!& = 100&𝑠!& − 𝑠!'(& (, i=CNY,CNH. The original data is provided by Bloomberg.  

 One of the aims of this study is to examine how interactions between CNY and CNH 

markets vary over time as RMB management evolves. The 8-11 reform and introduction of the 

CCF factor on May 26, 2017 stand out as policy changes meriting special attention. To explore 

impacts of other policy changes and economic events on the unconditional variance of returns 

during our sample, we also use the modified version of the iterative cumulative sum of squares 

(ICSS) method originally developed by Inclan and Tiao (1994). The test is applied to both 

squared returns and the residuals from a regression of returns on relevant variables.11 For all tests 

and for both series, two change points were isolated with dates given by July 30, 2015 and April 

18, 2022. The associated test statistics for filtered CNY rates, for example, are given by 2.9931 

and 1.6925, with 95% critical values equal to 1.35 in both cases. The first break point 

corresponds with the 8-11 reform, reinforcing the dramatic impact of this policy initiative, while 

the second break occurs toward the end of our sample. The results of the structural break tests, 

along with RMB-based policy changes, allow us to explore the evolution of RMB dynamics 

grouped into four distinct phases. The associated time periods are labelled “Pre-811” (August 23, 

2010-July 31, 2015), “Transition Period” (August 11, 2015 – May 26, 2017), “Two-Pillar 

Period” (May 27, 2017 – April 18, 2022), and “Post-COVID” (April 19, 2022 – July 7, 2023). 

 
11 Given the analysis below based on a vector error correction system, residuals are obtained from a regression of 
each return series on lags of both returns series and an error correction term. Additional details of the tests can be 
found in the Appendix. 
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Table 1 provides summary statistics for our data, both for the full sample and the relevant 

subsamples as discussed above. Results show that unconditional moments are time varying. The 

earliest subsamples are characterized by a relatively low unconditional standard deviation in both 

returns series, while later samples are more volatile. Additionally, there is strong evidence of 

both evolving skewness and kurtosis and differences in these higher order central moments 

across CNY and CNH returns. Jarque-Bera test statistics, available on request, demonstrate an 

overwhelming rejection of normality for both returns for virtually every subsample. 

Table 1 
Descriptive statistics 

Variable Obs Mean Std. Dev. Skewness Kurtosis Min. Max. 
Full Sample: August 24, 2010 through July 7, 2023 

𝑠!"#$ 3144 0.1529 0.0070 -0.1744 1.9330 0.1369 0.1655 
𝑠!"#% 3144 0.1529 0.0070 -0.1698 1.9800 0.1362 0.1661 
𝑟!"#$ 3144 -0.0019 0.2274 -0.0101 10.2965 -1.8334 1.6070 
𝑟!"#% 3144 -0.0023 0.2763 0.1148 11.7223 -2.6572 2.0003 

Subsample: August 24, 2010 through July 30, 2015 
𝑠!"#$ 1221 0.1589 0.0042 -0.8266 2.9264 0.1468 0.1655 
𝑠!"#% 1221 0.1590 0.0041 -0.6684 2.7020 0.1474 0.1661 
𝑟!"#$ 1221 0.0074 0.1130 0.1141 6.9500 -0.5538 0.5832 
𝑟!"#% 1221 0.0064 0.1589 -0.0205 21.1078 -1.3214 1.6298 

Subsample: August 11, 2015 through May 26, 2017 
𝑠!"#$ 437 0.1507 0.0045 -0.0237 1.6566 0.1436 0.1583 
𝑠!"#% 437 0.1504 0.0041 -0.0085 1.7433 0.1433 0.1582 
𝑟!"#$ 437 -0.0226 0.2177 -0.8791 17.7105 -1.8334 1.1951 
𝑟!"#% 437 -0.0212 0.3099 -0.6985 17.2609 -2.6572 1.4712 

Subsample: May 31, 2017 through April 18, 2022 
𝑠!"#$ 1189 0.1496 0.0057 -0.0159 1.6615 0.1393 0.1595 
𝑠!"#% 1189 0.1496 0.0057 -0.0215 1.6645 0.1390 0.1599 
𝑟!"#$ 1189 0.0062 0.2562 -0.1979 6.5544 -1.5753 1.4253 
𝑟!"#% 1189 0.0057 0.2921 0.0183 6.3623 -1.7436 1.4252 

Subsample: April 19, 2022 through July 7, 2023 
𝑠!"#$ 297 0.1448 0.0039 -0.0511 2.4613 0.1369 0.1564 
𝑠!"#% 297 0.1446 0.0039 -0.1220 2.4248 0.1362 0.1558 
𝑟!"#$ 297 -0.0425 0.4000 0.6379 4.6894 -1.0010 1.6070 
𝑟!"#% 297 -0.0422 0.4690 0.7601 5.3431 -1.3259 2.0003 

Notes: 𝑠!"#$ and 𝑠!"#% denote the log USD price of the CNY and CNH exchange rates. Returns are denoted 𝑟!"#$and 
𝑟!"#%. Time periods for relevant subsamples are shown in headers. 
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In terms of the rolling subsamples, we consider a sequence of 2895 samples, using 250 

observations, corresponding to roughly one year of trading data. To be specific, for the first 

subsample, we jointly estimate model parameters using data from August 24, 2010 through 

August 15, 2011. The subsequent subsample uses 250 observations from August 25, 2010 

through August 16, 2011, and the procedure continues until the end of the sample is reached.  

 
4. Methodology   

Here, we describe the methodology for estimation of the model parameters used to measure 

mean and volatility spillovers. Let 𝑌! = [𝑠!"#$ , 𝑠!"#%]′, and let ϵ! denote a 2x1 disturbance vector, 

with E(ϵ!ϵ!) |Ω!'() = 𝐻! , where 𝐻! is the conditional variance matrix based on the available 

information set, Ω!'(. As pre-tests clearly show that original spot rates are non-stationary 

cointegrated series with unit cointegrating vector, the mean equation model is, 

 
∆𝑌! = 𝑐 +6𝛷*∆𝑌!'* +

+

*,(

𝛬(𝑠!'("#$ − 𝑠!'("#%) + 𝜖! , 
 
        (1) 

where c is a vector of constants, and Λ is a 2x1 vector of speed of adjustment parameters. 

For all subsamples, P is set equal to 1, as this was the value selected by the multivariate 

Schwarz Bayesian information criteria with near unanimity. Based on equation (1), we can 

easily distinguish between short and long-run price discovery. If li is zero, for example, the 

associated exchange rate does not respond to disequilibria, yielding weak exogeneity and 

potential dominance in long-run RMB price discovery. Short-run price discovery is 

measured by cross-coefficients in F and occurs when the lagged return in one market 

contains predictive power for returns for the other RMB rate. 
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To investigate volatility spillovers, we use the asymmetric extension of the BEKK model 

of Engle and Kroner (1995). The asymmetric BEKK model can be written as, 

 𝐻! = 𝐶𝐶) + 𝐴𝜖!'(𝜖!'() 𝐴) + 𝐵𝐻!'(𝐵) + 𝐷𝛯!'(𝛯!'() 𝐷).       (2) 

Here, C is a lower triangular 2x2 matrix of constants, 𝛯! = 𝐼{.&/0} ∘ 𝜖!, where 𝐼 denotes the 

indicator function, and “∘” yields the Hadamard product. A, B, and D are 2x2 coefficient 

matrices, whose off-diagonal elements can be used to measure spillover impacts. For example, 

the row-1, column-2 element of each matrix can be used to test the hypothesis of no CNH-based 

spillover to the CNY-based conditional variance. 

In terms of the distribution of 𝜖!, as discussed above, most studies analyzing RMB 

dynamics employ a Gaussian assumption. From Table 1, we see that there is evidence of time 

varying kurtosis and skew that can differ across CNH and CNY rates. As normality is clearly 

violated in the data, standard inferential results will be unreliable. As described by Bollerslev and 

Wooldridge (1992), one option is quasi maximum likelihood estimation (QMLE) and the use of 

robust standard errors calculated using a sandwich estimator of the variance covariance matrix. 

Alternatively, as pointed out by Engle and Gonzalez-Rivera (1991), one can attempt to correctly 

model the density of 𝜖! , rendering maximum likelihood parameter estimates that are 

asymptotically normal. In this context, parameter standard errors can be consistently estimated 

using the outer product of the numerical gradient, and conventional inference can be applied, as 

we do below. Relative to QMLE, Engle and Gonzalez-Rivera (1991) show that efficiency gains 

from using the correct form of the density can be large when deviations from normality are 

substantial, as seems obvious for many subsamples here. Further, there is likely to be 

independent interest in the time-varying idiosyncratic evolution of the kurtosis and skewness of 

CNY and CNH returns. Finally, we are interested in modelling extreme events in the context of 
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our impulse response analysis, drawing from the empirical distributions of residuals that clearly 

appear to be non-Gaussian. In view of these considerations, we employ the multivariate skew-

Student density originally studied by Bauwens and Laurent (2005).  

Here, define the 2x1 vector, zt, as  z! = 𝐻!'0.30𝜖!. Given two elements, the probability 

density function for the multivariate skew-Student distribution is defined as follows, 

 
𝑓(𝑧!) =

4
𝜋 IJ

𝜉&𝑠&
1 + 𝜉&4

𝛤 M𝜈& + 12 P

𝛤 M𝜈&2PQ𝜈& − 2
R1 +

𝜅&,!4

𝜈& − 2
T
'	(78'44

&,(

U, 
 

 (3) 

where, 

 
𝜅&,! = &𝑠&𝑧&,! +𝑚&(𝜉&

'9',&,  𝐼&,! = W
1	𝑖𝑓		𝑧&,! ≥ −:'

;'

−1	𝑖𝑓			𝑧&,! < −:'
;'

 
     (4) 

Finally, the constants si and mi, which represent the standard deviation and mean of the non-

standardized skew-Student-t density (see, Fernandez and Steel, 1998), are given by, 

 
𝑚&(𝜉& , 𝜈&) =

𝛤	 M𝜈& − 12 PQ𝜈& − 2

√𝜋𝛤	 M𝜈&2P
]𝜉& −

1
𝜉&
^ 

 

     (5) 

 𝑠&4(𝜉& , 𝜈&) = ]𝜉&4 +
(
<'
) − 1^ −𝑚&

4 .  

The idiosyncratic degree of freedom parameters, 𝜈 = (𝜈(, 𝜈4), are inversely related to the 

kurtosis, where a value equal to 4 implies an infinitely large kurtosis. Further, 𝜉&4 can be 

interpreted as a measure of skewness, where values less than 1 imply negative skew, with 

the opposite being true for values exceeding 1. 
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In our analysis, all parameters are simultaneously estimated.12 Although multi-step 

procedures may be expected to yield reliable parameter estimates under normality, Carnero and 

Eratalay (2014) demonstrate that joint estimation of mean and variance equation parameters is 

clearly preferred for certain multivariate GARCH structures under non-Gaussian innovations. 

Given the definition of zt from above, and with q denoting the full set of model parameters 

including the degree of freedom and skewness values, the log-likelihood function is given by, 

 
𝑙𝑜𝑔 𝐿(𝜃) =6{𝑙𝑜𝑔 𝑓(𝑧!) − 0.50|𝐻!|}

=

!,>

. 
     
(6) 
 

5. Estimation Results 

Here, we present test results for various hypotheses related to spillovers on CNY and CNH 

returns and their conditional variances based on equations (1) and (2). Emphasis is placed on off-

diagonal coefficients in relevant parameter matrices, which can be used to measure the impact of 

one market on the other. In all cases, the information matrix using the outer product of the 

numerical score is used to construct t-statistics and Wald test statistics based on a 5% test-size. 

 5.1 Price Discovery 

In this section, we discuss the long and short-run price discovery results from the mean 

equations, concentrating on the four periods that primarily highlight changes in PBoC policy.  In 

the top panel of Table 2, we provide the proportion of times that a given null hypothesis is 

rejected. Individual tests are associated with the null hypothesis that a given parameter is equal to 

0. For the joint hypothesis associated with F, we test the null that f1,2 and f2,1 are both zero. In 

the bottom panel of the table, we report associated median parameter estimates.  

 
12 An iterative method based on a homoskedastic VAR and individual GARCH equations is used to obtain starting 
values, prior to joint estimation of all model parameters using the fmincon solver within MATLAB. Relative to the 
default values, convergence parameters are tightened to minimize local minima and other algorithmic problems. The 
code, which is written by the authors, is available on request. 
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Table 2 
Mean Equation Results 

 
Mean equation: ∆𝑌! = 𝑐 + Φ(∆𝑌!'( + Λ(𝑠!'("#$ − 𝑠!'("#%) + 𝜖! 

Proportion of significant coefficients for identified policy periods 
Coefficients 
Restriction 

 Pre-811 
Period 

Transition 
Period 

Two-Pillar 
Period 

Post- 
Covid 

 
Λ 

MEAN EQUATION: SPEED OF ADJUSTMENT 
𝜆( 0.1111 0.3936 0.5223 0.8889 
𝜆4 0.9846 0.7368 0.4012 0.0303 

 
 
Φ( 

MEAN EQUATION: SHORT-RUN IMPACTS 
CNY → CNY 0.6389 0.5263 0.4903 0.9461 
CNH → CNY 0.5658 0.7506 0.3633 0.4747 
CNY → CNH 0.3045 0.1167 0.0050 0.0067 
CNH → CNH 0.1502 0.0252 0.0008 0.0000 

Joint: Φ( 
𝜙*,+ = 𝜙+,* = 0 

     
CNHÛ CNY 0.6872 0.8604 0.5257 0.3636 

Median Parameter Estimates 
Coefficient 

Vector/Matrix 
 Pre-811 

Period 
Transition 

Period 
Two-Pillar 

Period 
Post- 
Covid 

 MEAN EQUATION: SPEED OF ADJUSTMENT 
Λ 𝜆( (CNY) 0.0038 -0.0402 -0.2100 -0.3610 

𝜆4 (CNH) 0.1254 0.1114 0.1900 0.0757 
 MEAN EQUATION: SHORT-RUN IMPACTS 
 
Φ( 

 

CNY → CNY -0.1729 -0.1553 -0.2353 -0.3323 
CNH → CNY 0.1303 0.1700 0.1652 0.2152 
CNY → CNH 0.0624 0.0420 0.0419 -0.1059 
CNH → CNH -0.0676 -0.0214 -0.0397 0.0193 

DISTRIBUTIONAL PARAMETERS 
Skew 

Parameters 
CNY 1.0947 1.0689 1.0682 1.0213 
CNH 0.8612 1.1099 1.0570 0.8426 

Values of 
(n1, n2) 

CNY 4.2131 2.7463 5.5326 5.4296 
CNH 4.9206 3.0202 4.4696 2.9278 

 
Notes: “Pre-811” refers to results for all subsamples ending prior to Aug. 11, 2015, while “Post COVID” refers to 
samples ending after April 18, 2022. “Transition Period” results refer to samples between Aug. 11, 2015 and May 
26, 2017, with “Two-Pillar” referring to results between May 31, 2017 and April 18, 2022. For every subsample, the 
table reports the proportion of results where the hypothesis that a coefficient is 0 is rejected using t-statistics based 
on numerical standard errors and a 5% test-size. For example, for the coefficient matrix F, CNH → CNY yields 
results associated with the row-1 column-2 element of F, connected to the hypothesis of no short-run returns 
spillover from CNH to CNY markets. 
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As seen in Table 2 above, there is less evidence of short-run bilateral spillovers in recent 

samples. For example, there is statistically significant evidence of short-run spillovers in at least 

one direction in 86.04% of our samples during the transition period. In contrast, the same 

evidence only materializes in 36.36% of the samples after COVID, a finding that can be largely 

explained by the dynamics in the onshore market. In Table 2, for example, the coefficient 

associated with short-run spillovers from onshore to offshore markets is only significant 0.50% 

and 0.67% of the time for findings grouped in our last two subsamples. In contrast, during our 

last subsample, the coefficient associated with short-run spillovers from the offshore to onshore 

market is significant 47.47% of the time.  

Analysis of the long run dynamics between CNY and CNH returns reveals similar 

evidence of the strengthening role of offshore markets, after earlier findings showed onshore 

returns played a leading role in price discovery. Complementing the findings in Table 2, Figure 1 

depicts the values of 𝜆n& , where 𝜆n( hovered near zero for most of the first policy sample, 

indicating that CNY returns were weakly exogenous. This result is confirmed in Table 2, where 

prior to August 11, 2015, 𝜆n( is significant 11.11% of the time. The burden of adjustment clearly 

falls on CNH returns, where 𝜆n4 is significant at the 5% level with near unanimity.13 After the 

introduction of the CCF in 2017, the pattern has completely reversed itself, with a much higher 

preponderance of significant values of 𝜆n(. As again highlighted in Figure 1, 𝜆n( < 0 for almost 

every subsample after the 8-11 reform, while 𝜆n4 has generally been closer to zero, particularly in 

recent subsamples. The results clearly show that weak exogeneity of CNY markets has been 

replaced by a leading role of CNH rates in long-run price discovery.  

 
13 This result is consistent with Cheung and Rime (2014), who also found strong evidence of cointegration between 
CNH and CNY rates and evidence of weak exogeneity in early samples for CNY returns. 



 20 

Overall, our investigation of long and short-run price discovery demonstrates that 

although the relationships are clearly time-varying, the CNH market dominates spillovers after 

the 8-11 reform as CNY rates have become more market-oriented. Existing research supports our 

conclusions, as studies provide mixed findings depending on the sample considered. Early 

research, including Maziad and Kang (2012), Leung and Fu (2014), and Cheung and Rime 

(2014) generally find that onshore markets dominate return spillovers. While some studies, 

including Li et al. (2021) and Tian et al. (2023) provide mixed findings for recent samples, 

others such as Chen (2020), Chen and Xu (2021), and Zhao et al. (2021) generally conclude that 

the relative role of CNH rates in price discovery has been enhanced.  

 

 

Figure 1: Speed of Adjustment Coefficients for CNY and CNH Returns 
 

Results in Table 2 also provide findings related to distributional parameters that highlight 

obvious departures from normality and provide strong evidence supporting our distributional 

assumptions. The findings also yield results that are of independent interest. In general, for the 

last two subsamples, νp( > νp4, implying a lower kurtosis for CNY returns. More granular 

evidence presented in Appendix A.2 shows that νp(	was generally larger than νp4 for all late 



 21 

subsamples, the exception being the period immediately after COVID. The implications are that 

Chinese policy makers have been successful in avoiding unpredictable, extreme changes in the 

daily onshore spot rates that are more common in the offshore market. We also see that the 

median of the skew parameter for CNH disturbances is substantially less than 1 in our final 

subsample. This implies that after COVID, unexpected depreciations of offshore RMB were very 

common. This finding has important implications for volatility spillovers as discussed below. 

5.2 Volatility spillovers 

We turn now to results from our asymmetric BEKK model. Table 3 provides tests and medians 

of squared parameter estimates for individual coefficients. At the top of the panel, like Table 2, 

we provide the proportion of rejections associated with the null that a given parameter is equal to 

0. For example, for the matrix A, “CNY → CNY” reports the proportion of rejections of the null 

that the row-1, column-1 element of A is equal to 0.  

The evidence in Table 3 highlights the importance of asymmetry.14 In particular, for all 

elements of the matrix D, the highest proportion of statistically significant coefficients can 

generally be found in the final two subsamples. Additionally, the squared median parameter 

estimates associated with D are substantially larger in the final subsample, especially compared 

to the period prior to the 8-11 reform. Results are especially strong for the elements of D 

associated with CNH-rates. For example, the coefficient restriction connected to offshore 

markets is rejected 69.02% of the time when analyzing cross-equation impacts during the final 

subsample, where the same hypothesis was only rejected 14.92% of the time for our samples 

prior to the 8-11 reform. The results in Table 3 provide preliminary evidence suggesting that 

asymmetry is an increasingly important feature of RMB-based volatility dynamics. 

 
14 In a GARCH-in-mean context, Smallwood (2022) shows that the consequences of ignoring existing asymmetry in 
BEKK models can be quite severe, while modelling non-existent asymmetry is generally less problematic.  
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Table 3 
Variance Equation Results 

Variance equation:	𝐻! = 𝐶𝐶) + 𝐴𝜖!'(𝜖!'() 𝐴) + 𝐵𝐻!'(𝐵) + 𝐷Ξ!'(Ξ!'() 𝐷) 
Proportion of significant coefficients for identified policy periods 

Coefficient 
Vector/Matrix 

 Pre-811 
Period 

Transition 
Period 

Two-Pillar 
Period 

Post- 
COVID 

Variance Equation: Shock Impacts 
 
𝐴 
 

CNY → CNY 0.5813 0.5744 0.3558 0.0236 
CNH → CNY 0.1533 0.4073 0.2439 0.2357 
CNY → CNH 0.4475 0.5561 0.3280 0.1515 
CNH → CNH 0.4794 0.5011 0.3297 0.1886 

Variance Equation: Volatility Impacts 
 
 

B 

CNY → CNY 0.9270 0.5904 0.5484 0.9630 
CNH → CNY 0.1080 0.3822 0.1775 0.2795 
CNY → CNH 0.1770 0.4851 0.2237 0.2896 
CNH → CNH 0.9434 0.9336 0.6888 0.9764 
Variance Equation: Asymmetric Shock Impacts 

 
D 
 

CNY → CNY 0.2325 0.1167 0.2944 0.3973 
CNH → CNY 0.1492 0.0801 0.3574 0.6902 
CNY → CNH 0.0566 0.2380 0.2372 0.4848 
CNH → CNH 0.2088 0.2471 0.2590 0.7340 

Median Parameter Estimates 
 

 
Pre-811 
Period 

Transition 
Period 

Two-Pillar 
Period 

Post- 
COVID 

 
 

A 
(𝑎&,*4 ) 

ARCH  
CNY → CNY 0.1682 0.3640 0.1487 0.0574 
CNH → CNY 0.0106 0.0570 0.0621 0.0505 
CNY → CNH 0.1236 1.1246 0.2041 0.1612 
CNH → CNH 0.0662 0.3178 0.1560 0.1064 

 
 

B 
(𝑏&,*4 ) 

 

GARCH  
CNY → CNY 0.5919 0.4424 0.5741 0.6081 
CNH → CNY 0.0100 0.0160 0.0643 0.0130 
CNY → CNH 0.0265 0.7129 0.1525 0.0556 
CNH → CNH 0.6603 0.8090 0.8058 0.9810 

 
 

D 
(𝑑&,*4 ) 

ASYMMETRIC COEFFICIENTS  
CNY → CNY 0.0921 0.2073 0.2662 0.3424 
CNH → CNY 0.0098 0.0385 0.2938 0.6103 
CNY → CNH 0.0837 0.4650 0.2149 0.5626 
CNH → CNH 0.0728 0.3543 0.2743 0.9723 

 
Notes: In the bottom panel of the table, we report the median of the squared values of the parameters given the 
quadratic nature of the model. See Table 2 for additional details about the interpretation of test statistics and the time 
periods used for splitting various subsamples. 
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To fully understand volatility transmission, we must conduct tests of joint hypotheses 

connected to the elements of A, B, and D. Accordingly, Table 4 provides summary evidence for 

various hypotheses across each of our four identified policy periods. Specific details regarding 

various restrictions can be found in the table. In Figure 2, we provide a plot of the Wald test 

statistics for all time periods associated with two null hypotheses. The test associated with 

potential spillovers from the offshore to the onshore market is associated with the null that 

a1,2=b1,2=d1,2=0. The corresponding test for spillovers from the onshore market is connected to 

the hypothesis a2,1=b2,1=d2,1=0. With three restrictions, the critical value as depicted in the figure 

is 7.815. 

Table 4 
Joint Parameter Hypotheses 

 
Variance Equation: 

𝐻! = 𝐶𝐶) + 𝐴𝜖!'(𝜖!'() 𝐴) + 𝐵𝐻!'(𝐵) + 𝐷Ξ!'(Ξ!'() 𝐷)  
 

Restriction 
 Pre-811 

Period  
Transition 

Period 
Two-Pillar  

Period 
Post 

COVID 
 

a1,2 = d1,2= 0 
a2,1= d2,1= 0 

VARIANCE EQUATION: NO SHOCK SPILLOVER 
CNH → CNY 0.2850 0.3799 0.5257 0.8418 
CNY → CNH 0.4444 0.5812 0.4886 0.4579 

 
a1,2=b1,2=d1,2=0 
a2,1=b2,1=d2,1=0 

VARIANCE EQUATION: NO SHOCK OR VOL. SPILLOVER 
CNH → CNY 0.3457 0.6407 0.5559 0.8889 
CNY → CNH 0.4784 0.6751 0.5299 0.5320 

ai,j=bi,j=di,j=0 
all i¹j 

NO 
SPILLOVER 

0.5309 0.8307 0.7637 0.8889 
    

VARIANCE EQUATION: NO ASYMMETRY 
D=0 No 

asymmetry 0.5525 0.5309 0.6972 0.9798 
 
Notes: For every subsample, the Table reports the proportion of results where the joint hypothesis that a set of 
coefficients is zero is rejected using Wald test statistics based on the numerical information matrix and a 5% test-
size. A lack of shock spillovers is tested via hypotheses related to off-diagonal elements in A and D, while 
restrictions on A, B, and D can be used to test a null of no shock or volatility spillovers. In the last panel, symmetry 
in Ht is tested using a Wald test associated with the 4 restrictions that all elements in D are jointly zero. Please see 
Tables 2 and 3 for more detail on the relevant subsamples. 
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Figure 2: Wald Test Statistics for Hypothesis 𝑎,,- = 𝑏,,- = 𝑑,,- = 0, 𝑖 ≠ 𝑗 
  

The evidence demonstrates that spillovers from one market to the other appear to be 

highly time varying, with evidence that CNY volatilities most strongly impacted offshore 

markets in the earlier subsamples. In Table 4, for example, we see that during the transition 

period, spillovers are detected 67.51% of the time. Referring to the second panel in Figure 2, we 

observe that evidence of spillovers was especially strong in the immediate aftermath of the 8-11 

reform. For remaining subsamples, the proportion of rejections hovers around 50%. At the same 

time, evidence of spillovers from the offshore market has clearly been strengthening, with 

rejection rates that increased from 34.57% for the first subsample to 88.89% during the most 

recent periods. The dominance of the offshore market is reinforced in Figure 2, where one 

observes a larger test statistic for CNH-based spillovers relative to CNY-based counterparts for 

nearly every subsample during the final period. 
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The surprising rise in the importance of the offshore market is accompanied by a stark 

increase in the relative importance of asymmetry, as seen by an overwhelming rejection of the 

null of symmetry in the conditional variance matrix for our final sample. From Table 4, the null 

that all elements of D are 0 is rejected 97.98% of the time. As discussed above, the negative 

skew associated with CNH disturbances after COVID shows that unexpected weakness in the 

offshore market was rampant. As a by-product, given the elevated role of asymmetry in the final 

sample, we find that CNH markets were largely responsible for recent elevated onshore 

volatility. As shown below, this hypothesis is also strongly supported by our impulse response 

analysis.  

Our findings related to volatility spillovers deviate from prior studies that take a static 

approach and employ standard inference, such as Hu et al. (2023), who provide slightly stronger 

evidence the onshore markets dominate volatility spillovers. Our results are also different from 

Zhao et al. (2021) who use Granger causality tests and fail to find evidence of spillovers in either 

direction, although their directional statistics do indicate a modestly stronger impact of CNH 

rates.15 These weaker findings of offshore spillovers are likely partially attributable to 

assumptions of symmetric volatility spillovers under normality. It should be noted that our 

findings in this section would be similar to existing research if we employed more restrictive 

assumptions. Specifically, in results that are available on request, we also estimated a symmetric 

BEKK model under Gaussian disturbances. Using the Bollerslev-Wooldridge based information 

matrix for the final sample, we only find significant evidence of volatility spillovers from the 

offshore market 71% of the time versus 52% for CNY based spillovers. This implies that with 

the use of more traditional tools, the perceived impact of the offshore market would be 

 
15 In a static model using interest rate adjusted NDF contracts and spot rates with dummy variables, Wan et al. 
(2020) provide evidence that volatility spillovers increase during periods when onshore rates are more flexible.  
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dramatically reduced. The ability to fully understand the consequences of ignoring asymmetry 

can best be accomplished through impulse response analysis, which is considered in the next 

section. 

6. VIRF analysis and factors driving spillovers 

The results in the previous section demonstrate the importance of asymmetric volatility 

spillovers, which appear to be especially important in understanding the dynamics of the offshore 

market. A natural question that arises is how does the existence of asymmetry impact the relative 

dominance of CNY and CNH rates in spillovers? Additionally, what factors drive the relative 

strength of each market, particularly when the RMB depreciates unexpectedly? In Section 6.1, 

we employ extensive simulations based on volatility impulse response functions (VIRFs). The 

VIRFs are used to derive directional statistics and net spillover indices, which are subsequently 

modelled as a function of policy variables and economic fundamentals in Section 6.2. 

6.1 Impulse response analysis 

Hafner and Herwartz (2006) and Shields et al. (2005) provide methods to measure the VIRF 

based on the generalized impulse response function originally proposed by Koop et al. (1996). 

The VIRF ultimately measures the difference between two conditional n-step ahead forecasts for 

the conditional variance matrix given an initial history. Our methods for calculating the VIRF 

closely follows Shields et al. (2005) and Green et al. (2018), with full details and definitions 

available in the Appendix. 

To obtain summary statistics that provide information related to the feedback between CNY 

and CNH volatilities, we use total and directional spillovers as studied by Diebold and Yilmaz 

(2012). For the VIRF, for a given history 𝜔!'(, 𝜆&*,?&./(h) is the relevant statistic that measures 

the contribution of a shock to the j-th variable on the conditional variance of the i-th residual, 
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relative to shocks to both variables (see, Lanne and Nyberg, 2016). For a horizon n, let 

𝑉𝐼𝑅𝐹(𝑛, 𝛿*! , 𝜔!'()& denote the VIRF for the i-th conditional variance given a shock of size 𝛿*! to 

the j-th variable. Then, 𝜆&*,?&./(ℎ) is,  

 
𝜆&*,?&./(ℎ) =

∑ 𝑉𝐼𝑅𝐹&𝑛, 𝛿*! , 𝜔!'((&
4@

A,(

∑ ∑ 𝑉𝐼𝑅𝐹&𝑛, 𝛿*! , 𝜔!'((&
4@

A,(
4
*,(

	𝑖, 𝑗 = 1,2. 
 
          (7) 

Suppressing notation for the history and horizon, 𝜆(4 measures the contribution of shocks to 

CNH returns on the CNY-based conditional variance relative to the aggregate impact of all 

shocks on the CNY-based conditional variance. The reverse is captured by 𝜆4(. To capture total 

spillovers for the k-th subsample, the statistic TOTALk=0.5(𝜆(4
(C) + 𝜆4(

(C)) is used. TOTALk 

measures the proportion of all shocks that are attributable to spillover impacts excluding the own 

equation effects. Similarly, to determine which market dominates spillovers, we analyze the 

statistic NETk=0.5(𝜆(4
(C) − 𝜆4(

(C)). If NETk>0, this implies off-shore markets have a relatively large 

spillover impact, whereas negative values imply the relative dominance of CNY-based shocks 

and volatilities. The directional statistics complement the VIRFs found in Figure 3 and can be 

found in Table 5 below. 

Turning to Figure 3, we report the median values of the VIRFs across each of our four 

identified policy periods. In the panels on the left side, we report impacts associated with shocks 

to CNY returns, with the effects of CNH-based counterparts appearing on the right-hand side. 

We consider the median VIRFs for both positive and negative shocks, considering here a 

baseline case. Specifically, with 𝜎pE012 denoting the standard deviation of the independent 

innovations for CNY returns, 𝛿"#$7 = 2𝜎pE012, and 𝛿"#$' = −𝛿"#$7. Analogous meaning is 

ascribed to 𝛿"#%7 and 𝛿"#%'. 
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Figure 3: Median VIRF (Dotted lines represent cross-equation impacts) 



 29 

Table 5 
VIRF Analyses 
Subsample 

Statistic Pre-811 Period Transition 
Period 

Two-Pillar  Post 
COVID 

Variance Equation Effects: Positive 2-std deviation shock 
Statistic     
Prop. of NETk>0 0.4640 0.3295 0.4172 0.7778 
   Median NETk       -0.1616 -0.3031 -0.1055 0.1942 
   Median TOTALk 0.4275 0.4821 0.4774 0.4756 

Variance Equation Effects: Negative 2-std deviation shock 
 Prop. of NETk>0 0.4897 0.3776 0.6098 0.9899 
   Median NETk       -0.0047 -0.0962 0.0966 0.4139 
   Median TOTALk 0.3828 0.4556 0.4825 0.4972 
 Pre-811 Period Tran. Period Two-Pillar Post-COVID 
Variance Equation Effects: Extreme positive shock (99% from empirical distribution of zt) 
Statistic     
 Prop. of NETk>0 0.4156 0.2243 0.4760 0.5185 
   Median NETk       -0.3688 -0.3521 -0.0431 0.0319 
   Median TOTALk 0.4819 0.4770 0.4854 0.4741 
Variance Equation Effects: Extreme negative shock (1% from empirical distribution of zt) 
 Prop. of NETk>0 0.6121 0.3501 0.6156 0.9899 
   Median NETk       0.1158 -0.1004 0.2188 0.4778 
   Median TOTALk 0.3734 0.3986 0.4858 0.4987 

 
Notes: The Table summarizes statistics related to the VIRFs. If NET>0, the impact of a CNH-shock on the relevant 
CNY variable (relative to the impact of all shocks to the CNY variable), is larger than the impact of a CNY-shock 
on the CNH variable. TOTAL measures the impact of spillover shocks relative to all shocks. For each subsample, we 
provide the proportion of cases where NET>0, along with median values for NET and TOTAL for different shocks. 
Positive/negative “2-std deviation shocks” use twice the standard deviation of zt (the “baseline case”). Shocks are 
otherwise drawn from the empirical distribution of zt. 

The results yield crucial information about the dynamics of the two RMB markets. First, 

from a historical perspective, onshore shocks dominate during our transition period. Clearly, as 

policy makers alter the mechanism for setting the daily parity rate, markets begin to react. This is 

evidenced in Table 5, where the proportion of positive NET statistics is substantially less than 

50%, regardless of how shocks are drawn. Under extreme appreciations, perhaps due to 

interventions aimed at stemming capital outflow, the value of NET was positive in only 22.43% 

of the relevant samples. The findings during the transition period are reinforced through 

inspection of Figure 3, where cross-border impacts (given by dashed lines) only materialize 
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when analyzing onshore spillovers to the offshore market. For all sub-sample splits, except for 

the Pre-811 Period, we observe that onshore shocks tend to impact the offshore market even 

more than domestic volatilities. This suggests that traders on the mainland may have been more 

aware of potential policy changes. 

From Table 5, the growing importance of the offshore market is seen during our last 

subsample, where the NET statistic is greater than 50% no matter how shocks are drawn. Except 

for the transition period, as noted above, we see that under unexpected depreciations of the 

RMB, CNH-based shocks have a larger relative impact in nearly every sample, including the 

Two-Pillar period. Not surprisingly, in results that are available on request, we find that the NET 

statistic under RMB weakness briefly turned negative at the onset of COVID. Even still, under 

unexpected RMB weakness, our NET statistic exceeds zero more than 60% of the time for all 

subsamples from 2017-2022. More generally, the offshore market appears clearly more important 

when shocks are negative, as the NET statistic is always larger under negative shocks relative to 

positive shocks. This finding is highlighted in the final two panels on the right-hand side of 

Figure 3, where positive shocks have a very modest cross-border impact, with huge effects when 

the RMB depreciates unexpectedly. The differences can be even more substantial when shocks 

are drawn from the tails of the empirical distributions of residuals from our estimated model. For 

example, from Table 5, offshore markets dominate 51.85% of the time when the RMB 

unexpectedly appreciates. In contrast, the offshore market dominates with near unanimity for 

extreme unexpected depreciations.16  

 
16 In addition to the more granular results here, we also obtained estimation findings using all observations within a 
given subsample instead of using rolling subsamples. The results are available on request and show that for both 
types of shocks, the value of NET is larger under RMB weakness relative to strength for all subsamples except the 
transition period. We are grateful to an anonymous reviewer for suggesting these findings, which support our 
conclusion that the offshore market is more likely to dominate spillovers in late samples under RMB weakness. 
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Overall, these results show that the offshore market is growing in importance, particularly 

under unexpected depreciations of the RMB. Additionally, the distribution can matter, since the 

relative differences in impacts can be especially acute when news emanates from the tails of the 

empirical densities. For example, as discussed above, we estimated symmetric BEKK models 

estimated under a Gaussian assumption. The results, available upon request, show that the NET 

statistic is equal to 0.60 under both positive and negative two-standard deviation shocks for the 

last subsample. Not surprisingly, the results are virtually identical if we use shocks drawn from 

the tails of the distribution, since a Gaussian assumption imposes symmetry. 

6.2 Factors driving spillover dominance 

Our findings provide additional context for research on volatility spillovers that has 

concluded offshore markets exert a growing influence on the RMB market (see, for example, 

Wan et al. 2020 and Funke et al., 2022). In contrast to existing literature, we can characterize the 

strength of the volatility relationships under both RMB strength and weakness. It would be of 

additional interest to investigate the factors that influence the strength of volatility spillovers 

between the onshore and offshore markets. Although several papers have explored factors 

influencing the conditional variance of RMB exchange rate returns and their differentials, to our 

knowledge, no study has attempted to determine what drives the relative importance of each 

market in volatility spillovers.17 To address the void within existing research, we consider 

regression analysis using our NET variables, following a large literature that studies factors 

driving connectedness among asset classes and across financial markets using dependent 

 
17 Funke et al. (2015) and Liang et al. (2019) show that various exchange rate policy changes impact the conditional variance of 
exchange rate differentials. Liang et al. (2019) also consider additional controls such as the bid-ask spread in the offshore market. 
Ho, Shi, and Zhang (2018) and Liang et al. (2019) use multivariate GARCH methods to analyze the conditional correlation 
between exchange rates in the onshore and offshore market. Liang et al. (2019), for example, use the dynamic conditional 
correlation model and demonstrate a stronger connection between the markets after the 8-11 reform. None of these studies 
attempt to determine what factors drive the relative importance of each market in volatility spillovers. 
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variables derived from spillover statistics.18 To more naturally interpret our NET statistics, they 

are adjusted to take on values between 0 and 1, where values near 0 imply that the onshore 

market is solely responsible for spillovers. Values near 1 are associated with complete 

dominance of the offshore market. 

From our discussion above, we assert that the offshore market is most likely to dominate 

spillovers in recent samples as the PBoC withdraws currency support. Further, when the RMB 

weakens unexpectedly, we contend that information flows are more likely to spillover from CNH 

to CNY rates under more open capital markets and a more flexible currency. Above, we provide 

incomplete evidence supporting these hypotheses, given the finding of an increasing proportion 

of positive NET statistics under negative shocks. Therefore, the most critical variables related to 

our analysis include a measure of official intervention (RES) and capital flows (FLOW). For 

additional controls, we considered numerous variables following the existing literature that 

provides some guidance, albeit not directly related to RMB volatility spillovers. Specifically, we 

added the ratio of the difference between the daily ask and bid rates for the CNH market relative 

to the onshore market (RATIO), along with the difference between onshore and offshore equity 

returns (STOCK). Funke et al. (2015), Liang et al. (2019), and Sun et al. (2020) found similar 

variables to be relevant in their analyses related to RMB differentials and associated conditional 

volatilities. Following Sun et al. (2020), we also include the difference between the offshore 

HIBOR and the onshore SHIBOR rates (SPREAD). Finally, to control for sentiment in the global 

economy, we included the measure of consumer confidence as reported by the University of 

Michigan (CC). Complete variable definitions can be found in Table A.4 in the Appendix. 

 
18 Examples include Tsai (2014), Fernandez-Rodriguez et al. (2016), Yang and Zhou (2017), Rohit and Dash (2019), Wang et al. 
(2023), and Feng et al. (2023). Feng et al. (2023), for example, conclude that cross-border exchange rate spillovers are driven 
primarily by economic fundamentals and monetary policy using net statistics for 21 countries. 
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To more formally assess the drivers of volatility spillovers, we consider the following 

model, where ht denotes a set of residuals, 

𝑁𝐸𝑇!& = 𝑐 + 𝛾(&𝑅𝐸𝑆! + 𝛾4&𝐹𝐿𝑂𝑊! + 𝛾>&𝐶𝐶! + 𝛾F&𝑅𝐴𝑇𝐼𝑂! +
𝛾3&𝑆𝑇𝑂𝐶𝐾! + 𝛾G&𝑆𝑃𝑅𝐸𝐴𝐷! + 𝜂!. 

 

 
        (8) 

Here, 𝑁𝐸𝑇!& denotes the value of the net-statistic at time-t for shock-type “i” . 19 Here, there are 

four different shocks analyzed. We consider the cases of positive/negative shocks given by +/- 

twice the standard deviation of zt. We also consider our NET statistics based on shocks drawn 

from the first and 99th percentile of the empirical distribution of zt.  

 Our assertion that offshore markets should exhibit an increasing influence under negative 

shocks as official intervention is withdrawn and capital flows increase is supported if 𝛾(& < 0 and 

𝛾4&>0, when i corresponds to negative shocks. For additional controls, we generally expect 𝛾>& 	to 

be negative. High levels of US-based confidence are likely associated with the perception of a 

healthy global economy. In this environment, information might be expected to flow from the 

onshore to offshore market given benign international conditions. In general, the expected signs 

of other coefficients are somewhat ambiguous. For example, as the gap between the offshore bid 

and ask spread grow, CNH-based uncertainty might be expected to increase (see, Bollerslev and 

Melvin, 1994). Particularly under negative shocks, a positive value of 𝛾F& might be expected as 

the relative increase in offshore uncertainty is expected to be higher, creating larger spillover 

effects to the onshore market. The higher costs in the offshore market could also signal a 

relatively liquid onshore currency, where we might expect information could flow from the 

 
19 We considered additional controls including the VIX, a policy uncertainty index for China, and the difference 
between the central parity rate and the previous day’s spot CNY closing price. In general, the inclusion of these 
additional controls resulted in a poorer fit or statistical insignificance. Following Funke et al. (2015), these variables 
have been excluded from our final model, with results available on request. Our central conclusions related to 
official intervention and capital flows are robust to the inclusion of these variables. Prior studies have found a 
limited role for VIX in RMB dynamics (see, for example, Sun et al., 2020), while Funke et al. (2015) reports a 
limited role for surprise announcements regarding fundamentals. 
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onshore to offshore trading centers. Prior studies have found that differences in equity-returns 

and interest rates are relevant for RMB dynamics, although the impact on the relative importance 

of each currency was found to be time-varying and ambiguous by Sun et al. (2020) in their 

analysis using interval-based methods. The variable STOCK has been found to be an important 

series capturing both the risk-premium in onshore markets and economic fundamentals. Higher 

rates of return in the onshore market might be associated with a discount on CNH, elevated risk 

in the onshore market, or a reflection of a relatively healthy Chinese economy (see Funke et. al., 

2015 and Sun et. al, 2020). The impact of shocks on CNY and CNH based volatility might, 

therefore, be expected to be time varying depending on which factor most dominates the higher 

onshore share prices. Similarly, a higher spread between HIBOR and SHIBOR could reflect 

differences in monetary policy, borrowing preferences, or reduced liquidity in the offshore 

markets. Overall, the expected influence of STOCK and SPREAD on the strength of volatility 

spillovers is ambiguous and remains an empirical issue we now explore. 

 There might be some concern in the current context as values near the boundaries of 0 

and 1 are not uncommon. Therefore, in Table 6, we report results using the fractional logit 

methodology pioneered by Papke and Wooldrige (1996) with robust standard errors. The first set 

of findings in Tables 6a report results under two-standard deviation shocks, while those in Table 

6b yield findings for shocks drawn from the tails of the empirical distributions. For robustness, 

we also obtained results using least squares estimation with the standard errors of Newey and 

West (1994). For brevity, these findings are not included here, although they generally support 

our conclusions reached below. The findings are available on request. 
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Table 6a 

Determinants of NET volatility spillovers 
Two-std deviation shocks: Fractional Logit with Robust Standard Errors 

Positive Shocks 
  Full Sample 2010-2015 2015-2017 2017-2022 2022-Today 
Variable       
    RES  -0.028*** -0.048*** -0.244*** -0.042* 0.0514 
      [0.004] [0.008] 

 

 

[0.038] 

 

 

[0.023] [0.057] 
    FLOW  0.817*** -0.092 0.290 -1.279*** 9.370*** 
      [0.062] 

 

[0.157] 

 

[0.776] [0.186] [1.132] 
    CC  -0.068*** -0.388*** -0.676** 0.107*** -0.209** 
      [0.005] [0.027] [0.270] 

 

[0.021] [0.090] 
    RATIO  0.705*** -0.054 1.353*** 0.477*** -3.062*** 
  [0.026] 

 

 

[0.068] [0.229] [0.114] [0.611] 

 
    STOCK  -0.006 0.026 0.194*** -0.053** 1.669*** 
  [0.005] 

 

 

[0.016] [0.050] [0.025] [0.199] 
    SPREAD  0.074 1.030*** 1.356** -0.095 -5.237*** 
  [0.049] [0.110] [0.614] 

614] 

[0.217] [1.730] 

 
____________________________________________________________________________ 

Negative Shocks 
Variable       
    RES  -0.020*** -0.001 -0.087** -0.179*** -0.233*** 
      [0.003] 

 

[0.006] [0.035] [0.017] 

 

 

[0.051] 
    FLOW  1.143*** 0.645*** 3.019*** 0.485*** 4.832*** 
      [0.048] [0.127] 

 

 

[0.641] [0.139] 

 

 

[1.167] 
    CC  -0.109*** -0.301*** -1.585*** -0.171*** -0.362*** 
      [0.004] [0.020] 

 

[0.314] [0.016] 

 

 

[0.119] 
    RATIO  0.492*** -0.061 1.400*** -0.231*** -4.947*** 
  [0.021] 

 

[0.054] [0.263] [0.081] 

 

[0.647] 

 
    STOCK  0.000 0.044*** 0.111*** -0.070*** 0.435** 
  [0.003] [0.009] [0.038] [0.019] [0.192] 

 
    SPREAD  0.069* 1.063*** -0.736 0.013 1.670 
  [0.038] [0.079] [0.511] [0.144] 

 

[1.400] 

 
Notes: In brackets, we report robust standard errors, where parameters are estimated using the fractional logit 
model introduced by Papke and Wooldridge (1996). *, **, *** denote statistical significance based on a 10%, 5%, 
and 1% test-size respectively. Shocks are given by twice the standard deviation of zt for each series. 
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Table 6b 
Determinants of NET volatility spillovers 

Extreme shocks: Fractional Logit with Robust Standard Errors 
Positive Shocks 

  Full Sample 2010-2015 2015-2017 2017-2022 2022-Today 
Variable       
    RES  -0.051*** -0.103*** -0.184*** -0.018 -0.320*** 
      [0.004] 

 

[0.010] 

 

[0.038] [0.027] [0.066] 

 
    FLOW  0.683*** -1.565*** 3.029*** -1.656*** 9.539*** 
      [0.070] 

 

[0.206] [0.667] [0.219] [1.585] 
    CC  -0.069*** -0.476*** -1.258*** 0.253*** -0.359*** 
      [0.006] 

 

[0.028] 

 

[0.281] [0.250] [0.097] 
    RATIO  0.656*** -0.150** 1.427*** 0.357*** -4.433*** 
  [0.027] [0.059] [0.240] [0.124] [0.677] 
    STOCK  -0.036*** 0.056*** 0.048 0.079*** 2.406*** 
  [0.005] [0.021] [0.048] [0.030] [0.279] 
    SPREAD  0.420*** 1.387*** -0.412 1.409*** -7.495*** 
  [0.057] 

 

[0.122] 

 

[0.546] [0.252] 

 

[2.396] 

 
____________________________________________________________________________ 

Negative Shocks 
Variable       
    RES  -0.037*** -0.007 -0.035 -0.269*** -0.280*** 
      [0.003] 

[0 

[0.007] [0.029] [0.020] [0.079] 
    FLOW  0.869*** 0.553*** 4.425*** 0.697*** 3.996** 
      [0.055] [0.142] [0.499] [0.157] [1.930] 
    CC  -0.092*** -0.230*** -2.212*** -0.267*** -0.470** 
      [0.005] [0.025] [0.290] [0.019] [0.198] 
    RATIO  0.516*** 0.110 1.478*** -0.121 -4.240*** 
  [0.024] [0.071] [0.234] [0.100] 

 

 

[1.025] 
    STOCK  0.019*** 0.024** 0.134*** -0.131*** 0.373 
  [0.004] [0.011] [0.032] [0.022] [0.300] 
    SPREAD  -0.303*** 0.874*** -2.751*** -1.677*** 1.015 
  [0.051] [0.106] [0.404] [0.164] [2.080] 

 
Notes: In brackets, we report robust standard errors, where parameters are estimated using the fractional logit 
model introduced by Papke and Wooldridge (1996). *, **, *** denote statistical significance based on a 10%, 5%, 
and 1% test-size respectively. Shocks are drawn from the first and 99th percentile for zt . 

 

Turning to the results, under RMB weakness, there is strong support for our hypothesis 

that offshore markets are expected to increasingly dominate information flows in more recent 

samples when the PBoC is less active. Under both types of negative shocks, the coefficient on 

our official reserve variable is always negative and is statistically significant for all subsamples 
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after 2017. When official intervention falls, our NET statistics tend to rise, suggesting 

asymmetric herding may occur as traders assimilate information in the offshore market. The 

same finding is absent when exploring positive shocks. For example, from Table 6a, the 

coefficient is positive for the last subsample under two-standard deviation shocks, and in Table 

6b, it is insignificantly negative for the subsample from 2017-2022 under extreme shocks. 

Perhaps more importantly, there is resounding support for the assertion that under stronger 

capital flows, the offshore market is expected to dominate volatility spillovers when the yuan 

weakens unexpectedly. From Table 6a and 6b, we see that the coefficient on our FLOW variable 

is unambiguously positive and statistically significant for both types of negative shocks and for 

all subsamples. In contrast, under positive shocks, the findings are more mixed. For example, in 

both Table 6a and Table 6b, we see that the coefficient on FLOW is significantly negative when 

the RMB appreciates in value for the sample running from 2017-2022. It seems reasonable to 

conclude that during this time, as capital flows intensified, the PBoC implemented supportive 

policies related to RMB strength causing spillovers from the mainland to offshore centers.  

 The results show that changes in official reserves and stronger capital flows are 

responsible for the strong volatility spillovers from offshore markets under unexpected RMB 

weakness. Additionally, there is strong support for the assertion that US economic instability, as 

measured through US-based consumer confidence, is associated with stronger spillovers from the 

offshore market. As we see, particularly under negative shocks, the coefficient on our CC 

variable is nearly always statistically significant and negative. The implications are that as 

economic instability increases, consumer confidence declines. The information is subsequently 

transmitted from the offshore to the onshore. As expected, the effects of our remaining control 

variables are somewhat ambiguous and time varying. For the full sample, under all types of 
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shocks and estimation methods, the coefficients on our RATIO variable are positive and 

statistically significant. This supports the view that a higher offshore bid-ask spread is associated 

with more offshore uncertainty. The evidence for our subsamples is more mixed. For the STOCK 

variable, there is slightly more evidence across our four subsamples that a higher premium in 

Shanghai is associated with stronger spillovers from the offshore market.  

Curiously, we see that there appear to be differences in terms of how interest rate 

differentials affect the strength of spillovers for the specification where shocks are drawn from 

the tails of our empirical distributions. In particular, from Table 6b under negative shocks, an 

increase in interest rate differentials is more generally associated with stronger spillovers from 

CNY to CNH volatilities, while the reverse holds under positive shocks. One possibility could be 

that when a very weak CNY rate is coupled with a relatively low SHIBOR rate, it reflects an 

official desire to stimulate the economy through currency depreciation and lax monetary policy. 

In these cases, onshore shocks are expected to generate a larger impact on CNH-based 

volatilities. Overall, the findings on our additional controls are not as strong as the results for 

changes in reserves, capital flows, and US-based consumer confidence, suggesting these three 

variables are likely the most important in explaining the strength of spillovers between the two 

renminbi markets. 

7. Conclusion 

The manuscript adds new insight into the relationship between the onshore and offshore RMB 

markets by focusing on the evolutionary features of the relative strength of each market. Our 

analysis shows that as RMB exchange rate management has evolved, so too has the relationship 

between CNH and CNY exchange rates. While evidence shows that both CNH and CNY rates 

contributed to return spillovers prior to the 8-11 reform, feedback is now much more likely to 



 39 

run from the offshore to onshore market. Additionally, the relationship between onshore and 

offshore volatilities has changed, where asymmetry has emerged as a crucial feature of the 

dynamics between the two markets. Most notably, the results reveal that under RMB weakness, 

the offshore market is more likely to dominate information flows in our most recent samples. 

Finally, regression results demonstrate that increased capital flows and a decline in official 

intervention are important factors driving the strength of volatility spillovers, particularly under 

unexpected RMB weakness. 

 Our empirical findings have important implications for policy makers in China, who have 

attempted to simultaneously internationalize the RMB and maintain exchange rate stability. On 

one hand, spillovers can be used by policy makers to obtain information regarding the 

assessment of the market to internal and external changes. The existence of spillovers under 

RMB weakness, in particular, can be used to gauge the potential for enhanced speculation and 

possible crises. If a need arises to blunt CNH weakness, direct intervention in the offshore 

market might not be recommended as it is both costly and undermines the role of the offshore 

trading center as a free market. In rare instances, China could explore the use of macroprudential 

policies, including changes to the flexible reserve ratio for offshore banks maintaining deposits 

in mainland banks. More importantly, it is suggested that China continue to provide transparent 

information related to changes to exchange rate policy, particularly when those changes could be 

interpreted as suggesting a preference for a weaker yuan. Effective communication could be used 

to avoid asymmetric herding under heterogenous information that could create a negative 

feedback loop where misinterpreted signals lead to heightened offshore volatility that spills over 

and impacts China. 
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 Once the capital account in China is fully open and the onshore currency is traded 

without restrictions, RMB segmentation will give way to a unified market-oriented Chinese 

exchange rate. Our finding that the offshore rate has started to take on a more dominant role in 

spillovers indicates that the pace of marketization is increasing. The transition can be aided by 

the removal of remaining regulations, such as those that restrict onshore trading that is perceived 

as lacking a transaction-backed principle in the retail market. Once the onshore market has fully 

matured, possessing depth and information efficiency, it seems likely that the capital account can 

fully open, ushering in the existence of a single, unified market for the Chinese currency. 
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A. Appendix 

A.1 Testing for structural breaks in the unconditional variance of returns. 

We describe here the methodology of Sansó et al. (2004), which was used to calculate the 

modified iterative constrained sum of squared (ICSS) test statistics for breaks in the 

unconditional variances of exchange rate returns. Importantly, the modified ICSS method can be 

applied to test for multiple breaks for a wide variety of dependent processes. 

Let �̃�!4 denote the square of either the original return series or an associated set of 

residuals, and let 𝑐C = ∑ �̃�!4C
!,( . For a sample of size T, the test statistic, denoted MIT, is given by 

𝑀𝐼𝑇 = 𝑠𝑢𝑝
C
�
𝑐C − 𝑘/𝑇𝑐=
𝑇(/4𝜆n(/4

�,       (a1) 

where 𝜆n is estimated using a Bartlett kernel based on the lag truncation parameter, m, that is 

selected via the automated Newey-West (1994) procedure. In particular,  

𝜆n = 𝛾p0 + 26�1 −
𝑗

𝑚 + 1� 𝛾p*

:

*,(

, 𝛾p* =
1
𝑇 6 M�̃�!4 −

𝑐=
𝑇 P M�̃�!'*

4 −
𝑐=
𝑇 P

=

!,*7(

, 
      (a2) 
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The simulations and response surfaces in Sansó et al. (2004) yield finite sample critical values.20 

A.2 Distributional parameters 

We present here the distributional parameters of the models estimated using the multivariate 

skew Student density function applied to CNY and CNH returns in Section 5 of the manuscript. 

Figures A1 and A2 provide plots of  1/νp& and 𝜉n&, highlighting seemingly obvious departures 

from normality and evidence of parameter instability. It is important to note that these parameter 

values are explicitly connected to the multivariate skew-Student density for orthogonalized 

shocks estimated after accounting for mean equation and conditional variance dynamics. In 

short, these statistics, while obviously connected, are not expected to necessarily mirror 

associated kurtosis and skewness parameters for the raw returns series.  

 
Figure A1: Estimates of 1/ν, for CNY and CNH Returns 

 

 
20 The iterative procedure to obtain multiple breaks is described in Inclan and Tiao (1994), with additional details provided by 
Rapach and Strauss (2008). Results were obtained using MATLAB code written by the authors that is available on request. 
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Figure A2: Estimates of 𝜉, for CNY and CNH Returns 

 
In Figure A1, statistics exceeding 0.25 represent a degree of freedom parameter less than 

4, while values of 𝜉n& in Figure A2 less than (greater than) 1 imply negative (positive) skew. 

Viewing both figures together, there are several findings that shed considerable light on the 

evolution of CNH and CNY returns and their relationship with each other. First, in the 

immediate aftermath of the 8-11 reform, there appears to be substantial convergence in higher 

order moments. This is evident from the skewness parameters in Figure A2, where there is little 

discernible difference between 𝜉n( and 𝜉n4. Both sets of innovations also tend to have markedly 

similar implied kurtoses that are quite large, and potentially infinite, during the transition period. 

In stark contrast, across remaining samples, there is clear variation between the higher order 

moments. In fact, as seen in Figure A2, 𝜉n( and 𝜉n4 frequently move in opposite directions during 

our last subsample. It is very relevant to note that only during crisis episodes do we observe an 

elevated implied kurtosis for CNY rates. For example, at the start of 2020, �̂�('( steadily begins to 

rise, implying a sharp rise in the kurtosis of unexplained movements in CNY returns at the start 



 49 

of the pandemic. More generally, (
IJ)
> (

IJ/
 , implying Chinese policy makers have been successful 

in avoiding unpredictable, extreme changes in the daily onshore spot rates that are more common 

in the offshore market. 

A.3 Impulse Response Functions 

For the VIRF, let Qt=vech(Ht), where vech is the half vectorization operator that stacks the lower 

triangular elements of Ht. Hafner and Herwartz (2006) define the VIRF at horizon n as, 

 𝑉𝐼𝑅𝐹(𝑛, 𝑍! , 𝛺!'() = 𝐸[𝑄!7A|𝑍! , 𝛺!'(] − 	𝐸[𝑄!7A|𝛺!'(],             (a3) 

where Zt is a random 2x1 vector of shocks, and Ω!'( is the information set at time t-1. As in 

Koop et al. (1996) and Hafner and Herwartz (2006), the impulse response functions can 

condition on a particular shock vector, 𝑧! = 𝛿, and history, 𝜔!'(, yielding the VIRF defined as, 

 𝑉𝐼𝑅𝐹(𝑛, 𝑧! , 𝜔!'() = 𝐸[𝑄!7A|𝑧! = 𝛿,𝜔!'(] − 	𝐸[𝑄!7A|𝜔!'(].         (a4) 

The associated measure in (a3) can be interpreted as a realization of the random variable in (a4). 

In the manuscript, we are specifically interested in extreme shocks to news, associated with the 

tail behavior of the independent innovation, zt, referenced in equation (a4). The empirical 

distribution is used to draw these shocks, and we also considered a baseline case where shocks 

are given by twice the standard deviation of the relevant element of zt. We calculate a sequence 

of VIRFs for each of the 2895 subsamples that each consist of 249 observations, given P=1. 

Figure 3 in the main text of the paper provides the median VIRF across each of our four 

identified policy-based subsamples. 

Below, we provide the steps used in the calculation of the volatility impulse response 

functions for each of our 2895 subsamples. 
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i. For each subsample, from the estimated conditional variance matrices (𝐻�!) and 

associated residuals (𝜖!̂), retrieve the news vector for each time-period in the sample 

as �̂�! = 𝜖!̂𝐻�!
'(/4. 

ii. For CNY-based returns, extreme negative (𝛿"#$') and positive shocks (𝛿"#$7) are 

obtained from the 1st and 99th percentiles of �̂�!. Shocks for CNH-based returns are 

analogously obtained. These shocks are fixed for each subsample. 

iii. Within a given subsample at time-t, we condition on each available history, 𝜔!'(. At 

each history, we randomly sample with replacement from all elements of the news 

variables in (i) to obtain h bootstrapped innovations, {𝑧!7A∗ }, n=0,..,h-1. A second set 

of innovations is obtained that is identical to these, except that the desired element of 

𝑧!∗ is replaced with the shock from step (ii). Denote these innovations as �𝑧!7A∗L �. 

iv. As in Shields et al. (2005) and Green et al. (2018), the time-varying contemporaneous 

dependence is returned to the innovations in step (iii).21 We have, 𝜖!7A∗ = 𝑧!7A∗ 𝐻�!7A
(/4 , 

with analogous meaning for 𝜖!7A∗L .  

v. The bootstrapped errors in step (iv) are used to generate two forecasts for the 

conditional variance matrices using estimated parameters from the asymmetric BEKK 

model in equation (4) in the main body of the paper. The difference between these 

two-forecasted values yields the h values of the VIRF in equation (a4) above.  

vi. For each history, 𝜔!'(, the procedures in steps (iii)-(v) are repeated 𝑅� times. The 

average over all 𝑅� simulations yields the estimated volatility impulse response 

function at time t. Throughout, we set 𝑅� = 500. 

 
21 Following Green et al. (2018), we use the actual estimated conditional variance matrices for each forecasted time period. 
Coupled with the effect of lagging and differencing, where we start with the third available observation, there are 213 available 
histories to iterate on within each subsample. 
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vii. We update the history to obtain 𝜔! and repeat steps (iii)-(vi) to calculate the estimated 

impulse response functions for time-period t+1. 

The procedures in steps (iii)-(vii) are repeated until the end of the sample is reached. Following 

Green et al. (2018), we use the average of all days in each subsample as our final measures of the 

associated impulse response functions. 

A.4 Variable Definitions for Supplemental Regressions in Section 6 

Table A.1 
 

Variable and what it proxies Variable Definition Sourse 
Official intervention index: 
       Changes in official reserve 
 

RES 100 multiplied by the ratio of the 
absolute value of the monthly 
change in official reserves divided 
by the absolute value of the 
maximum monthly change over the 
course of the sample 

Wind 

Financial openness 
        Capital Flows 

FLOW 100 multiplied by the ratio of 
financial account assets plus 
liabilities relative to GDP 

Wind 

Consumer Confidence Index 
        Global Economic 
              Confidence 

CC The Michigan Consumer Confidence 
Index (MCCI) at the University of 
Michigan in the United States. 

Wind 

Transactions costs 
        Liquidity 
         

RATIO (CNH Ask – CNH Bid)/ 
(CNY Ask – CNY Bid) 

Bloomberg 

Stock market premium: 
        Premium in Shanghai 
        Captures Fundamentals 

STOCK The price difference between A and 
H shares listed in Shanghai and the 
and Hang Seng Index in Hong Kong 

Wind 

Interest rate difference 
        Liquidity 
        Monetary policy 
        Borrowing  

SPREAD 1-month HIBOR rate minus 1-month 
SHIBOR rate  

Wind 

 
Throughout, to obtain a statistic matching our NET variable, we average the value of these 
variables over the relevant time-period for each subsample. 
 
 
 
 
 
 
 
 


