Supporting Information for

Engineering Central Substitutions in Heptamethine Dyes for Improved

Fluorophore Performance

Lei Guo^{a,*}, Meek Yang^b, Bin Dong^b, Seth Lewman^b, Alex Van Horn^b, Shang Jia^{b,c,*}

Table of Contents

Supplementary Figures	
Figure S1	
Figure S2	
Figure S3	
Figure S4	
Figure S5	
Figure S6	
Figure S7	
Figure S8	
Figure S9	9
Table S1	
Table S2	
Synthetic Procedures	11
Synthetic materials and methods	11
NMR and mass Spectra	22
References	64

^a Department of Civil Engineering, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States

^b Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States

^c Present address: Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, United States

^{*} email: leiguo@uark.edu (L.G.), shang.jia@rutgers.edu (S.J.)

Supplementary Figures

Figure S1 Existing synthetic methods and our late-stage functionalization strategy for indolinium heptamethine cyanine (Cy7) fluorophores containing modification on the methine linkage. (a-c) Synthesis of modified Cy7 dyes from custom Schiff bases (a),^[1,2] from Zincke salts (b),^[3] and from pyridinium benzoxazoles (c).^[4] (d) Our modification starting from the hydrolysis of 4'-chloro Cy7 dyes, followed by aryllithium addition to construct the C-C bond and the subsequent acid workup to reconstitute the fluorophore. The elimination of the tertiary alcohol intermediate can be triggered using strong acid (HCl), weak acid (acetic acid) or during purification on silica.

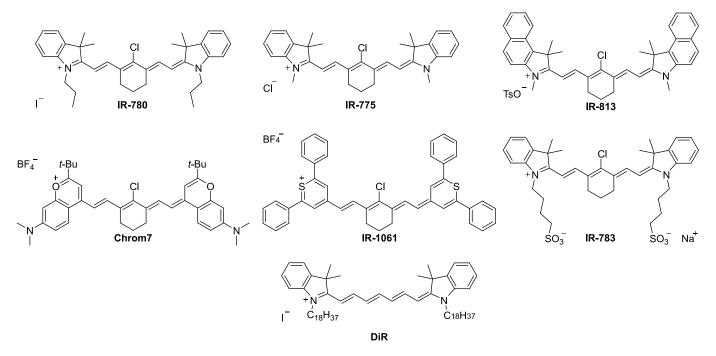
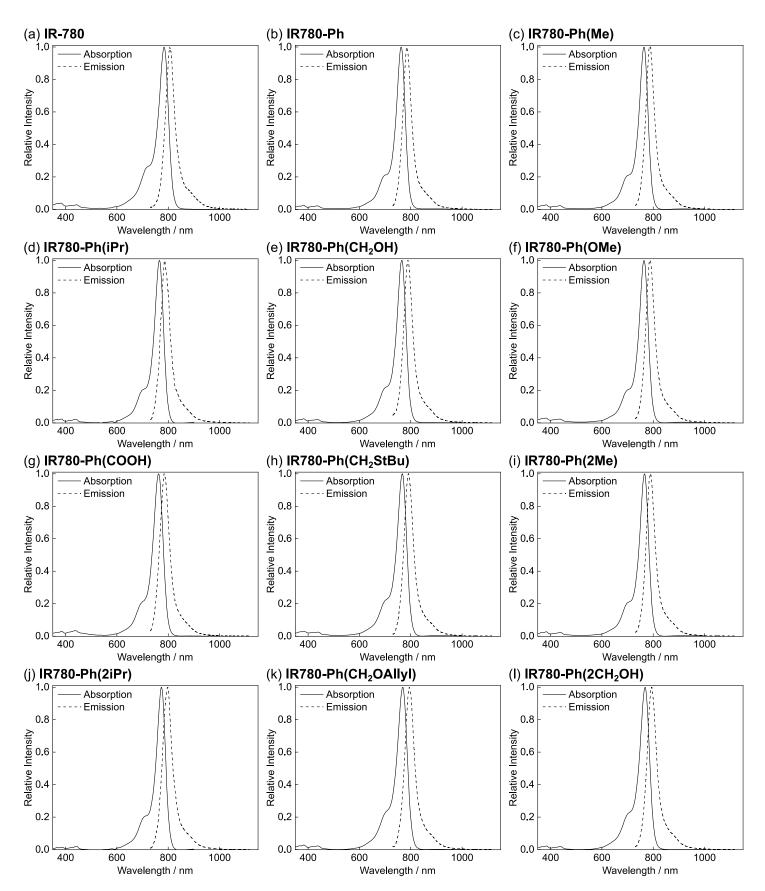
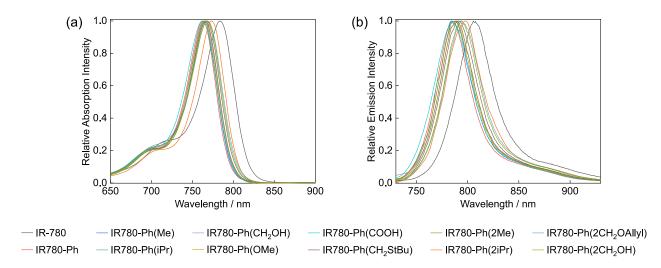
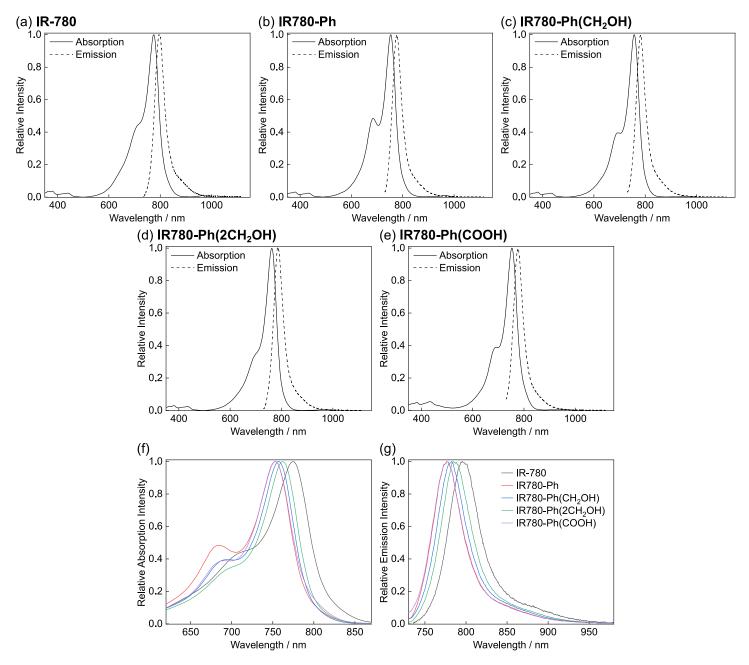
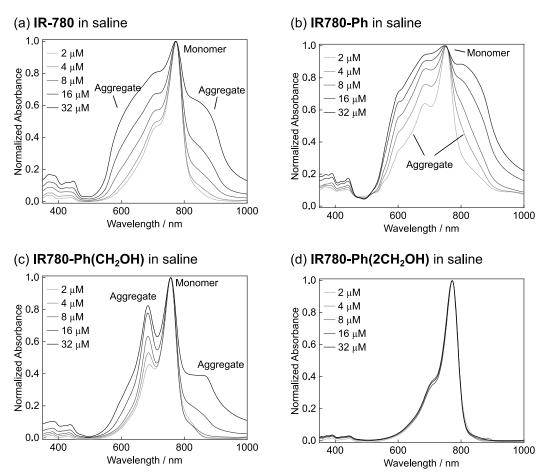
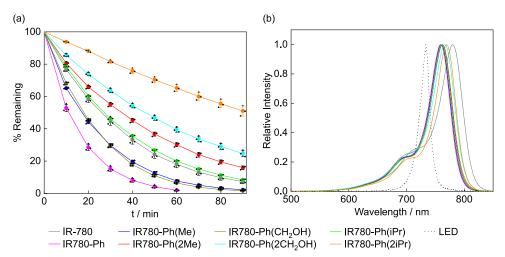
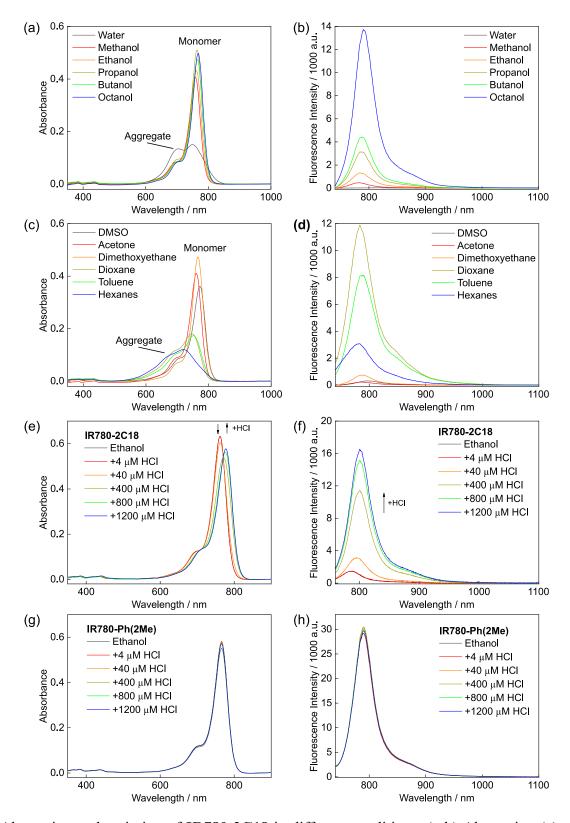



Figure S2 Structures of commercially-available or previously-reported heptamethine dyes in this work.

Figure S3 Normalized absorption and emission spectra of ethanol solution containing 2 μM (a) **IR-780**, (b) **IR780-Ph**, (c) **IR780-Ph(Me)**, (d) **IR780-Ph(iPr)**, (e) **IR780-Ph(CH₂OH)**, (f) **IR780-Ph(OMe)**, (g) **IR780-Ph(COOH)**, (h) **IR780-Ph(CH₂StBu)**, (i) **IR780-Ph(2Me)**, (j) **IR780-Ph(2iPr)**, (k) **IR780-Ph(CH₂OAllyl)** and (l) **IR780-Ph(2CH₂OH)**.


Figure S4 Combined (a) absorption and (b) emission spectra of IR-780 and its derivatives in ethanol.


Figure S5 Normalized absorption and emission spectra of water solution containing 2 μ M (a) IR-780, (b) IR780-Ph, (c) IR780-Ph(CH₂OH), (d) IR780-Ph(2CH₂OH) and (e) IR780-Ph(COOH). Combined absorption and emission spectra are shown in (f) and (g), respectively.

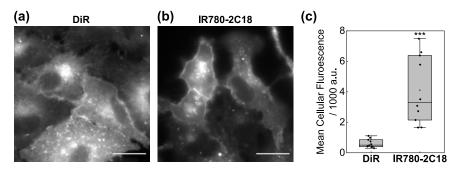

Figure S6 Reduction of aggregation by 4'-aryl modifications. (a-d) Normalized absorption spectra of increasing concentrations of (a) **IR-780**, (b) **IR780-Ph**, (c) **IR780-Ph**(CH₂OH), and (d) **IR780-Ph**(2CH₂OH) in PBS. Absorbance smaller than 2 was measured through a 1 cm light path. Absorbance larger than 2 was measured through a 0.5 cm light path and doubled to represent absorbance at 1 cm.

Figure S7 Photobleach experiment of **IR-780** and its derivatives. (a) Photobleach curves of dyes in 1:1 methanol/water solution under 730 nm LED illumination (6.8 mW/cm²) determined by reduction of their absorption over time. Results are shown as mean \pm s.d. (n = 3). (b) Comparison of absorption spectra of dyes in 1:1 methanol/water for photobleach experiment and the spectrum of LED light source.

Figure S8 Absorption and emission of **IR780-2C18** in different conditions. (a-b) Absorption (a) and emission (b) spectra of 2 μM **IR780-2C18** in alcoholic solvents. (c-d) Absorption (c) and emission (d) spectra of **IR780-2C18** in solvents with varying polarity. (e-f) Absorption (e) and emission (f) spectra of **IR780-2C18** in ethanol with varying concentrations of HCl. (g-h) Absorption (g) and emission (h) spectra of **IR780-Ph** with varying concentrations of HCl for comparison. HCl stock solution (200 mM) was prepared by adding cold ethanol into acetyl chloride.

Figure S9 Comparison of membrane imaging using **DiR** and **IR780-2C18**. (a-b) Representative images of cell stained with 2.5 μM **DiR** (a) and **IR780-2C18** (b). The brightness and contrast in (a) and (b) are adjusted to show the staining of the cell. Scale-bar: 20 μm. (c) Mean fluorescence intensity in A549 cells after incubation with 2.5 μM **DiR** or **IR780-2C18** under same imaging condition after background subtraction. Data are calculated on 10 cells from four independent incubations for each dye. *** P≤0.001; two-tailed Student's t-test.

Table S1 Photophysical properties of Cy7 derivatives.

Compound	Solvent	$\lambda_{max,abs}$ / nm	$\varepsilon_{\rm max}/10^5{ m M}^{\text{-1}}{ m cm}^{\text{-1}}$	$\lambda_{\rm max,ems}$ / nm	$\Phi_{\mathrm{F}}^{\;\;a}$
IR-780	Ethanol	784	2.17±0.03	806	0.208±0.007
	Water	753	1.51±0.06	777	0.109 ± 0.004
2a (IR780-Ph)	Ethanol	762	2.37±0.05	784	0.37±0.02
	Water	774	1.41 ± 0.02	795	0.051 ± 0.001
2b [IR780-Ph(Me)]	Ethanol	764	2.73±0.07	787	0.37±0.03
2c [IR780-Ph(iPr)]	Ethanol	765	2.46±0.04	785	0.258±0.005
2d [IR780-Ph(OMe)]	Ethanol	764	2.46±0.09	788	0.34±0.02
2. [ID700 DL(CH2OH)]	Ethanol	765	2.76±0.05	789	0.37±0.01
2e [IR780-Ph(CH2OH)]	Water	757	1.71±0.04	782	0.096±0.003
2f [IR780-Ph(COOH)]	Ethanol	762	2.05±0.04	784	0.34 ± 0.01
	Water	753	1.18±0.03	777	0.118 ± 0.003
2g [IR780-Ph(CH2StBu)]	Ethanol	767	2.56±0.07	791	0.33 ± 0.02
2h [IR780-Ph(2Me)]	Ethanol	766	2.73±0.05	789	0.36 ± 0.02
2i [IR780-Ph(2iPr)]	Ethanol	774	2.72±0.03	798	0.245±0.007
2j [IR780-Ph(2CH2OAllyl)]	Ethanol	768	2.34±0.04	794	0.38±0.01
2k [IR780-Ph(2CH2OH)]	Ethanol	768	2.47±0.04	794	0.39±0.01
	Water	762	1.95±0.02	785	0.113±0.003
4 (IR780-2C18)	Ethanol	761	3.3±0.1	787	0.0150±0.0004
	Octanol	767	3.39±0.09	790	0.180 ± 0.004

^a ICG in ethanol ($\Phi_F = 0.132$)^[5,6] was used as a reference.

Table S2 Absorption and emission maxima of **3a-d** and their starting 4'-chloro dyes in dichloromethane.

Compound	$\lambda_{max,abs}$ / nm	$\lambda_{max,ems}$ / nm	Compound	$\lambda_{max,abs}$ / nm	λ _{max,ems} / nm
IR-775	785	812	3a [IR775-Ph(Me)]	764	785
IR-813	825	856	3b [IR813-Ph(Me)]	801	826
Chrom7	975	996	3c [Chrom7-Ph(Me)]	952	982
IR-1061	1058	n.d. ^a	3d [IR1061-Ph(Me)]	1040	n.d. ^a
IR-783	782^{b}	804^b	3e [IR783-Ph(Me)]	762^{b}	784^{b}

^a Not determined due to fluorometer wavelength limit

^b Measured in methanol.

Synthetic Procedures

Synthetic materials and methods

Unless otherwise noted, all commercial reagents were used without further purification. All reactions utilizing air- or moisture-sensitive reagents were performed under an atmosphere of dry N_2 . Dry solvents were purchased from Thermo Scientific Chemicals and stored over sieves under an atmosphere of dry N_2 . Chemical reagents were purchased from Ambeed, Oakwood Chemicals and Thermo Scientific Chemicals. Heptamethine dyes were purchased from Thermo Scientific Chemicals (IR-780, IR-775), TCI America (IR-813) and Enamine (IR-1061). Chrom7,^[7] (2-bromobenzyl)(*tert*-butyl)sulfane,^[8] and 2-bromo-1,3-benzenedimethanol ^[9] were synthesized according to published procedures. ¹H NMR and ¹³C NMR spectra were collected in CDCl₃, CD₃CN or MeOD at 25 °C on Bruker 400 MHz or 500 MHz spectrometers at the NMR Facility at the Department of Chemistry and Biochemistry in the University of Arkansas, Fayetteville. All chemical shifts in ¹H NMR and ¹³C NMR are reported in the standard notation of ppm relative to residual solvent peak (CDCl₃ δ H=7.26, δ C=77.16; CD₃CN δ H=1.94, δ C=1.32; MeOD δ H=3.31, δ C=49.00; CD₂Cl₂ δ H=5.32, δ C=53.84). High resolution mass spectrometry was acquired on an IT-TOF (Shimadzu) at the University of Arkansas Statewide Mass Spectrometry Facility.

((2-Bromo-3-methylbenzyl)oxy)trimethylsilane (S1): To a flask containing 2-bromophenylmethanol (200 mg, 1.1 mmol) and triethylamine (0.22 mL, 1.6 mmol) dissolved in CH₂Cl₂ (10 mL) was added trimethylsilyl chloride (0.16 mL, 1.3 mmol). The mixture was stirred for 2.5 h at room temperature and concentrated to dryness. The crude product was separated by column chromatography (1:50 ethyl acetate/hexanes) to give S1 as a colorless liquid (274 mg, 99%), which is used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 4.72 (s, 2H), 0.19 (s, 9H). This compound has also been characterized elsewhere. ^[10]

1,3-Bis((allyloxy)methyl)-2-bromobenzene (**S2**): To a flask containing 2-bromo-1,3-benzenedimethanol (305 mg, 1.41 mmol) and NaH (60% dispersion in mineral oil, 281 mg, 7.03 mmol) under N₂ was added dry DMF (7 mL). The reaction was stirred at room temperature for 0.5 h, followed by the dropwise addition of allyl bromide (0.35 mL, 4.2 mmol). The reaction was further stirred for 1 h, quenched with addition of MeOH and H₂O, and extracted into ethyl acetate. The organic layer was washed with H₂O (×4) and saturated NaCl, dried (Na₂SO₄) and concentrated. The crude product was separated by column chromatography (1:50 ethyl acetate/hexanes) to give **S2** as a colorless liquid (417 mg, >99%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.7 Hz, 1H), 5.99 (ddd, J = 22.8, 10.8, 5.6 Hz, 2H), 5.36 (dq, J = 17.2, 1.7 Hz, 2H), 5.24 (dd, J = 10.4, 1.6 Hz, 2H), 4.61 (s, 4H), 4.12 (dt, J = 5.6, 1.5 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 138.16, 134.67, 127.98, 127.32, 122.84, 117.36, 71.84, 71.79.

Br
+ C₁₈H₃₇Br
$$K_2$$
CO₃
i-PrOH/H₂O C_{18} H₃₇ K_2 CO₃
 K_2 CO₃ K_2

4-Bromo-3,5-dimethyl-*N*,*N*-dioctadecylaniline (**S3**): To a microwave vessel containing 4-bromo-3,5-dimethylaniline (0.20 g, 1.0 mmol), 1-bromooctadecane (1.67 g, 5.0 mmol) and K₂CO₃ (0.55 g, 4.0 mmol) was added 15 mL of 1:2 H₂O/isopropanol. The reaction was carried out in a CEM Discover SP Microwave reactor at 120 \square for 4h. The mixture was cooled, diluted with H₂O and extracted with CH₂Cl₂ (×5), dried (Na₂SO₄) and concentrated. The crude product was separated by column chromatography (hexanes) to give **S3** as a white solid (481 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 6.38 (s, 2H), 3.20 (t, *J* = 7.6 Hz, 4H), 2.36 (s, 6H), 1.60 – 1.51 (m, 4H), 1.36 – 1.22 (m, 64H), 0.90 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 147.12, 138.48, 113.07, 112.27, 51.23, 32.11, 29.88, 29.80, 29.67, 29.53, 27.38, 27.34, 24.49, 22.85, 14.24. HRMS (ESI⁺) calcd 704.5703, found 704.5695 for C₄₄H₈₃BrN⁺ (M+H⁺).

2,6-Bis(2-(3,3-dimethyl-1-propylindolin-2-ylidene)ethylidene)cyclohexan-1-one (**IR780=O**): To a flask containing **IR-780** iodide (500 mg, 0.75 mmol) and sodium acetate (184 mg, 2.25 mmol) was added dry DMF (10 mL) followed by three freeze-pump-thaw cycles. The reaction was then stirred at 80°C under N₂ for 3 h. The mixture was diluted in ethyl acetate, washed with H₂O (×4) and saturated NaCl, dried (Na₂SO₄) and concentrated. The crude product was separated by column chromatography (1:7.5 ethyl acetate/hexanes) to give **IR-780=O** as a dark red solid (365 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 13.2 Hz, 2H), 7.26 – 7.13 (m, 4H), 6.90 (t, J = 7.4 Hz, 2H), 6.68 (d, J = 8.0 Hz, 2H), 5.46 (d, J = 13.2 Hz, 2H), 3.64 (t, J = 7.4 Hz, 4H), 2.61 (t, J = 6.2 Hz, 4H), 1.91 – 1.83 (m, 2H), 1.76 (h, J = 7.5 Hz, 4H), 1.67 (s, 12H), 1.01 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 186.45, 162.51, 144.48, 139.77, 132.97, 127.68, 126.58, 121.84, 120.48, 106.81, 92.63, 46.63, 44.21, 28.88, 25.93, 22.68, 19.84, 11.84. HRMS (ESI⁺) calcd 521.3526, found 521.3530 for C₃₆H₄₅N₂O⁺ (M+H⁺).

General procedure A: preparation of heptamethine=O. The preparation is adapted from previous reports.^[11,12] Specifically, heptamethine-Cl (1.0 equiv.), *N*-hydroxysuccinimide (NHS, 3.0 equiv.) and *N*,*N*-diisopropylethylamine (3.0 equiv.) were dissolved in DMF (2 mL) and stirred at room temperature until complete conversion of the starting heptamethine-Cl as determined by TLC. The mixture was then diluted in ethyl acetate, washed with H₂O (×4) and saturated NaCl, dried (Na₂SO₄) and concentrated. The crude product was separated by column chromatography (1:200 methanol/CH₂Cl₂) to give heptamethine=O.

2,6-Bis(2-(1,3,3-trimethylindolin-2-ylidene)ethylidene)cyclohexan-1-one (**IR775=O**): Following General Procedure A, **IR-775** chloride (50 mg, 0.096 mmol) was reacted with NHS (33 mg, 0.29 mmol) and DIPEA (50 μ L, 0.29 mmol) in DMF (2 mL) for 18 h to give **IR775=O** as a dark red-orange solid (31 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 13.2 Hz, 2H), 7.18 (t, J = 7.3 Hz, 4H), 6.90 (t, J = 7.4 Hz, 2H), 6.68 (d, J = 7.9 Hz, 2H), 5.41 (d, J = 13.2 Hz, 2H), 3.21 (s, 6H), 2.62 (t, J = 6.2 Hz, 4H), 1.87 (p, J = 6.4 Hz, 2H), 1.68 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 186.60, 163.33, 144.68, 139.70, 132.91, 127.73, 126.93, 121.80, 120.59, 106.52, 92.65, 46.52, 29.36, 28.78, 25.95, 22.63. HRMS (ESI⁺) calcd 465.2900, found 465.2928 for C₃₂H₃₇N₂O⁺ (M+H⁺).

2,6-Bis(2-(1,1,3-trimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)cyclohexan-1-one (**IR813=O**): Following General Procedure A, **IR-813** *p*-toluenesulfonate (100 mg, 0.152 mmol) was reacted with NHS (46 mg, 0.40 mmol) and DIPEA (69 μ L, 0.40 mmol) for 1 h to give **IR813=O** as a deep red to dark magenta solid (39.5 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 13.2 Hz, 2H), 8.07 (d, J = 8.6 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 8.8 Hz, 2H), 7.50 (ddd, J = 8.3, 6.7, 1.3 Hz, 2H), 7.33 – 7.25 (m, 2H), 7.10 (d, J = 8.7 Hz, 2H), 5.48 (d, J = 13.3 Hz, 2H), 3.33 (s, 6H), 2.69 (t, J = 5.5 Hz, 4H), 2.04 (s, 12H), 1.97 – 1.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 186.53, 165.26, 141.92, 132.81, 130.04, 129.85, 129.82, 129.48, 129.07, 126.93, 126.81, 122.60, 121.93, 109.10, 92.37, 48.54, 29.61, 28.05, 25.99, 22.69. HRMS (ESI⁺) calcd 565.3213, found 565.3235 for C₄₀H₄₁N₂O⁺ (M+H⁺).

2,6-Bis(2-(2-(*tert*-butyl)-7-(dimethylamino)-4*H*-chromen-4-ylidene)ethylidene)cyclohexan-1-one (**Chrom7=O**): Following General Procedure A, **Chrom7** chloride (40 mg, 0.061 mmol) was reacted with NHS (23 mg, 0.20 mmol) and DIPEA (32 μ L, 0.18 mmol) for 2 h to give **Chrom7=O** as a dark purple solid (10 mg, 28 %). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 12.8 Hz, 2H), 7.63 (d, J = 9.0 Hz, 2H), 6.58 (dd, J = 9.0, 2.6 Hz, 2H), 6.49 (s, 2H), 6.39 – 6.28 (m, 4H), 3.01 (s, 12H), 2.74 (t, J = 5.9 Hz, 4H), 1.87 (p, J = 5.9 Hz, 2H), 1.28 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 163.37, 154.01, 152.03, 135.45, 131.76, 130.44, 123.79, 111.21, 109.88, 104.82, 98.94, 97.89, 40.36, 35.86, 28.18, 26.66, 22.69. HRMS (ESI⁺) calcd 605.3738, found 605.3730 for C₄₀H₄₉N₂O₃⁺ (M+H⁺).

2,6-Bis(2-(2,6-diphenyl-4*H*-thiopyran-4-ylidene)ethylidene)cyclohexan-1-one (**IR1061=O**): Following General Procedure A, **IR-1061** tetrafluoroborate (95 mg, 0.13 mmol) was reacted with NHS (48 mg, 0.42 mmol) and DIPEA (66 μL, 0.38 mmol) for 2 h to give **IR1061=O** as a dark brown solid (50 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 12.8 Hz, 2H), 7.69 – 7.53 (m, 8H), 7.50 – 7.36 (m, 14H), 6.86 (s, 2H), 6.08 (d, J = 13.0 Hz, 2H), 2.68 (t, J = 6.0 Hz, 4H), 1.85 (p, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 187.77, 140.00, 139.87, 137.99, 137.64, 137.58, 132.49, 130.76, 129.66, 129.43, 129.06, 126.43, 126.37, 126.13, 119.57, 118.58, 26.58, 22.30. HRMS (ESI⁺) calcd 643.2124, found 643.2086 for C₄₄H₃₅OS₂⁺ (M+H⁺).

Tetrabutylammonium 4,4'-(((2-oxocyclohexane-1,3-diylidene)bis(ethane-2,1-diylidene))bis(3,3-dimethylindoline-1-yl-2-ylidene))bis(butane-1-sulfonate) (**IR783=O** tetrabutylammonium salt): Following Gneral Procedure B, **IR783** (80 mg, 0.11 mmol) was reacted with NHS (37 mg, 0.32 mmol) and DIPEA (56 μL, 0.32 mmol) in DMF (3 mL) for 3.5 h to afford a red orange solution. The mixture was diluted with H₂O (6 mL) and loaded onto preparative HPLC (Phenomenex Kinetex 5 μm phenyl-hexyl, 250×21.2 mm). The column was flushed three times with tetrabutylammonium bromide solution (7 mL, 0.2 M dissolved in 30% methanol in H₂O) and separated with a gradient of 30% – 90% methanol to give **IR783=O** tetrabutylammonium salt as a dark, red orange solid (84 mg, 66%). ¹H NMR (500 MHz, MeOD) δ 8.19 (d, J = 12.7 Hz, 2H), 7.26 (d, J = 7.5 Hz, 2H), 7.21 (t, J = 7.8 Hz, 2H), 7.04 – 6.81 (m, 4H), 5.61 (d, J = 13.3 Hz, 2H), 3.83 (t, J = 6.9 Hz, 4H), 3.23 (t, J = 8.6 Hz, 16H), 2.87 (t, J = 7.6 Hz, 4H), 2.62 (t, J = 6.4 Hz, 4H), 2.03 – 1.81 (m, 10H), 1.69 – 1.60 (m, 28H), 1.41 (h, J = 7.7 Hz, 16H), 1.01 (t, J = 7.6 Hz, 24H). ¹³C NMR (126 MHz, MeOD) δ 188.52, 165.19, 145.28, 140.81, 136.15, 129.01, 127.14, 122.74, 122.16, 108.65, 94.00, 59.57, 52.30, 47.90, 43.33, 29.10, 26.69, 26.56, 24.79, 23.82, 23.72, 20.67, 13.91. HRMS (ESI⁻) calcd 707.2830, found 707.2829 for C₃₈H₄₇N₂O₇S₂⁻ [M²⁻⁺H⁺].

General procedure B: preparation of *meso*-substituted heptamethine dyes. Unless otherwise noted, aryl bromide (0.51 mmol) was dissolved in dry THF (1 mL) and cooled to -84 °C. To this solution was added *n*-BuLi (2.3 M in cyclohexane/hexanes, 147 μL, 0.34 mmol). The mixture was stirred for 10 min at this temperature. A red to orange solution of keto-heptamethine (0.042 mmol) in dry THF (1 mL) was added dropwise. The mixture was allowed to warm up to room temperature and stirred for 30 min. The yellow or orange reaction mixture was quenched by adding 1:10 HCl which resulted in a rapid color change into dark green. The mixture was diluted in H₂O and extracted with CH₂Cl₂ (×4) and dried (Na₂SO₄). The crude product was purified by column chromatography (1:30 to 1:20 methanol / CH₂Cl₂).

2-(2-(6-(2-(3,3-Dimethyl-1-propylindolin-2-ylidene)ethylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3 ,3-dimethyl-1-propyl-3H-indol-1-ium chloride (**IR780-Ph**): Following General Procedure B, **IR780=O** (22 mg, 0.042 mmol) was reacted with bromobenzene (80 mg, 0.51 mmol) and *n*-BuLi (2.3 M, 0.15 mL, 0.34 mmol) to give **IR780-Ph** as a green solid (27 mg, >99%) 1 H NMR (400 MHz, MeOD with a few drops of CDCl₃) δ 7.65 – 7.52 (m, 3H), 7.33 (td, J = 7.6, 1.2 Hz, 2H), 7.29 – 7.21 (m, 6H), 7.16 (t, J = 7.0 Hz, 4H), 6.11 (d, J = 14.0 Hz, 2H), 4.01 (t, J = 7.3 Hz, 4H), 2.70 (t, J = 6.3 Hz, 4H), 2.07 (p, J = 6.3 Hz, 2H), 1.84 (h, J = 7.4 Hz, 4H), 1.17 (s, 12H), 1.02 (t, J = 7.4 Hz, 6H). 13 C NMR (101 MHz, MeOD with a few drops of CDCl₃) δ 172.91, 163.77, 149.34, 143.28, 141.61, 139.86, 132.19, 130.32, 129.50, 129.41, 129.13, 125.68, 122.94, 111.40, 100.49, 49.53, 46.22, 28.03, 25.43, 22.10, 21.45, 11.76. HRMS (ESI⁺) calcd 581.3890, found 581.3887 for C₄₂H₄₉N₂⁺ (M⁺).

2-(2-(6-(2-(3,3-Dimethyl-1-propylindolin-2-ylidene)ethylidene)-2'-methyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [**IR780-Ph(Me)**]: Following General Procedure B, **IR780=O** (22 mg, 0.042 mmol) was reacted with 2-bromotoluene (87 mg, 0.51 mol) and *n*-BuLi (2.3 M, 0.15 mL, 0.34 mmol) to give **IR780-Ph(Me)** as a green solid film (23 mg, 93%). ¹H NMR (400 MHz, MeOD) δ 7.51 – 7.40 (m, 3H), 7.39 – 7.28 (m, 4H), 7.25 – 7.15 (m, 6H), 7.09 (d, J = 7.3 Hz, 1H), 6.19 (d, J = 14.0 Hz, 2H), 4.05 (t, J = 7.3 Hz, 4H), 2.73 (t, J = 6.3 Hz, 4H), 2.14 (s, 2H), 2.07 (p, J = 6.2 Hz, 2H), 1.83 (h, J = 7.4 Hz, 4H), 1.16 (s, 6H), 1.13 (s, 6H), 1.01 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 172.05, 161.89, 147.06, 142.37, 140.75, 138.23, 135.93, 130.43, 130.33, 129.15, 128.37, 126.11, 124.61, 121.97, 115.00, 110.49, 99.57, 53.48, 48.52, 45.00, 26.86, 26.66, 24.12, 21.22, 20.35, 10.33. HRMS (ESI⁺) calcd 595.4048, found 595.4047 for C₄₃H₅₁N₂⁺ (M⁺).

2-(2-(6-(2-(3,3-Dimethyl-1-propylindolin-2-ylidene)ethylidene)-2'-(hydroxymethyl)-3,4,5,6-tetrahydro-[1,1'-bip henyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [**IR780-Ph(CH₂OH)**]: Following General Procedure B, **IR780=O** (22 mg, 0.042 mmol) was reacted with ((2-bromo-3-methylbenzyl)oxy)trimethylsilane (131 mg, 0.51 mol) and *n*-BuLi (2.3 M, 0.15 mL, 0.34 mmol) to give **IR780-Ph(CH₂OH)** as a green solid film

(21 mg, 78%). ¹H NMR (400 MHz, MeOD) δ 7.80 (d, J = 7.7 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.38 – 7.29 (m, 4H), 7.27 – 7.14 (m, 6H), 7.11 (d, J = 7.4 Hz, 1H), 6.19 (d, J = 14.1 Hz, 2H), 4.45 (s, 2H), 4.05 (t, J = 7.4 Hz, 4H), 2.73 (s, 4H), 2.07 (p, J = 6.5 Hz, 2H), 1.82 (h, J = 7.5 Hz, 4H), 1.17 (s, 6H), 1.14 (s, 6H), 1.01 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 173.52, 148.67, 143.74, 142.21, 141.13, 137.89, 132.04, 130.54, 129.76, 129.67, 128.60, 128.49, 125.94, 123.30, 111.83, 101.01, 62.00, 49.93, 46.34, 28.27, 28.02, 25.52, 22.59, 21.72, 11.65. HRMS (ESI⁺) calcd 611.3996, found 611.4005 for C₄₃H₅₁N₂O⁺ (M⁺).

2-(2-(6-(2-(3,3-Dimethyl-1-propylindolin-2-ylidene)ethylidene)-2'-methoxy-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [**IR780-Ph(OMe**)]: Following General Procedure B, **IR780=O** (22 mg, 0.042 mmol) was reacted with 2-bromoanisole (95 mg, 0.51 mol) and *n*-BuLi (2.3 M, 0.15 mL, 0.34 mmol) to give **IR780-Ph(OMe**) as a green solid film (25 mg, 98%). ¹H NMR (400 MHz, MeOD) δ 7.59 (t, J = 8.0 Hz, 1H), 7.38 – 7.26 (m, 7H), 7.25 – 7.13 (m, 5H), 7.08 (dd, J = 7.4, 1.7 Hz, 1H), 6.16 (d, J = 14.1 Hz, 2H), 4.04 (t, J = 7.4 Hz, 4H), 3.75 (s, 3H), 2.70 (s, 4H), 2.14 – 2.06 (m, 2H), 1.82 (h, J = 7.5 Hz, 4H), 1.21 (s, 6H), 1.16 (s, 6H), 1.02 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 172.92, 157.89, 148.61, 143.81, 142.08, 131.93, 131.32, 129.67, 128.43, 125.80, 123.30, 122.10, 112.60, 111.72, 100.81, 56.27, 49.81, 46.28, 28.16, 27.96, 25.56, 22.47, 21.69, 11.67. HRMS (ESI⁺) calcd 611.3996, found 611.4004 for C₄₃H₅₁N₂O⁺ (M⁺).

2-(2-(2'-Carboxy-6-(2-(3,3-dimethyl-1-propylindolin-2-ylidene)ethylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2 -yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [**IR780-Ph(COOH)**]: Following General Procedure B, **IR780=O** (22 mg, 0.042 mmol) was reacted with *tert*-butyl 2-bromobenzoate (130 mg, 0.51 mol) and *n*-BuLi (2.3 M, 0.15 mL, 0.34 mmol) to give **IR780-Ph(COOH)** as a green solid (13 mg, 50%). ¹H NMR (400 MHz, MeOD) δ 8.20 (d, J = 7.7 Hz, 1H), 7.70 (dt, J = 27.0, 7.6 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.26 – 7.11 (m, 7H), 6.15 (d, J = 14.0 Hz, 2H), 4.02 (t, J = 7.3 Hz, 4H), 2.70 (t, J = 6.2 Hz, 4H), 2.17 – 1.96 (m, 2H), 1.81 (h, J = 7.3 Hz, 4H), 1.19 (s, 6H), 1.12 (s, 6H), 1.00 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 172.97, 164.94, 148.86, 143.83, 142.12, 141.00, 132.65, 132.58, 132.15, 131.90, 129.63, 125.73, 123.28, 111.65, 100.71, 49.80, 46.24, 28.30, 27.97, 25.78, 22.30, 21.66, 11.64. HRMS (ESI⁺) calcd 625.3789, found 625.3784 for C₄₃H₄₉N₂O₂⁺ (M+H⁺).

2-(2-(2'-((*tert*-Butylthio)methyl)-6-(2-(3,3-dimethyl-1-propylindolin-2-ylidene)ethylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [**IR780-Ph(CH₂StBu)**]: Following General Procedure B, **IR780=O** (22 mg, 0.042 mmol) was reacted with (2-bromobenzyl)(*tert*-butyl)sulfane (133 mg, 0.51 mol) and *n*-BuLi (2.3 M, 0.15 mL, 0.34 mmol) to give **IR780-Ph(CH₂StBu)** as a green solid film (29 mg, 95%). ¹H NMR (400 MHz, MeOD) δ 7.62 (dd, J = 7.6, 1.5 Hz, 1H), 7.51 (dtd, J = 19.7, 7.4, 1.5 Hz, 2H), 7.39 – 7.30 (m, 4H), 7.29 – 7.10 (m, 7H), 6.20 (d, J = 14.1 Hz, 2H), 4.07 (t, J = 7.3 Hz, 4H), 3.63 (s, 2H), 2.85 – 2.64 (m, 4H), 2.18 – 2.00 (m, 2H), 1.83 (h, J = 7.4 Hz, 4H), 1.28 – 1.21 (m, 15H), 1.17 (s, 6H), 1.01 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 173.51, 161.64, 149.13, 143.75, 142.19, 139.52, 138.01, 132.16, 131.83, 131.20, 129.90, 129.66, 128.44, 125.94, 123.30, 111.83, 100.97, 49.98, 46.33, 43.71, 31.16, 30.94, 28.50, 28.05, 25.69, 22.62, 21.74, 11.67. HRMS (ESI⁺) calcd 683.4393, found 683.4369 for C₄₇H₅₉N₂S⁺ (M⁺).

2-(2-(6-(2-(3,3-dimethyl-1-propylindolin-2-ylidene)ethylidene)-2'-isopropyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [**IR780-Ph(iPr)**]: Following General Procedure B, **IR780=O** (22 mg, 0.042 mmol) was reacted with 1-bromo-2-isopropylbenzene (101 mg, 0.51 mmol) and n-BuLi (2.3 M, 0.15 mL, 0.34 mmol) to give **IR780-Ph(iPr)** as a green solid film (21 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 3.0 Hz, 2H), 7.39 – 7.24 (m, 3H), 7.19 – 7.10 (m, 6H), 7.06 (d, J = 7.7 Hz, 2H), 7.00 (d, J = 7.2 Hz, 1H), 6.06 (d, J = 14.0 Hz, 2H), 4.01 (t, J = 6.4 Hz, 4H), 2.83 – 2.51 (m, 5H), 2.19 – 2.12 (m, 2H), 1.83 (q, J = 7.0 Hz, 4H), 1.15 (s, 6H), 1.08 (d, J = 6.1 Hz, 12H), 1.01 (t, J = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 172.00, 162.16, 148.38, 147.56, 142.70, 141.02, 137.12, 132.39, 129.55, 129.06, 128.76, 126.47, 125.90, 124.94, 122.06, 110.83, 100.32, 48.85, 46.33, 30.67, 29.74, 28.16, 27.79, 25.15, 24.53, 21.59, 20.95, 11.59. HRMS (ESI⁺) calcd 623.4360, found 623.4362 for C₄₅H₅₅N₂⁺ (M⁺).

1,3,3-Trimethyl-2-(2-(2'-methyl-6-(2-(1,3,3-trimethylindolin-2-ylidene)ethylidene)-3,4,5,6-tetrahydro-[1,1'-biph enyl]-2-yl)vinyl)-3H-indol-1-ium chloride [(IR775-Ph(Me))]: Following General Procedure B, IR775=O (18 mg, 0.038 mmol) was reacted with 2-bromotulene (78 mg, 0.46 mmol) and n-BuLi (2.3 M, 0.13 mL, 0.31 mmol) to give IR775-Ph(Me) as a green solid (17 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.27 (m, 5H), 7.19 – 7.02 (m, 9H), 6.07 (d, J = 14.0 Hz, 2H), 3.60 (s, 6H), 2.69 (s, 4H), 2.08 (s, 3H), 2.08 – 1.98 (m, 2H), 1.10 (d,

J = 4.7 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 172.11, 162.35, 147.19, 142.87, 140.65, 138.06, 136.02, 131.46, 130.41, 129.31, 128.74, 128.58, 126.23, 124.88, 121.97, 110.49, 100.26, 48.57, 31.80, 27.74, 27.57, 24.72, 21.32, 18.90. HRMS (ESI⁺) calcd 539.3421, found 539.3418 for $C_{39}H_{43}N_2^+$ (M⁺).

1,1,3-Trimethyl-2-(2-(2'-methyl-6-(2-(1,1,3-trimethyl-1,3-dihydro-2*H*-benzo[e]indol-2-ylidene)ethylidene)-3,4, 5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-1H-benzo[e]indol-3-ium chloride [**IR775-Ph(Me)**]: Following General Procedure B, **IR813=O** (25 mg, 0.045 mmol) was reacted with 2-bromotulene (92 mg, 0.54 mmol) and *n*-BuLi (2.3 M, 0.16 mL, 0.36 mmol) to give **IR813-Ph(Me)** as a yellowish-green solid (20 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.83 (m, 6H), 7.62 – 7.36 (m, 9H), 7.20 (d, J = 14.1 Hz, 2H), 7.11 (d, J = 7.5 Hz, 1H), 6.10 (d, J = 14.1 Hz, 2H), 3.72 (s, 6H), 2.73 (t, J = 6.6 Hz, 4H), 2.15 (s, 3H), 2.12 – 2.02 (m, 2H), 1.42 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 173.51, 161.67, 146.21, 140.25, 138.23, 136.07, 133.10, 131.80, 131.31, 130.70, 130.47, 130.19, 129.37, 128.73, 128.02, 127.62, 126.31, 124.83, 121.99, 110.70, 99.87, 50.35, 32.12, 27.32, 27.12, 24.75, 21.39, 18.96. HRMS (ESI⁺) calcd 639.3734, found 639.3698 for C₄₇H₄₇N₂⁺ (M⁺).

2-(tert-Butyl)-4-(2-(6-(2-(2-(tert-butyl)-7-(dimethylamino)-4*H*-chromen-4-ylidene)ethylidene)-2'-methyl-3,4,5, 6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-7-(dimethylamino)chromenylium chloride [**Chrom7-Ph(Me)**]: Following General Procedure B, **Chrom7=O** (10 mg, 0.017 mmol) was reacted with 2-bromotulene (35 mg, 0.20 mmol) and *n*-BuLi (2.3 M, 0.06 mL, 0.14 mmol) to give **Chrom7-Ph(Me)** as a dark purple solid (7.6 mg, 63%). 1 H NMR (400 MHz, MeOD) δ 7.92 (d, J = 9.3 Hz, 2H), 7.49 – 7.33 (m, 3H), 7.13 (d, J = 7.3 Hz, 1H), 7.06 (d, J = 13.7 Hz, 2H), 6.94 (dd, J = 9.3, 2.6 Hz, 2H), 6.85 (d, J = 13.8 Hz, 2H), 6.54 (d, J = 2.5 Hz, 2H), 6.05 (s, 2H), 3.11 (s, 12H), 2.13 (s, 3H), 2.11 – 1.98 (m, 2H), 1.20 (s, 18H). 13 C NMR (101 MHz, MeOD) δ 169.35, 158.75, 156.31, 154.49, 145.27, 141.95, 137.98, 133.39, 130.51, 129.66, 127.93, 125.29, 125.18, 117.59, 112.75, 111.51, 109.74, 98.37, 96.89, 39.02, 36.01, 26.74, 24.94, 21.44, 18.14. HRMS (ESI⁺) calcd 679.4258, found 679.4250 for C₄₇H₅₅N₂O₂+ (M⁺).

4-(2-(6-(2-(2,6-diphenyl-4*H*-thiopyran-4-ylidene)ethylidene)-2'-methyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)

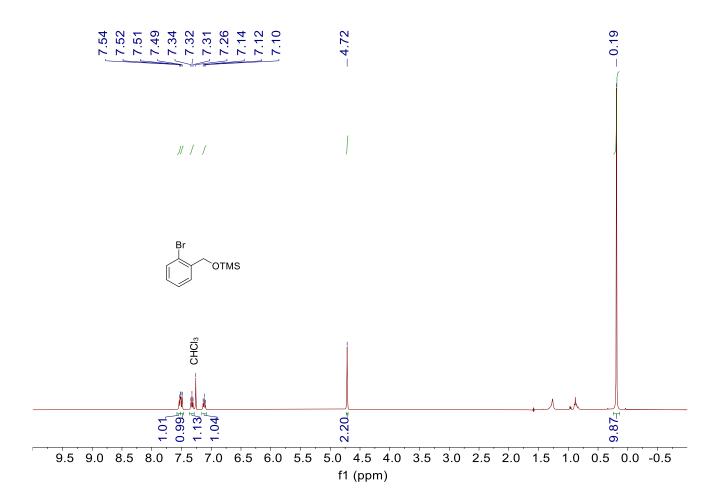
vinyl)-2,6-diphenylthiopyrylium chloride [**IR1061-Ph(Me)**]: Following General Procedure B, **IR1061=O** (28 mg, 0.043 mmol) was reacted with 2-bromotulene (88 mg, 0.52 mmol) and *n*-BuLi (2.3 M, 0.15 mL, 0.35 mmol) to give **IR1061-Ph(Me)** as a dark purple solid (17 mg, 56%). 1 H NMR (400 MHz, CDCl₃ and MeOD) δ 7.62 – 7.39 (m, 20H), 7.39 – 7.28 (m, 7H), 7.14 – 7.02 (m, 3H), 6.66 (d, J = 14.0 Hz, 2H), 2.88 (s, 6H), 2.83 – 2.64 (m, 4H), 2.09 (s, 3H), 2.07 – 1.90 (m, 2H). 13 C NMR (101 MHz, CDCl₃ and MeOD) δ 135.68, 131.46, 130.67, 130.16, 129.65, 128.23, 126.59, 125.60, 124.41, 123.02, 25.50, 21.37, 19.48. HRMS (ESI⁺) calcd 717.2644, found 717.2656 for C_{51} H₄₁S₂⁺ (M+H⁺).

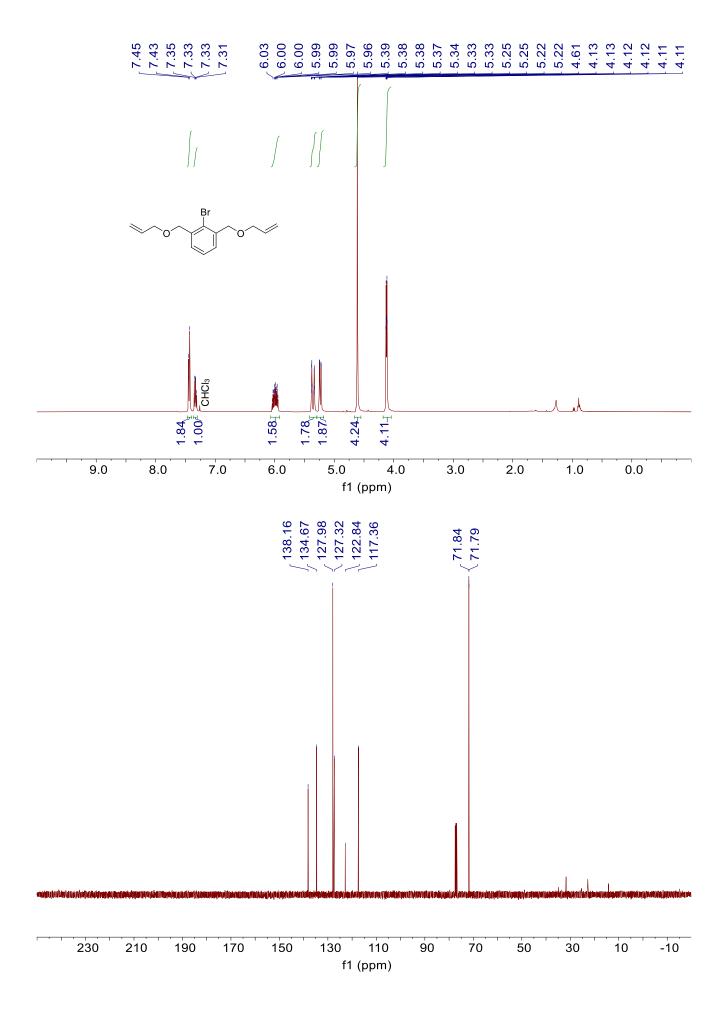
General procedure C: preparation of *meso*-substituted heptamethine dyes. Unless otherwise noted, aryl bromide (0.34 mmol) was dissolved in dry THF (1 mL) and cooled to -84 °C. To this solution was added *t*-BuLi (1.7 M in pentane, 0.40 mL, 0.68 mmol). The mixture was stirred for 40 min at this temperature. A red to orange solution of keto-heptamethine (0.042 mmol) in dry THF (1 mL) was added dropwise. The mixture was allowed to warm up to room temperature and stirred for 30 min. The yellow or orange reaction mixture was quenched by adding 1:10 HCl which resulted in a rapid color change into dark green. The mixture was diluted in H₂O and extracted with CH₂Cl₂ (×4) and dried (Na₂SO₄). The crude product was purified by column chromatography (1:30 to 1:20 methanol / CH₂Cl₂).

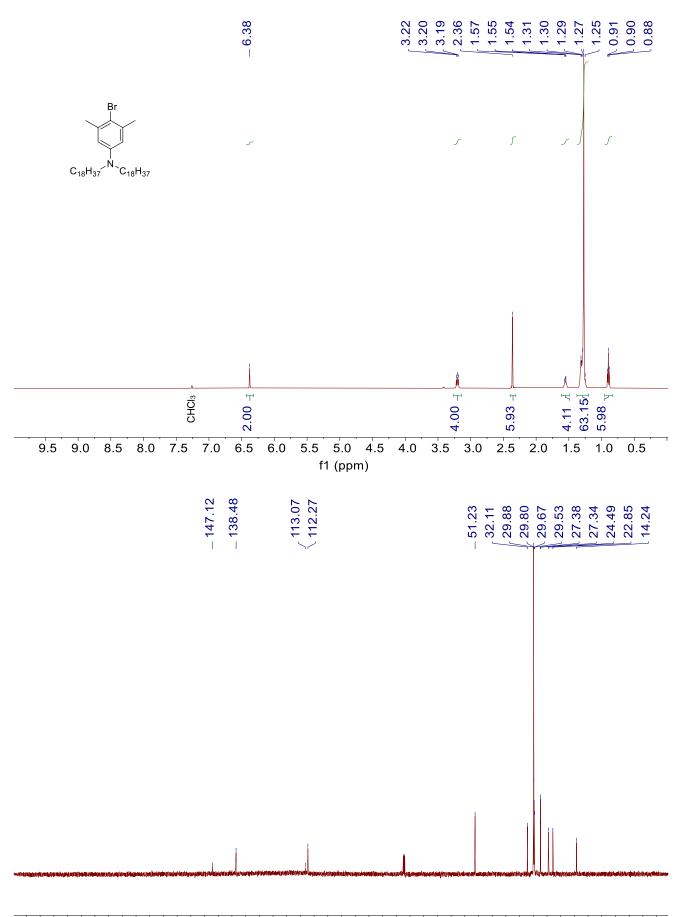
2-(2-(6-(2-(3,3-Dimethyl-1-propylindolin-2-ylidene)ethylidene)-2',6'-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [**IR780-Ph(2Me)**]: Following General Procedure C, **IR780=O** (22 mg, 0.042 mmol) was reacted with 2-bromo-1,3-dimethylbenzene (62 mg, 0.34 mmol) and *t*-BuLi (1.7 M, 0.40 mL, 0.68 mmol) to give **IR780-Ph(2Me)** as a green solid film (20 mg, 75%). ¹H NMR (400 MHz, MeOD) δ 7.42 – 7.28 (m, 7H), 7.28 – 7.21 (m, 4H), 7.18 (t, J = 7.5 Hz, 2H), 6.21 (d, J = 14.1 Hz, 2H), 4.06 (t, J = 7.4 Hz, 4H), 2.75 (s, 4H), 2.12 (s, 6H), 2.10 – 2.05 (m, 2H), 1.83 (h, J = 7.3 Hz, 4H), 1.15 (s, 12H), 1.02 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 173.46, 162.69, 146.98, 143.78, 142.22, 138.95, 137.16, 129.70, 129.50, 129.13, 125.92, 123.34, 111.86, 101.06, 49.93, 46.37, 28.19, 25.40, 22.60, 21.72, 19.42, 14.43, 11.65. HRMS (ESI⁺) calcd 609.4203, found 609.4196 for C₄₄H₅₃N₂⁺ (M⁺).

2-(2-(2',6'-Bis((allyloxy)methyl)-6-(2-(3,3-dimethyl-1-propylindolin-2-ylidene)ethylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [IR780-Ph(2CH₂OAllyl)]: Following General Procedure C, IR780=O (22 mg, 0.042 mmol) was reacted with S2 (100 mg, 0.34 mmol) and *t*-BuLi (1.7 M, 0.40 mL, 0.68 mmol) to give IR780-Ph(2CH₂OAllyl) as a green solid film (29 mg, 91%). ¹H

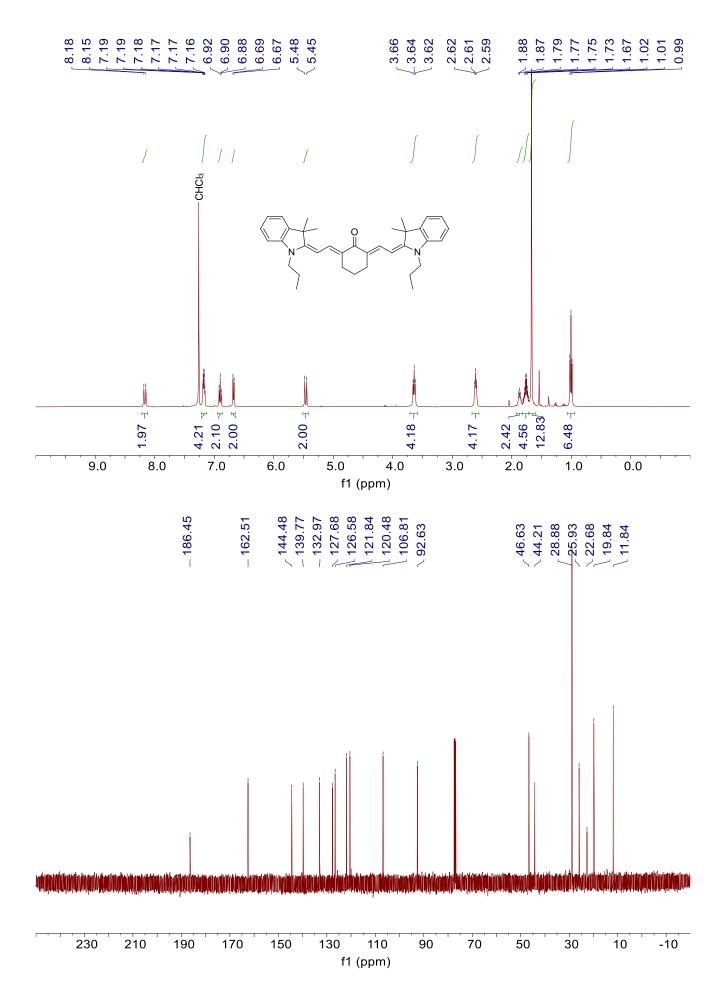
NMR (400 MHz, MeOD) δ 7.71 – 7.65 (m, 2H), 7.65 – 7.59 (m, 1H), 7.39 – 7.29 (m, 4H), 7.26 – 7.14 (m, 6H), 6.19 (d, J = 14.0 Hz, 2H), 5.83 – 5.69 (m, 2H), 5.16 (dd, J = 17.3, 1.8 Hz, 2H), 5.05 (dd, J = 10.4, 1.6 Hz, 2H), 4.28 (s, 4H), 4.06 (t, J = 7.3 Hz, 4H), 3.91 (dt, J = 5.6, 1.5 Hz, 4H), 2.75 (t, J = 6.2 Hz, 4H), 2.10 (p, J = 6.2 Hz, 2H), 1.82 (h, J = 7.4 Hz, 4H), 1.15 (s, 12H), 1.01 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 173.55, 159.07, 148.22, 143.72, 142.26, 138.10, 137.88, 136.05, 131.82, 129.86, 129.75, 129.66, 125.97, 123.30, 117.23, 111.88, 101.07, 72.97, 70.63, 49.98, 49.85, 46.34, 28.18, 25.56, 22.58, 21.74, 11.66. HRMS (ESI⁺) calcd 721.4728, found 721.4721 for C₅₀H₆₁N₂O₂⁺ (M⁺).

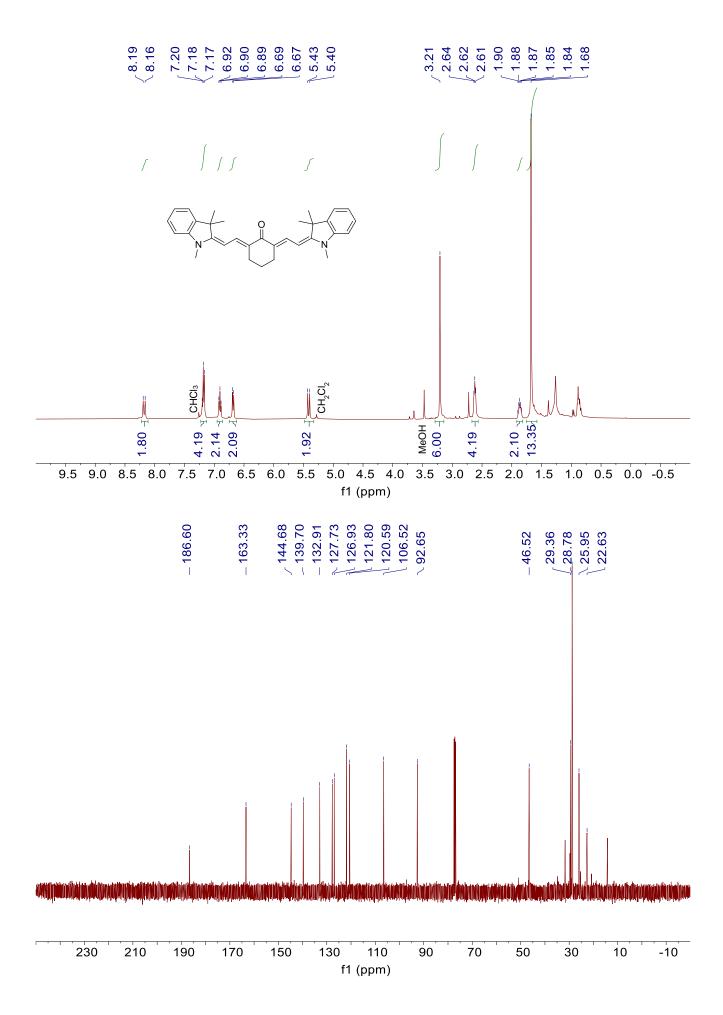

2-(2-6-(2-(3,3-Dimethyl-1-propylindolin-2-ylidene)ethylidene)-2',6'-bis(hydroxymethyl)-3,4,5,6-tetrahydro-[1,1 '-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride [IR780-Ph(2CH₂OH)]: IR780-Ph(2CH₂OAllyl) (22 mg, 0.029 mmol), *p*-toluenesulfinic acid (36 mg, 0.23 mmol) and Pd(PPh₃)₄ (6.7 mg, 0.0058 mmol) were dissolved in ethanol (2 mL) followed by three freeze-pump-thaw cycles. The mixture was stirred at 65°C under N₂ for 4.5 h. The reaction was diluted in CH₂Cl₂, washed with sat. NaHCO₃ and dried (Na₂SO₄). The crude product was purified by column chromatography (1:8 methanol / CH₂Cl₂) followed by semi-preparative HPLC (Phenomenex Gemini 5 μm C18, 250×10.0 mm, 40% – 100% MeCN in water with 0.1% TFA) to give IR780-Ph(2CH₂OH) as a green solid film (13 mg, 66%). ¹H NMR (400 MHz, MeOD) δ 7.74 – 7.69 (m, 2H), 7.67 – 7.61 (m, 1H), 7.39 – 7.29 (m, 4H), 7.27 – 7.13 (m, 6H), 6.19 (d, J = 14.1 Hz, 2H), 4.43 (s, 4H), 4.05 (t, J = 7.3 Hz, 4H), 2.74 (t, J = 6.2 Hz, 4H), 2.09 (t, J = 5.8 Hz, 2H), 1.82 (h, J = 7.4 Hz, 4H), 1.16 (s, 12H), 1.01 (t, J = 7.4 Hz, 6H), HRMS (ESI⁺) calcd 641.4102, found 641.4109 for C₄₄H₅₃N₂O₂⁺ (M⁺).

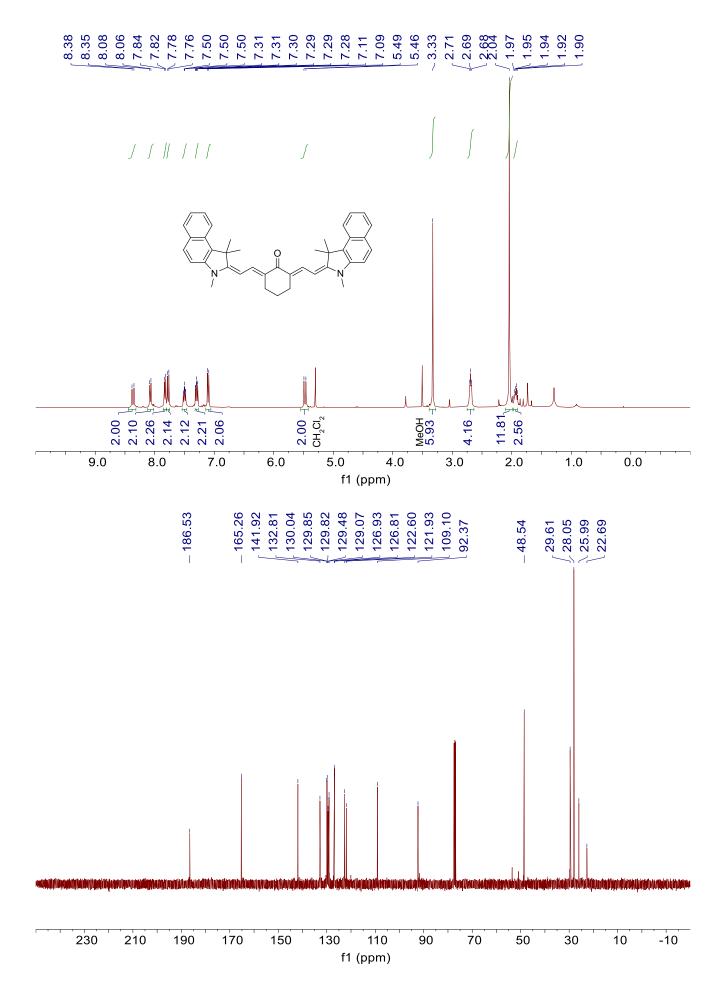

2-(2-(6-(2-(3,3-dimethyl-1-propylindolin-2-ylidene)ethylidene)-2',6'-diisopropyl-3,4,5,6-tetrahydro-[1,1'-biphen yl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3*H*-indol-1-ium chloride [**IR780-Ph(2iPr)**]: Following General Procedure C, **IR780=O** (22 mg, 0.042 mmol) was reacted with 2-bromo-1,3-diisopropylbenzene (82 mg, 0.34 mmol) and *t*-BuLi (1.7 M, 0.40 mL, 0.68 mmol). The mixture was purified by column chromatography followed by semi-preparative HPLC (Phenomenex Gemini 5 μm C18, 250×10.0 mm, 65% – 100% MeCN in water with 0.1% TFA) to give **IR780-Ph(2iPr)** as a green solid (9.2 mg, 31%). ¹H NMR (400 MHz, MeOD) δ 7.56 (t, J = 7.8 Hz, 1H), 7.43 (d, J = 7.8 Hz, 2H), 7.39 – 7.31 (m, 4H), 7.28 – 7.16 (m, 6H), 6.21 (d, J = 14.2 Hz, 2H), 4.06 (t, J = 7.3 Hz, 4H), 2.85 (p, J = 6.8 Hz, 2H), 2.78 (t, J = 6.3 Hz, 4H), 2.11 (p, J = 6.5 Hz, 2H), 1.83 (h, J = 7.4 Hz, 4H), 1.21 (s, 12H), 1.14 (d, J = 6.8 Hz, 12H), 1.01 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, MeOD) δ 173.23, 162.07, 148.07, 147.77, 143.75, 141.99, 136.34, 132.75, 130.35, 129.73, 126.03, 124.88, 123.29, 111.90, 101.12, 50.03, 46.42, 32.26, 28.63, 25.69, 25.45, 22.76, 21.72, 11.62. HRMS (ESI⁺) calcd 665.4829, found 665.4825 for C₄₈H₆₁N₂⁺ (M⁺).

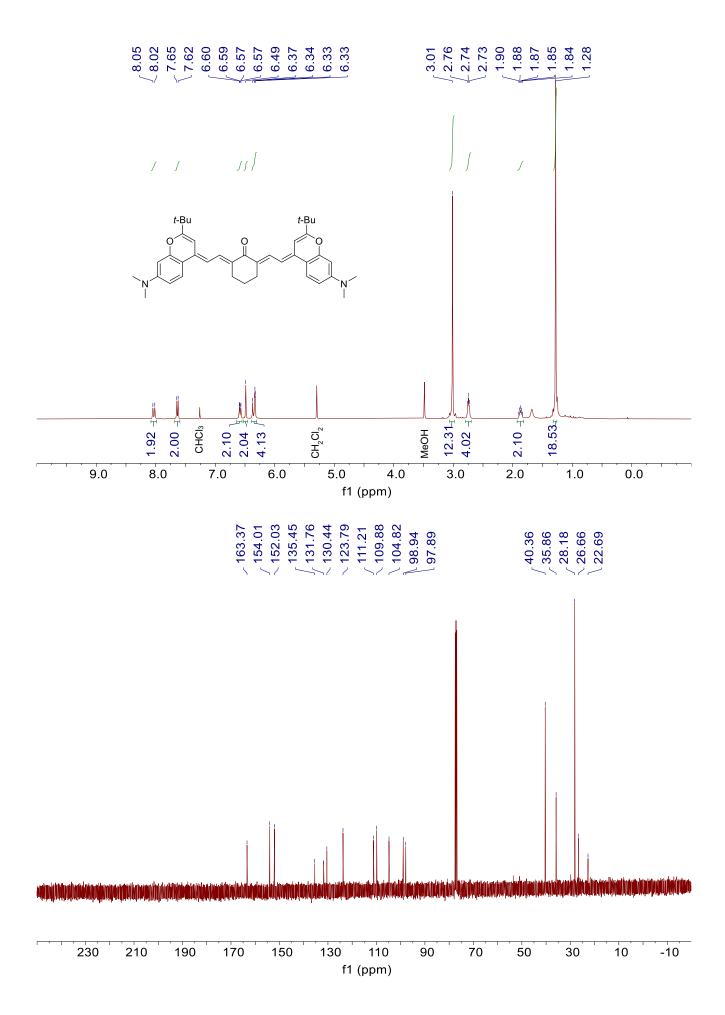

Sodium 4-(2-(2-(3,3-dimethyl-1-(4-sulfonatobutyl)-3*H*-indol-1-ium-2-yl)vinyl)-2'-methyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-ylidene)ethylidene)-3,3-dimethylindolin-1-yl)butane-1-sulfonate [IR783-Ph(Me)]: Following General Procedure C, IR783=O tetrabutylammonium salt (41 mg, 0.034 mmol) dissolved in dry THF (3 mL) was reacted with 2-bromotoluene (70.6 mg, 0.41 mmol) and t-BuLi (1.7 M, 0.49 mL, 0.83 mmol) in dry THF (4 mL). After stirring at room temperature for 30 min, the reaction was quenched by adding excess amount of acetic acid. The mixture was concentrated, diluted with H_2O (6 mL), extracted with hexanes (×2), and loaded onto preparative HPLC (Phenomenex Kinetex 5 µm phenyl-hexyl, 250×21.2 mm). The column was flushed three times with NaCl solution (7 mL, 0.2 M dissolved in 45% methanol in H₂O) and separated with a gradient of 45% – 90% methanol to give **IR783-Ph(Me)** sodium salt as a green solid (17 mg, 60%). ¹H NMR $(500 \text{ MHz}, \text{ MeOD}) \delta 7.51 - 7.46 \text{ (m, 2H)}, 7.46 - 7.40 \text{ (m, 1H)}, 7.37 - 7.29 \text{ (m, 4H)}, 7.26 \text{ (d, } J = 8.2 \text{ Hz, 2H)},$ 7.21 (d, J = 14.0 Hz, 2H), 7.16 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 7.6 Hz, 1H), 6.23 (d, J = 14.0 Hz, 2H), 4.11 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 7.6 Hz, 1H), 6.23 (d, J = 14.0 Hz, 2H), 4.11 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 7.6 Hz, 1H), 6.23 (d, J = 14.0 Hz, 2H), 4.11 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 7.6 Hz, 1H), 6.23 (d, J = 14.0 Hz, 2H), 4.11 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 7.6 Hz, 1H), 6.23 (d, J = 14.0 Hz, 2H), 4.11 (t, J = 7.4 Hz, = 6.9 Hz, 4H), 2.88 (t, J = 6.2 Hz, 4H), 2.75 (t, J = 6.6 Hz, 4H), 2.14 (s, 3H), 2.07 (p, J = 6.3 Hz, 2H), 1.99 – 1.88 (m, 8H), 1.16 (s, 6H), 1.13 (s, 6H). ¹³C NMR (126 MHz, MeOD) δ 173.31, 163.39, 148.60, 143.68, 142.22, 139.74, 137.40, 132.25, 131.66, 130.62, 129.73, 129.65, 127.42, 125.86, 123.23, 111.87, 101.06, 51.86, 44.81, 28.21, 28.03, 27.20, 25.52, 23.61, 22.63, 19.07. HRMS (ESI⁻) calcd 781.3344, found 781.3351 for $C_{45}H_{53}N_2O_6S_2^-(M^-)$.

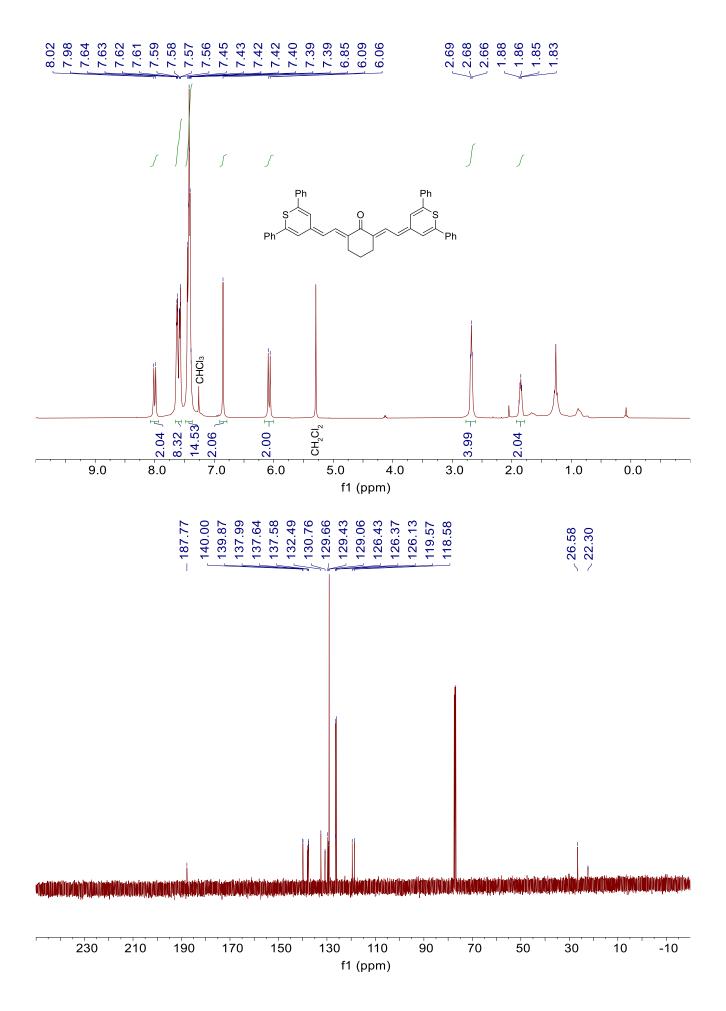
2-(2-(6-(2-(3,3-dimethyl-1-propylindolin-2-ylidene)ethylidene)-4'-(dioctadecylamino)-2',6'-dimethyl-3,4,5,6-tet rahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium chloride (**IR780-2C18**): Following General Procedure C, *t*-BuLi (1.7 M, 0.40 mL, 0.68 mmol) was added to **S3** (238 mg, 0.34 mmol) in THF (3 mL) frozen at -84 °C and warmed up to room temperature until all solids were dissolved, at which point **IR780=O** (22 mg, 0.042 mmol) was added and stirred for 15 min. Subsequent work-up and column chromatography gave **IR780-2C18** as a green solid (25 mg, 51%). ¹H NMR (500 MHz, CDCl₃) δ 7.35 - 7.27 (m, 4H), 7.18 - 7.04 (m, 6H), 6.49 (s, 2H), 6.04 (d, J = 14.1 Hz, 2H), 4.00 (t, J = 7.3 Hz, 4H), 3.33 (t, J = 7.3 Hz, 4H), 2.66 (t, J = 5.9 Hz, 4H), 2.03 (p, J = 5.3 Hz, 2H), 1.98 (s, 6H), 1.84 (h, J = 7.3 Hz, 4H), 1.65 - 1.56 (m, 4H), 1.28 (d, J = 69.3 Hz, 60H), 1.16 (s, 12H), 1.02 (t, J = 7.4 Hz, 6H), 0.84 (t, J = 6.8 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.79, 164.06, 146.57, 142.80, 141.04, 136.54, 131.76, 128.78, 124.66, 121.98, 112.47, 110.73, 100.22, 51.46, 48.79, 46.18, 32.00, 29.90 - 29.72 (m), 29.40, 28.01, 27.55, 27.38, 24.87, 22.72, 21.60, 20.88, 19.97, 14.05, 11.65. HRMS (ESI⁺) calcd 1128.9946, found 1128.9935 for C₈₀H₁₂₆N₃⁺ (M⁺).

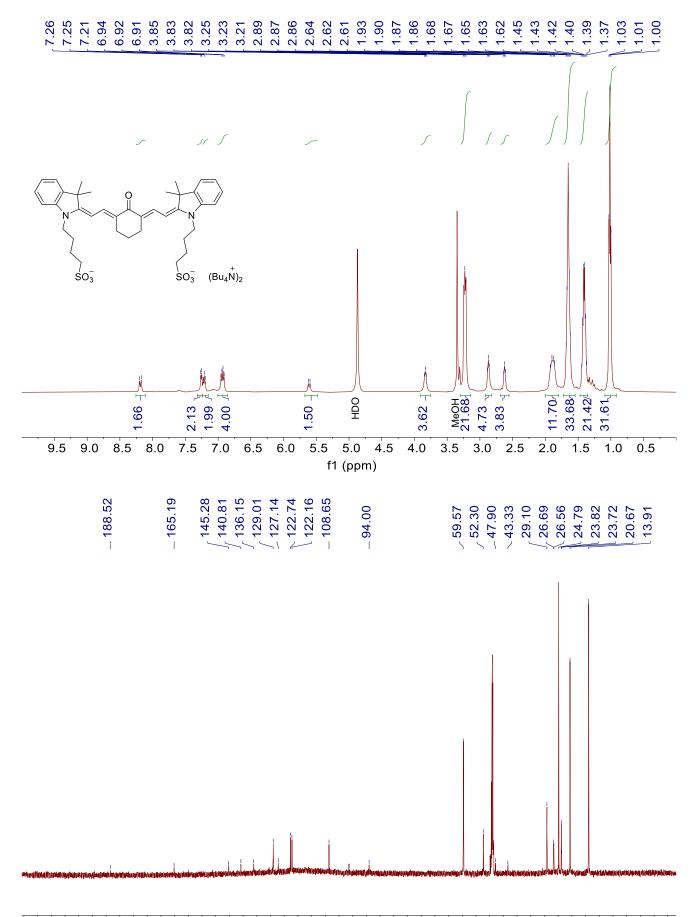

NMR and mass Spectra

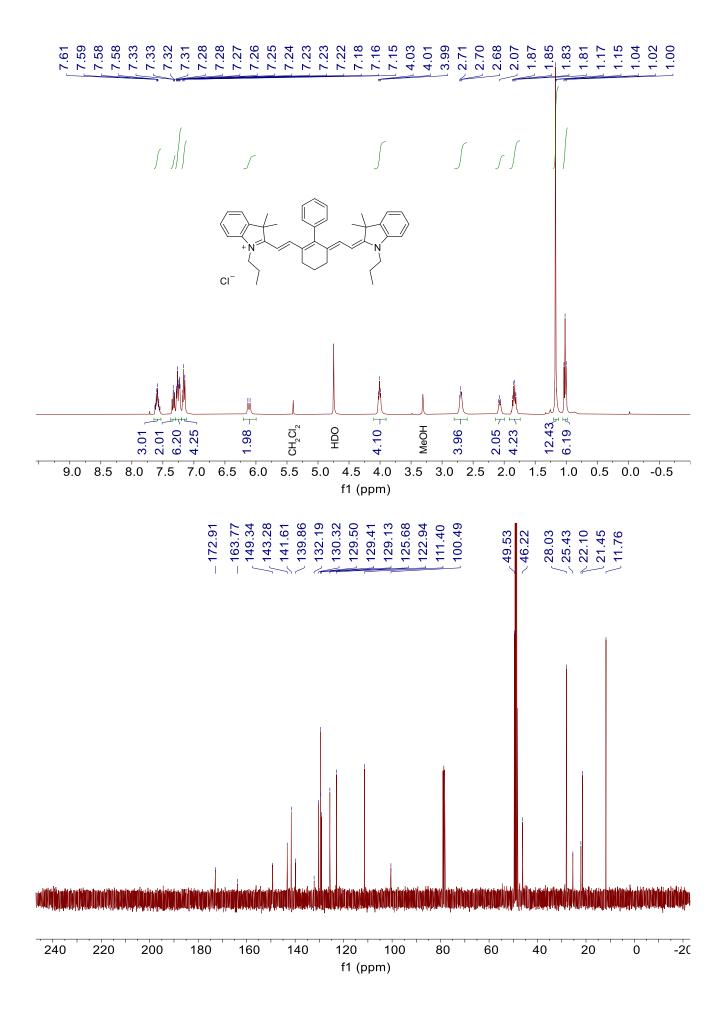


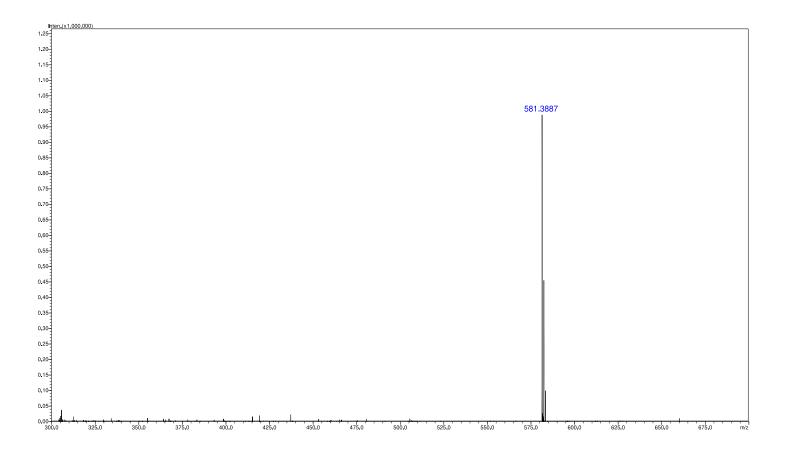


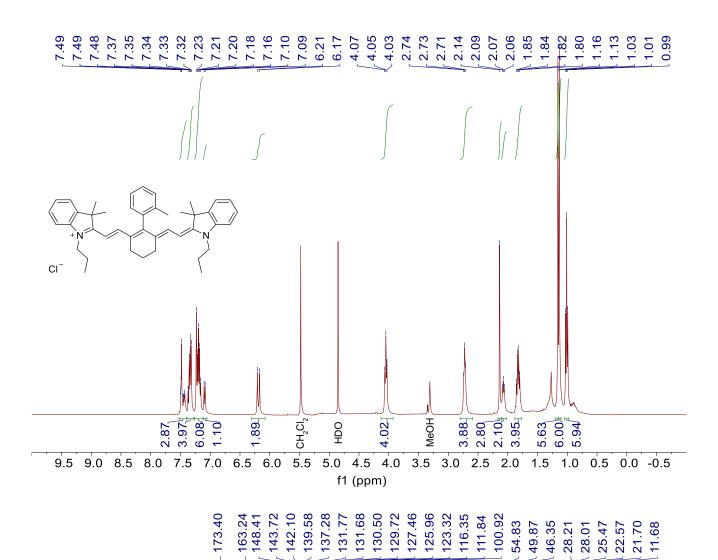


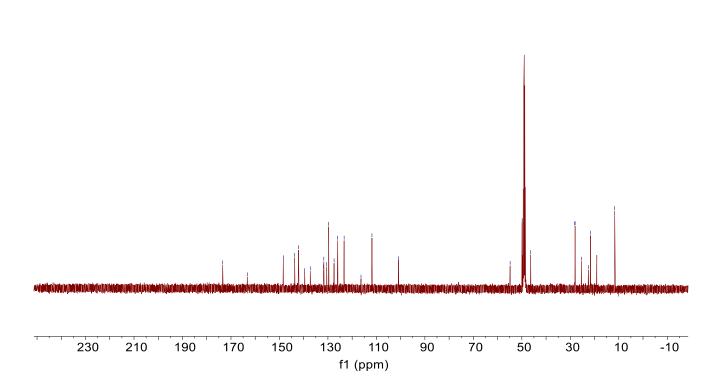

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

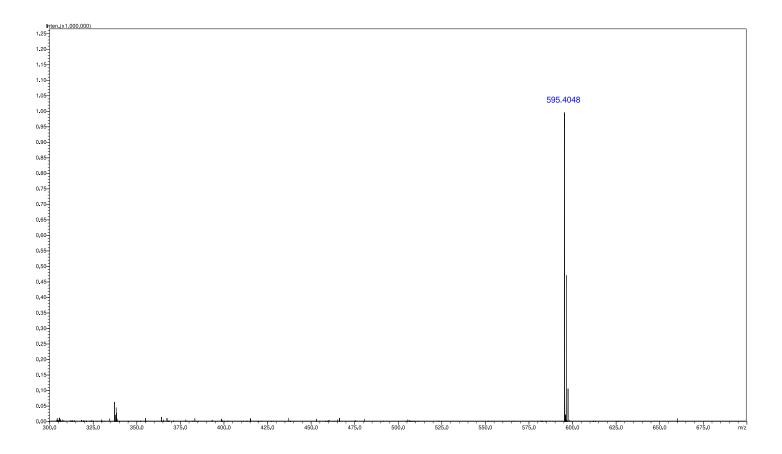


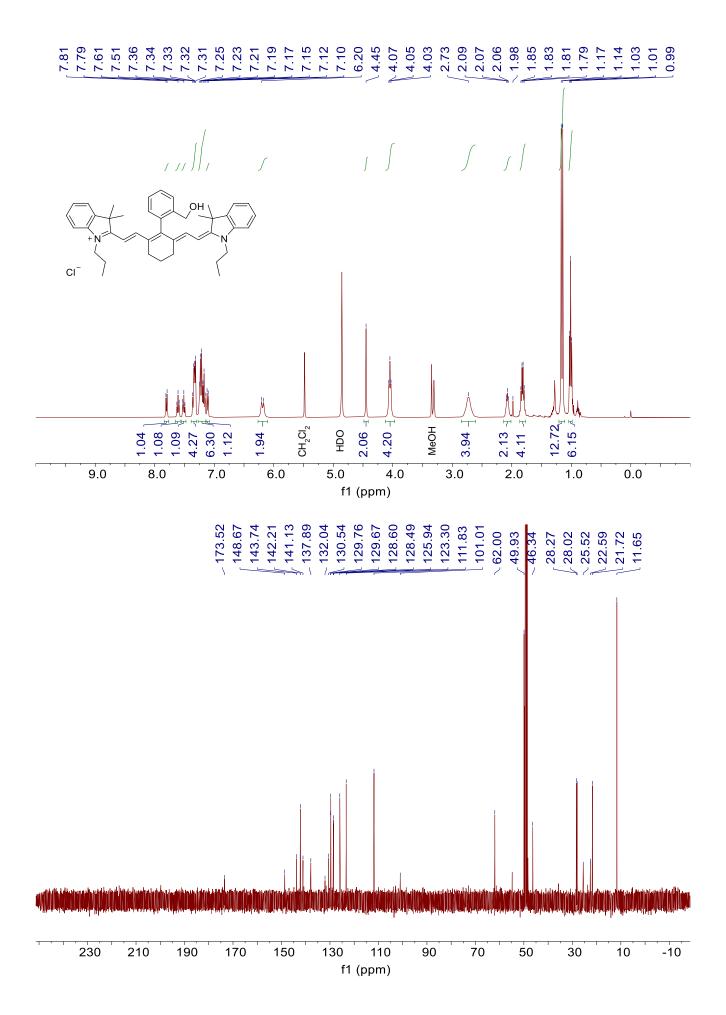


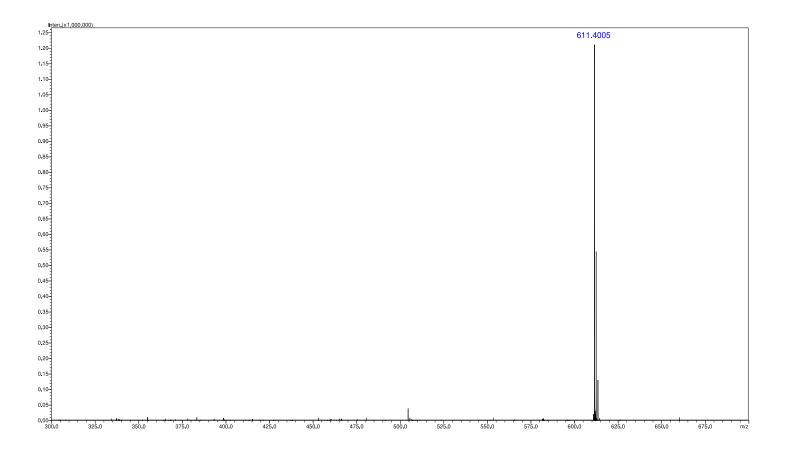


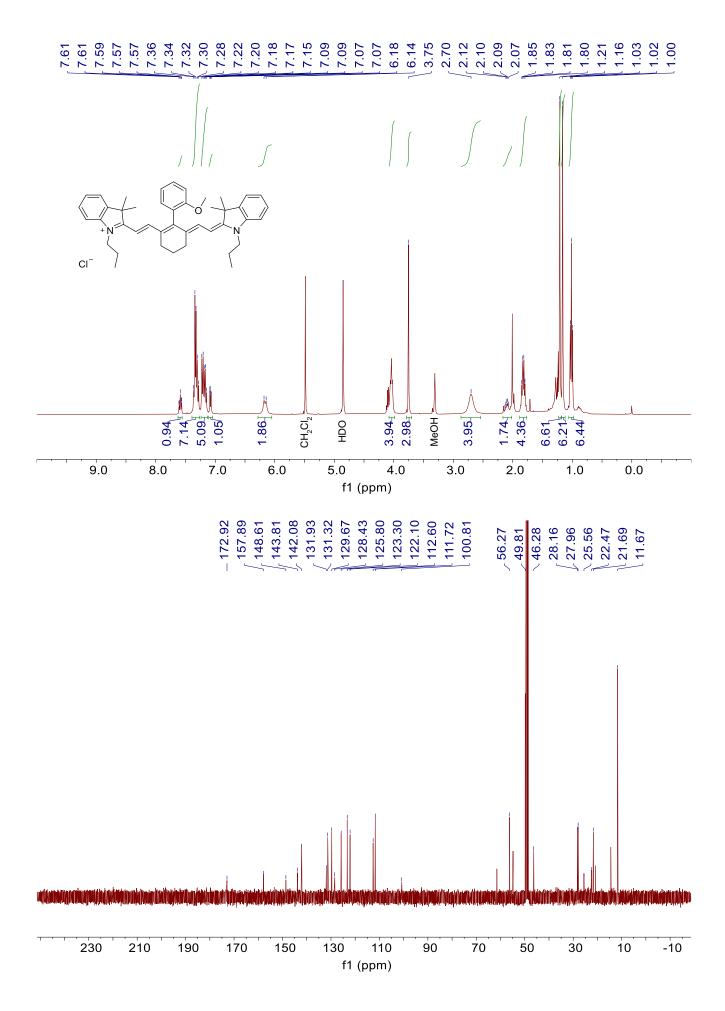


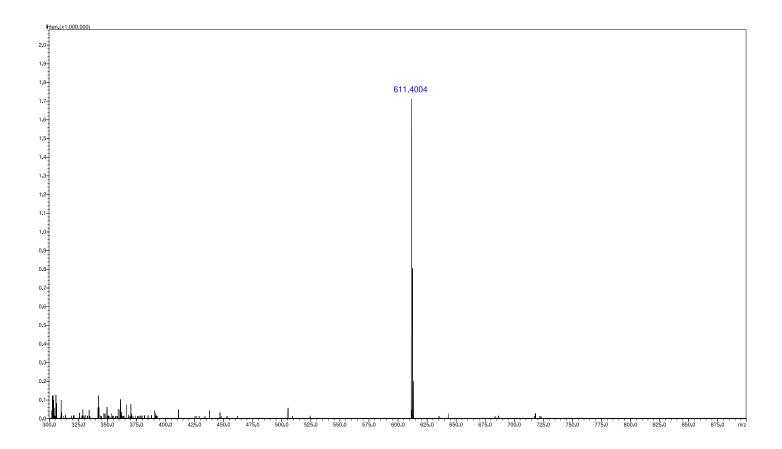


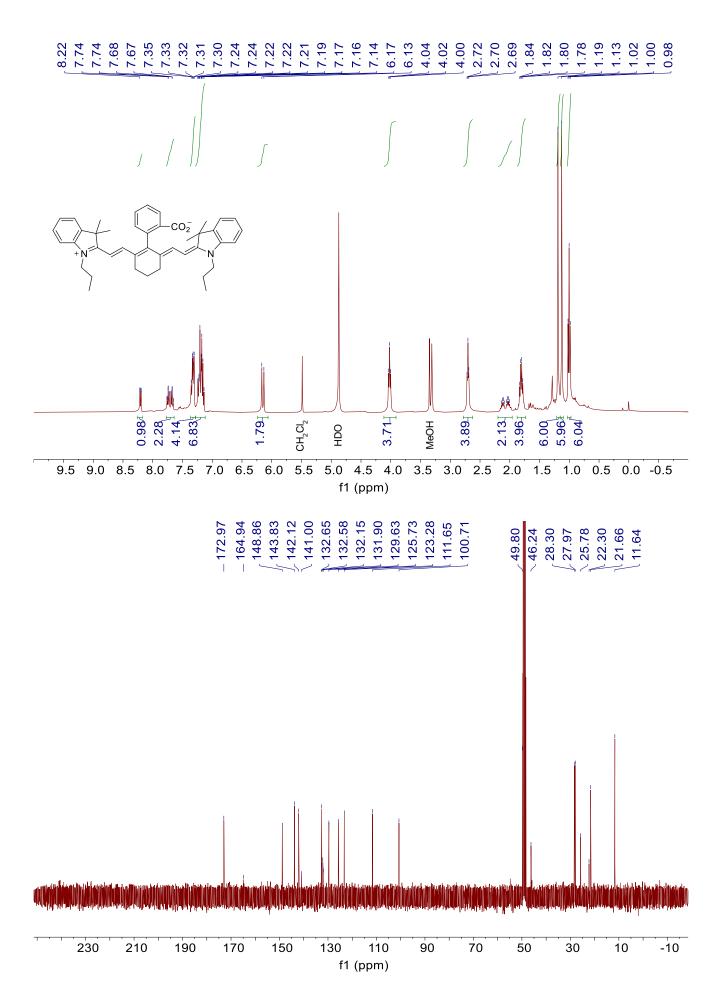

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

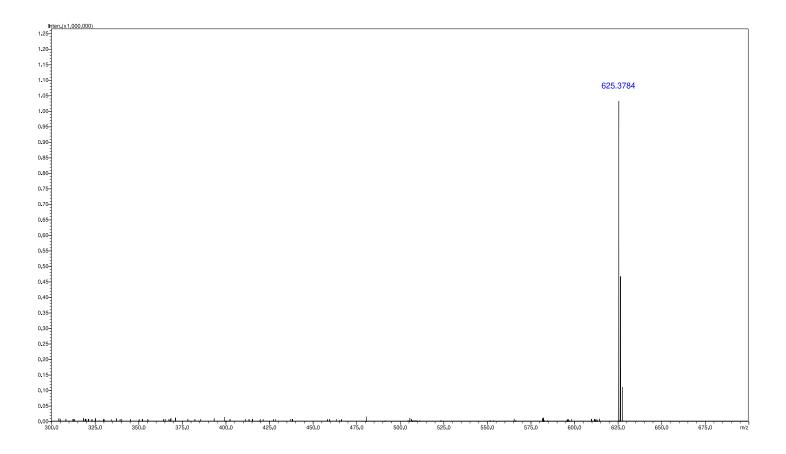


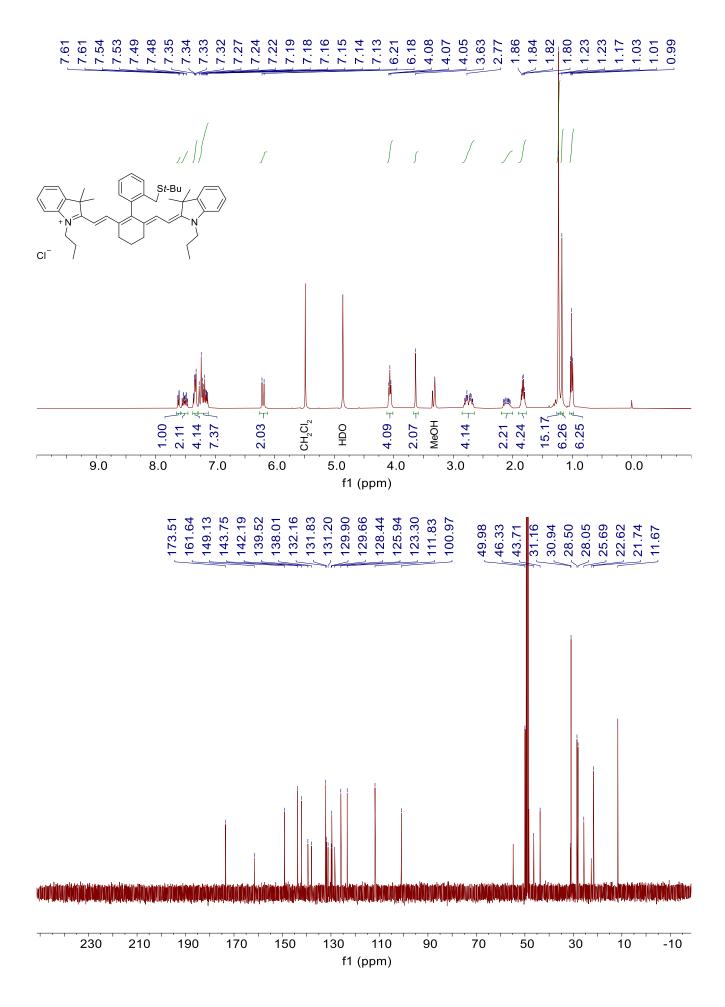


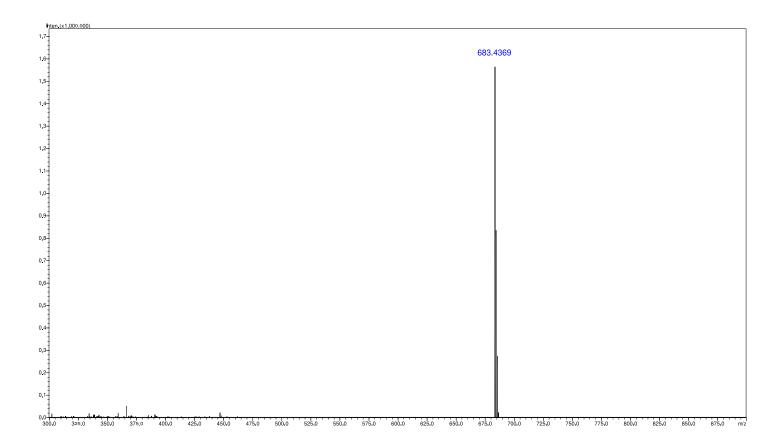


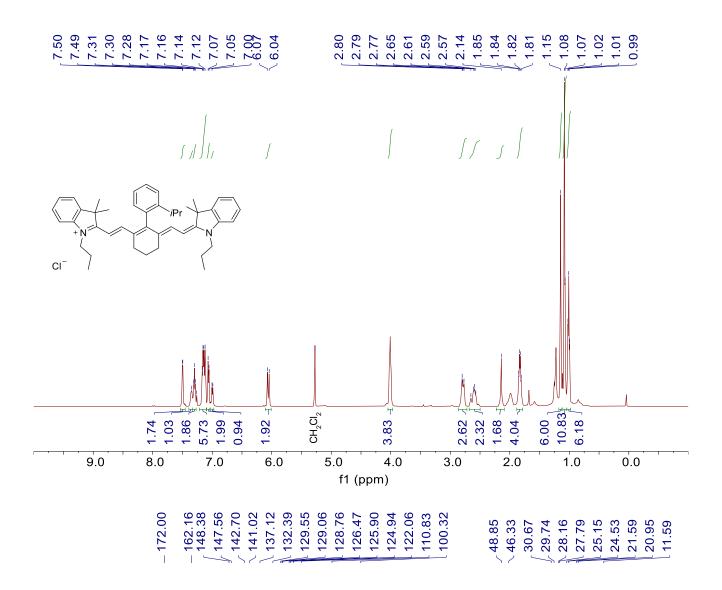


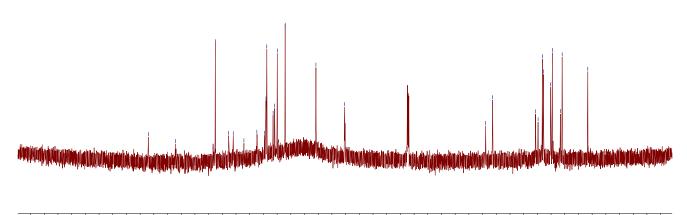


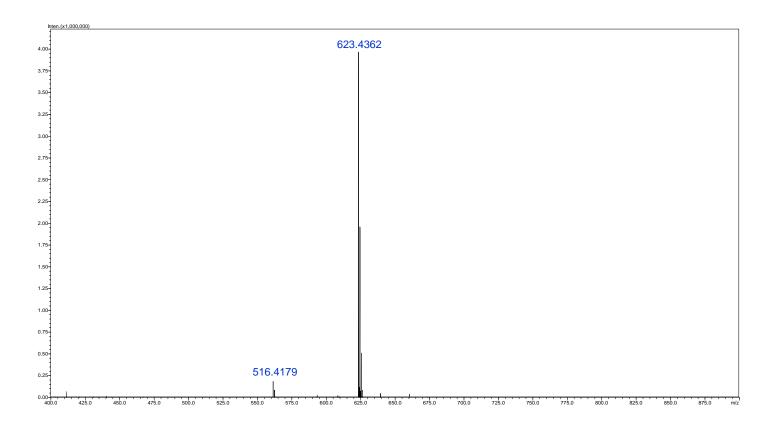


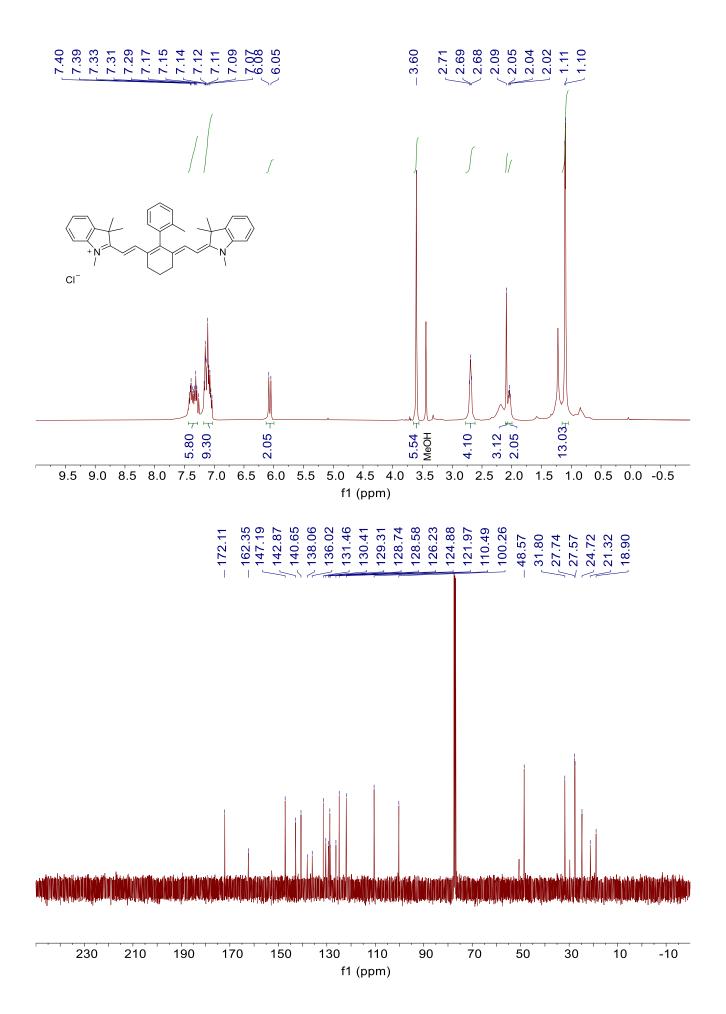


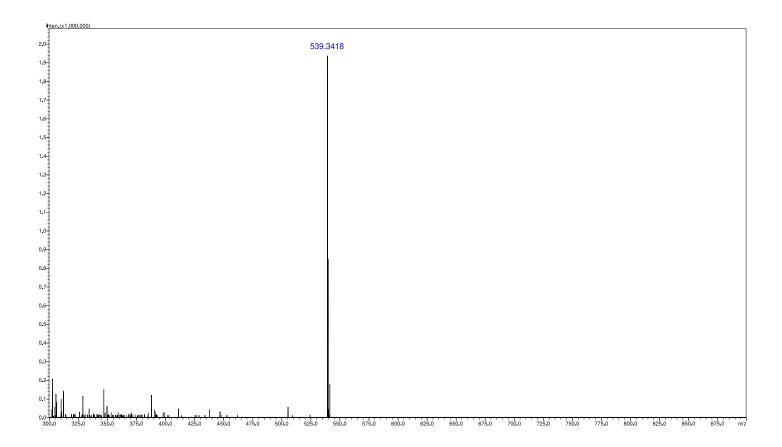


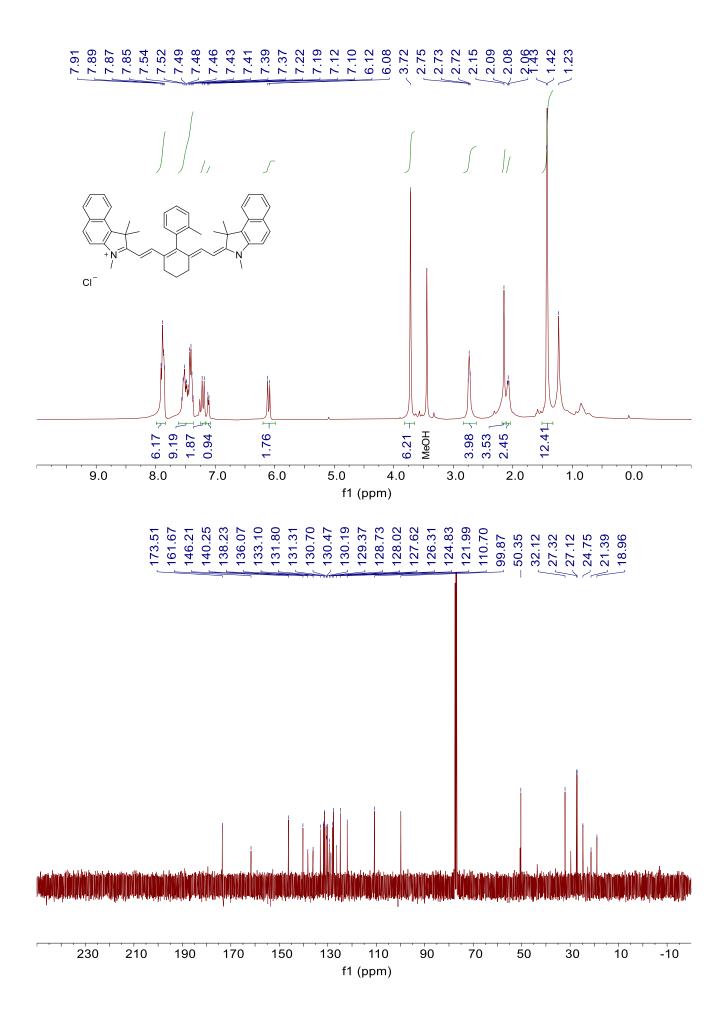


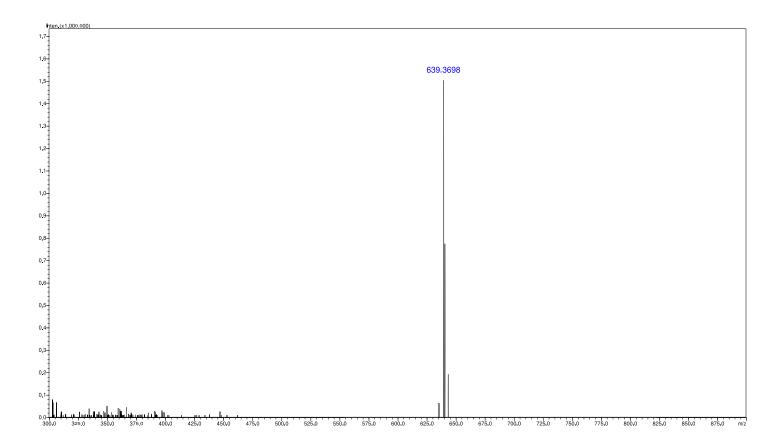


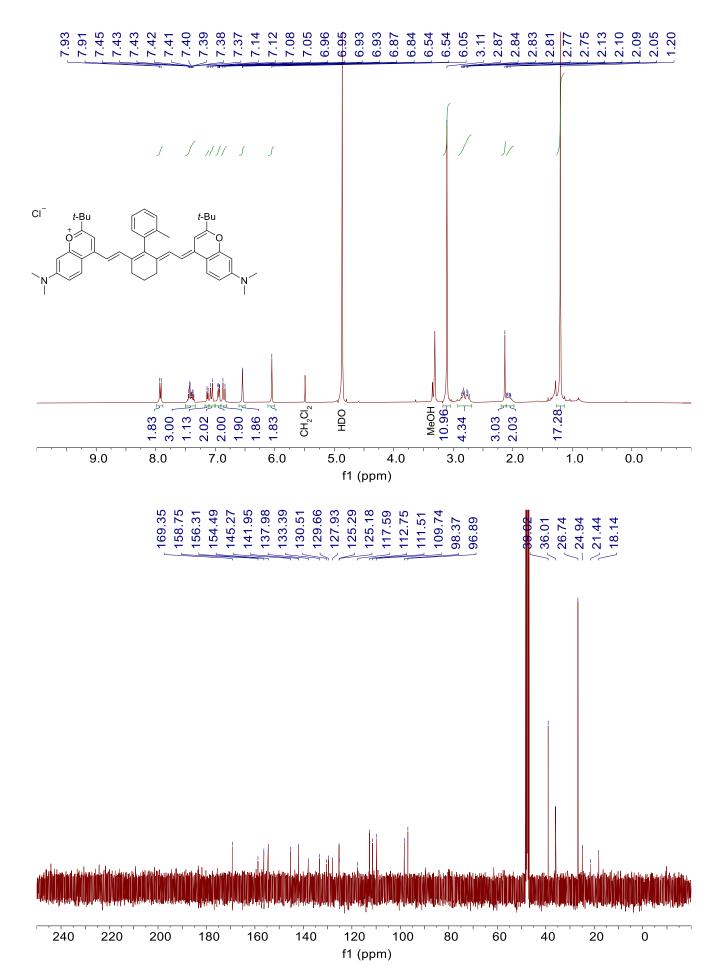


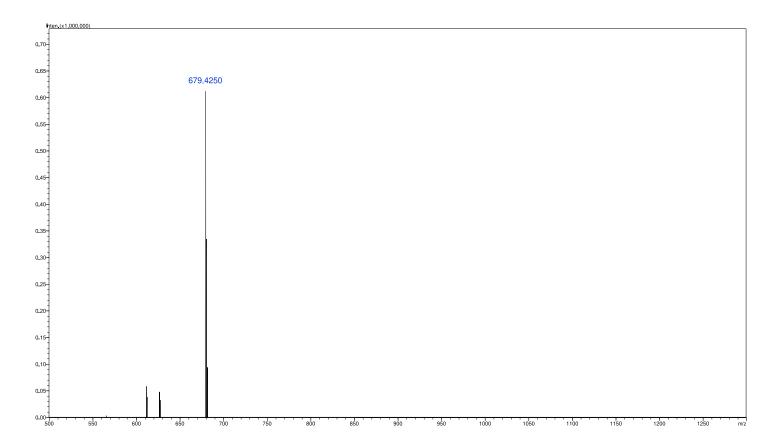


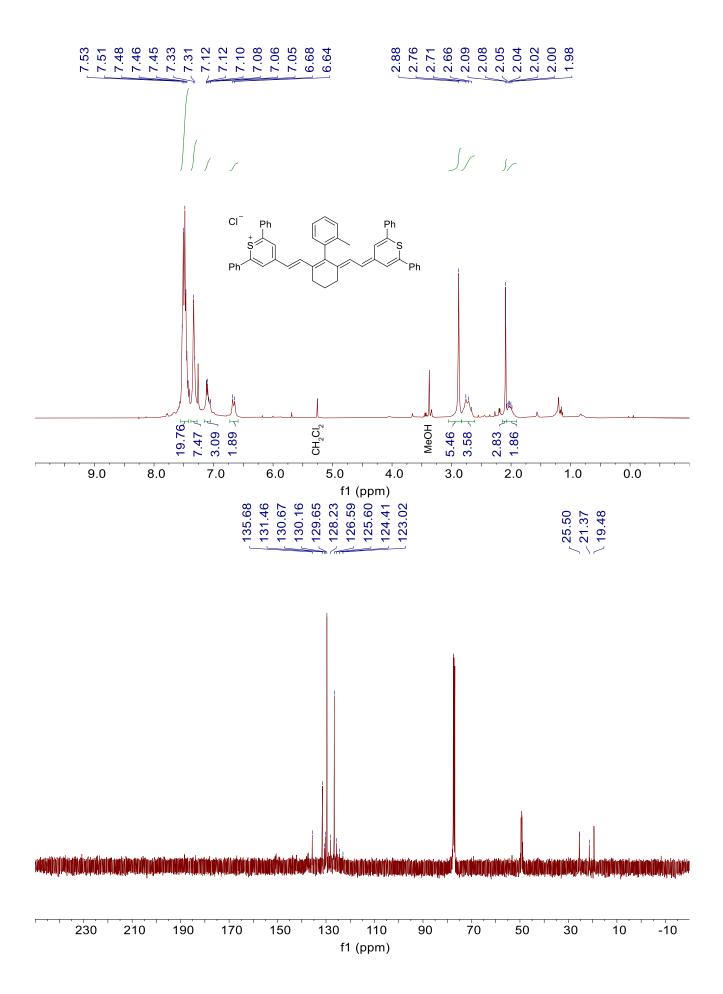


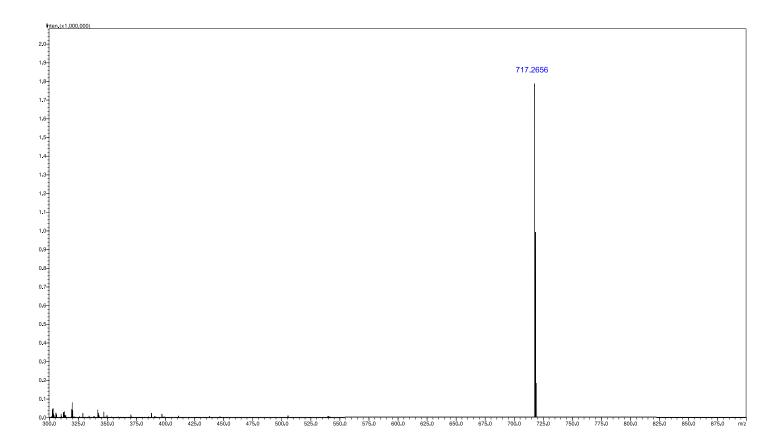


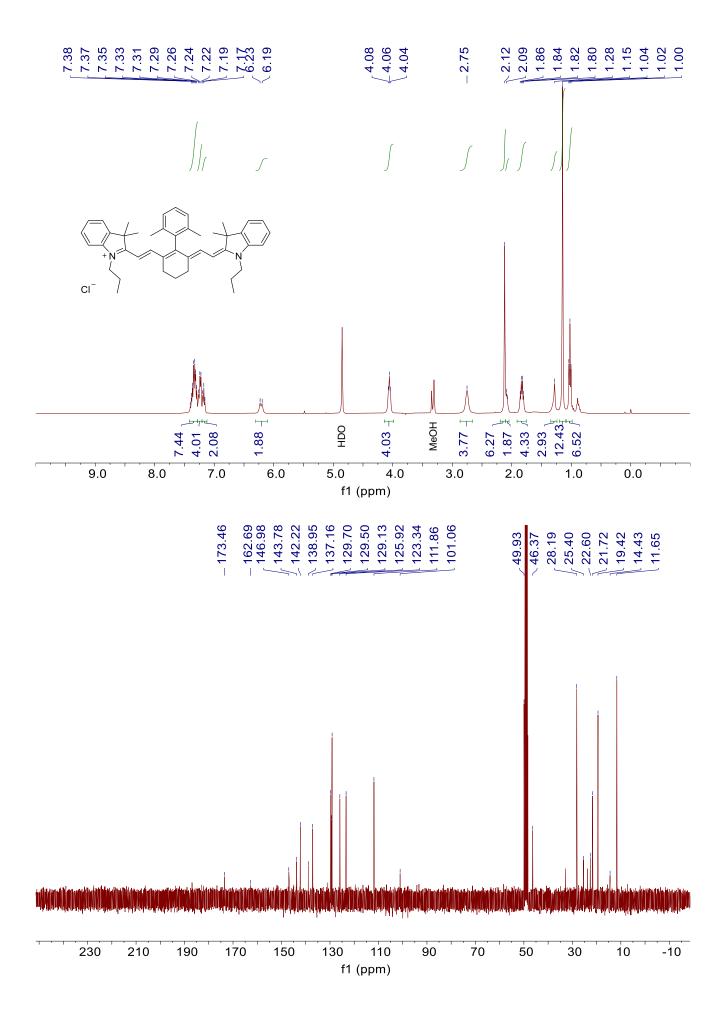

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

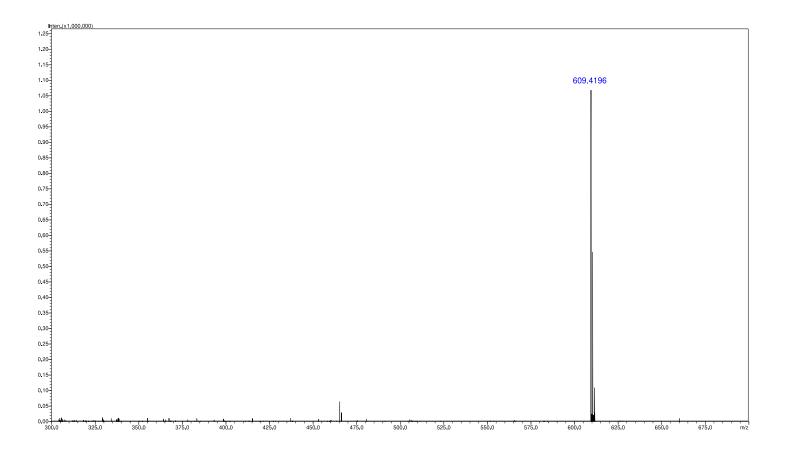


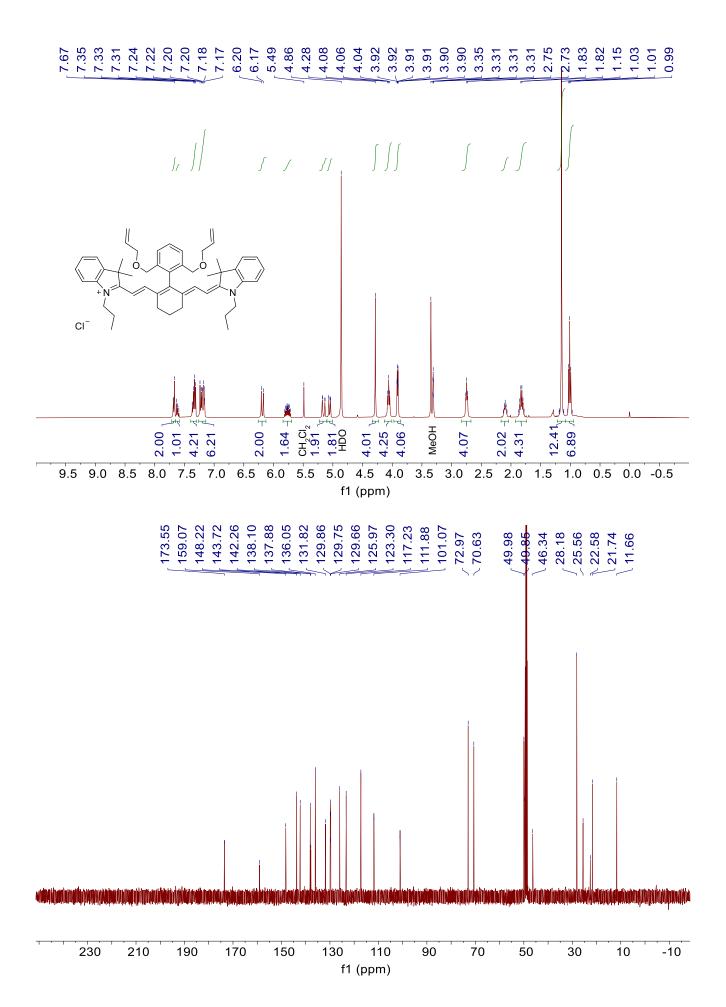


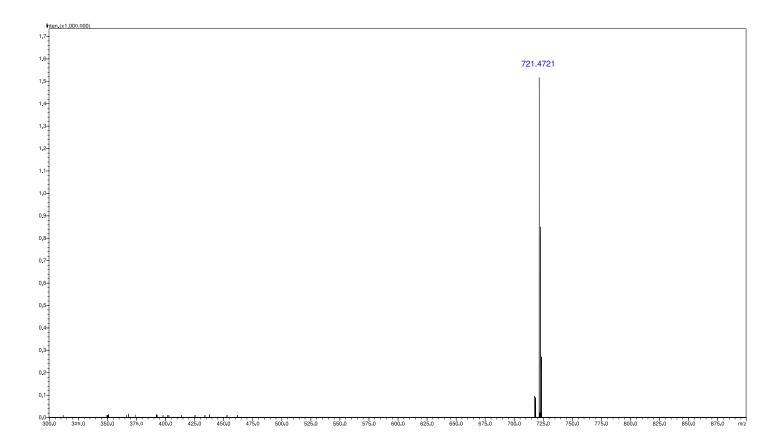


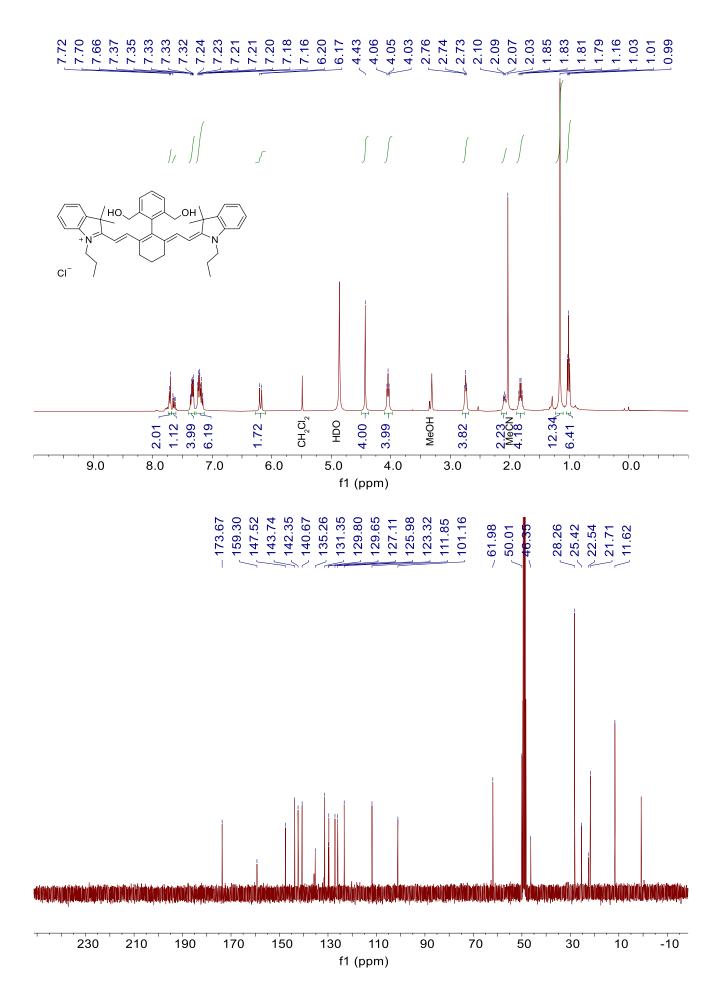


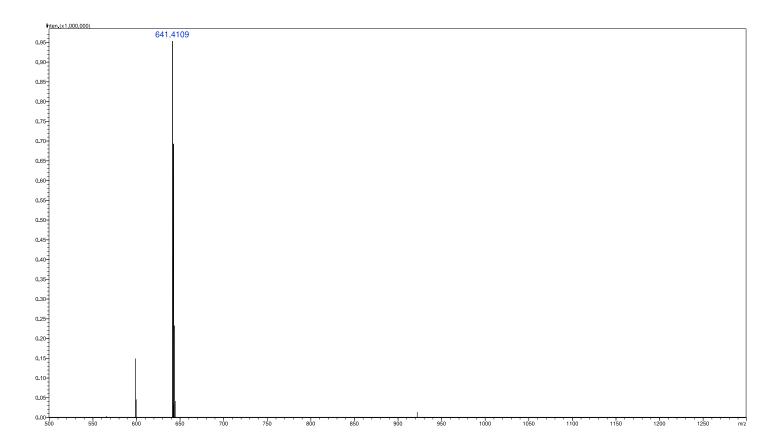


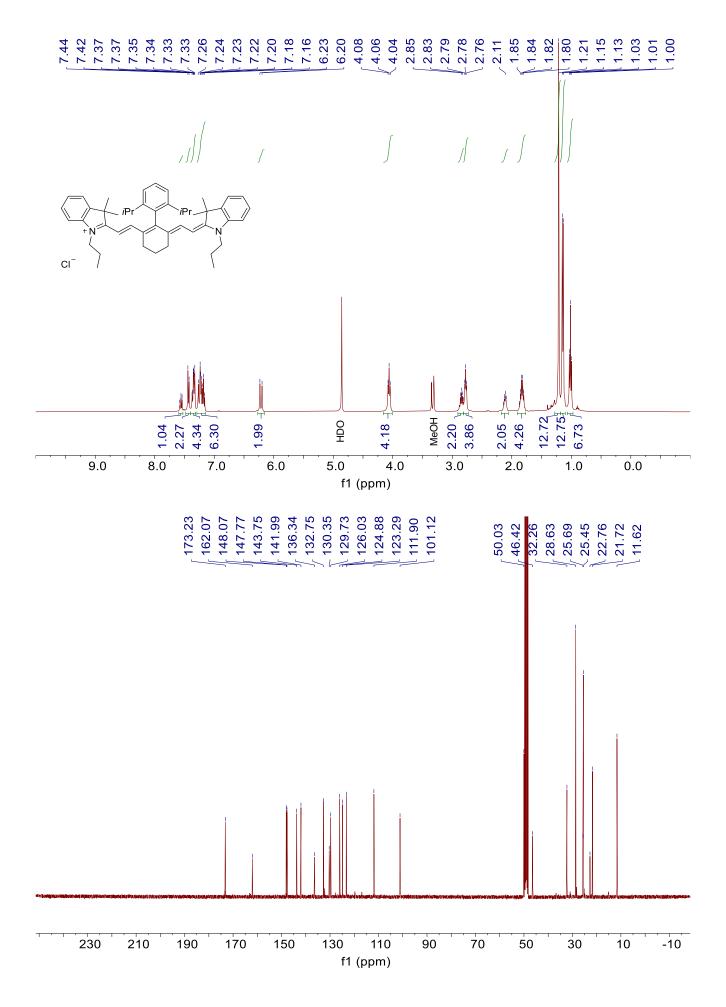


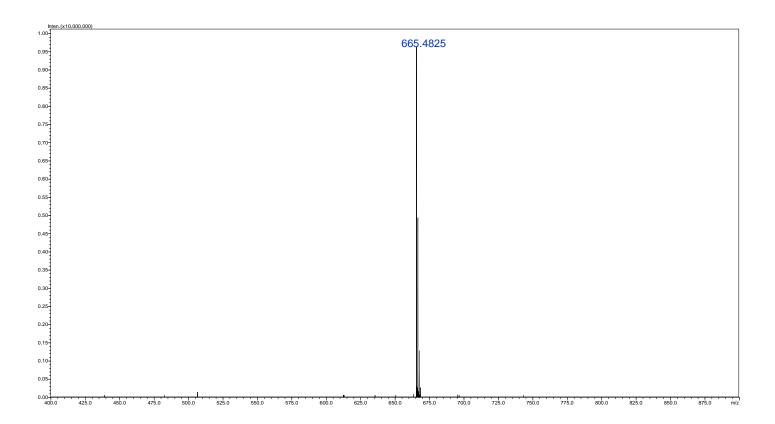


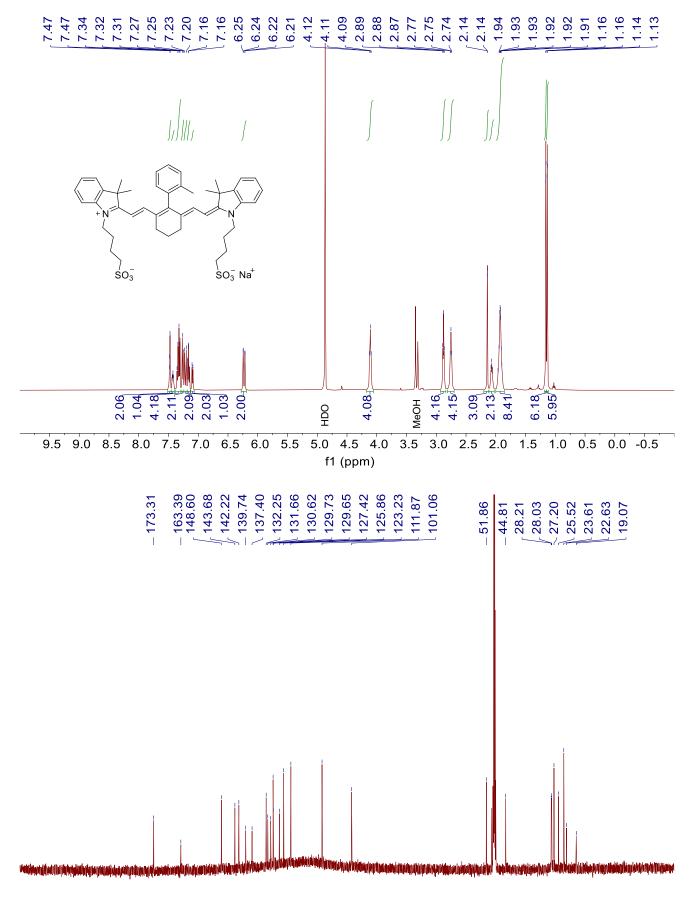


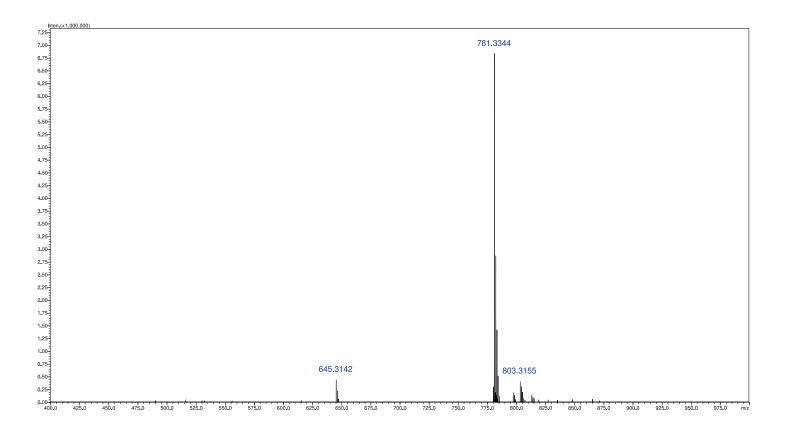


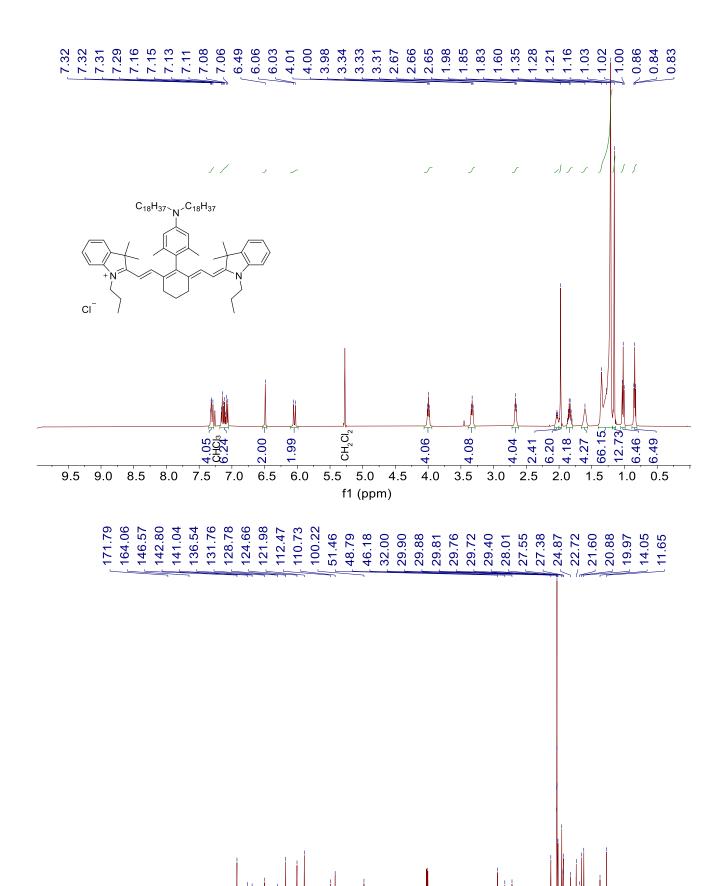


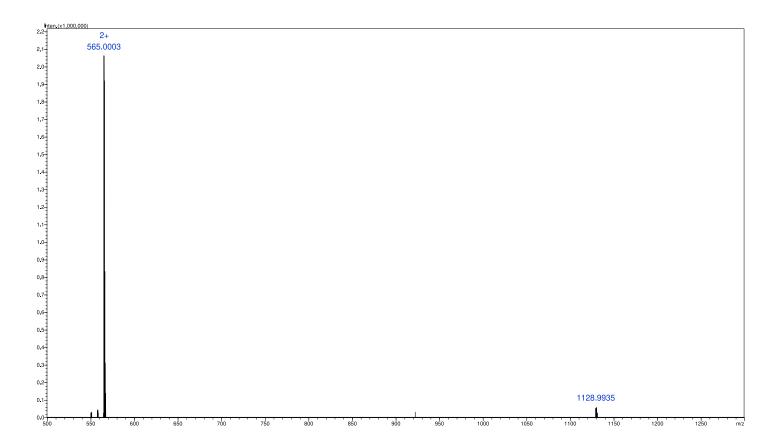












210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

References

- [1] H. Lee, J. C. Mason, S. Achilefu, J. Org. Chem. 2008, 73, 723–725.
- [2] A. Levitz, F. Marmarchi, M. Henary, *Photochem. Photobiol. Sci.* **2018**, *17*, 1409–1416.
- [3] L. Štacková, P. Štacko, P. Klán, J. Am. Chem. Soc. 2019, 141, 7155-7162.
- [4] S. M. Usama, S. C. Marker, D.-H. Li, D. R. Caldwell, M. Stroet, N. L. Patel, A. G. Tebo, S. Hernot, J. D. Kalen, M. Schnermann, *J. Am. Chem. Soc.* **2023**, *145*, 14647–14659.
- [5] K. Rurack, M. Spieles, Anal. Chem. 2011, 83, 1232–1242.
- [6] E. D. Cosco, I. Lim, E. M. Sletten, *ChemPhotoChem* **2021**, *5*, 727–734.
- [7] E. D. Cosco, B. A. Arús, A. L. Spearman, T. L. Atallah, I. Lim, O. S. Leland, J. R. Caram, T. S. Bischof,
 O. T. Bruns, E. M. Sletten, J. Am. Chem. Soc. 2021, 143, 6836–6846.
- [8] J. Spencer, M. Pfeffer, A. DeCian, J. Fischer, J. Org. Chem. 1995, 60, 1005–1012.
- [9] L. Ye, D. Ding, Y. Feng, D. Xie, P. Wu, H. Guo, Q. Meng, H. Zhou, *Tetrahedron* **2009**, *65*, 8738–8744.
- [10] I. Mohammadpoor-Baltork, M. Moghadam, S. Tangestaninejad, V. Mirkhani, A. R. Khosropour, A. Mirjafari, *J. Iran. Chem. Soc.* **2011**, *8*, 513–524.
- [11] Lucjan Strekowski, J. Christian Mason, Martial Say, Hyeran Lee, Rajni Gupta, Maryam Hojjat, *Heterocycl. Commun.* **2005**, *11*, 129–134.
- [12] S. Pascal, S. Denis-Quanquin, F. Appaix, A. Duperray, A. Grichine, B. Le Guennic, D. Jacquemin, J. Cuny, S.-H. Chi, J. W. Perry, B. van der Sanden, C. Monnereau, C. Andraud, O. Maury, *Chem. Sci.* **2017**, 8, 381–394.