Additive Manufacturing - Module 5

Spring 2015

Wenchao Zhou

zhouw@uark.edu
(479) 575-7250

The Department of Mechanical Engineering University of Arkansas, Fayetteville

Design for AM

$\sqrt{9}$

Geometry

* 3D scanning

Solid

3D image

Medical applications

Vision - has depth info

Picture Credit: Dr. Wojciech Matusik@MIT
$\sqrt{9}$

Geometry

* 3D scanning

Solid

Art, fashion, person, etc.

3D content for 3D printer, replication

品 UNIVERSITY OF ARKANSAS.

Geometry

* 3D scanning - range

Contact scanner

* Mechanical (CMM)
* Accurate but slow $(<\sim 100 \mathrm{~Hz})$

Non-Contact Transmissive Scanner

* CT
* MRI

Geometry

* 3D scanning - Optical scan

Introduction
3D Scanning

CAD

Curve

Surface

Solid

Geometry

* 3D scanning - Optical scan

Pros

* Non-contact
* Safe
* Usually inexpensive
* Usually fast

Cons

- Sensitive to transparency
- Often confused by specularity \& inter-reflection
* Texture (sometimes helpful, sometime not)

Geometry

* 3D scanning - Optical scan - passive Shape from shading

* Given: image of surface with known, constant reflectance under known point light
* Estimate normals, integrate to find surface
* Problem: ambiguity

Pros

* Single image
* No correspondences

Cons

* Mathematically unstable
* Cant have texture

3D scanning - Optical scan - passive
Shape from focus/defocus
at which focus setting is a given image region sharpest

- how out-of-focus is each image region

Pros

* Single image
* No correspondences

Cons

* Mathematically unstable
* Inaccurate

Geometry

- 3D scanning - Optical scan - passive

Stereo

* Two cameras - like eyes

Pros

* Passive
* Cheap hardware (2 cameras)
- Easy to accommodate motion
* Intuitive (similar to human vision)

Cons

* Need features for correspondence
* Noisy data (inaccurate)
* Bad around silhouettes

Geometry

* 3D scanning - Optical scan - passive

Stereo
Picture Credit: Dr. Wojciech Matusik@MIT

Geometry

* 3D scanning - Optical scan - active

Pros

* Can get dense data
* Much more robust and accurate than passive

Cons

* Introduce light into scene (distracting, etc.) * More expensive

品

Geometry

* 3D scanning - Optical scan - active

Stereo with projected texture

Slide Credit: Dr. Wojciech Matusik@MIT

Geometry

* 3D scanning - Optical scan - active Pulsed time of flight

* Send out pulses of light and time how long to return

Curve

Surface

Pros

* Large working volume

Cons

* Inaccurate (at best ~5 mm)
* Need timing < 30 ps
* Typically used for scanning buildings, archeological sites

Geometry

* 3D scanning - Optical scan - active Triangulation

- process of determining the location of a point by measuring angles to it from known points at either end of a fixed baseline

Curve

Surface

Solid

* 3D scanning - Optical scan - active

 Triangulation - Light strip scanning* Project a light stripe of laser light
* Scan across surface
* Very precise, but need many images

Multi-stripe laser triangulation

Geometry

* 3D scanning - Optical scan - active

Triangulation scanner issues

- Accuracy proportional to working volume (typically 1000:1)
* Can scale down to small working volume, but doesn't scale up
* Shadowing issue

Triangulation angle: non-uniform resolution (useful angle range 15° to 30° J

* Material properties (dark, specular, etc)
* Subsurface scattering
* Laser speckle
* Edge curl
* Texture embossing

$\frac{\square}{\square}$ UNiversity of
ARKANSAS

Geometry

* 3D scanning - Optical scan - active

Triangulation - Multi-stripe

* Go faster;
* Need to determine which strip is which: color or time-coded

Time

Space

\sqrt{a} UNiVERSITYOF
ARKANSAS.

Curve

Surface

Solid

* Algebraic geometry

Geometry

* CAD - Curves [1D]
$y=f(x)=a x+b ;$
Explicit
$x(\mathrm{t})=\sin (\mathrm{t})$;
$y(t)=\cos (t)$
Parametric
- Shape independent of position
- Invariant under rotation or translation
- Enable user control

$$
f(x, y)=x^{2}+y^{2}=1
$$

Implicit

Piecewise

* Discrete
* Flexible
* Each piece can be explicit, implicit, or parametric
* continuity ${ }^{\text {(}}{ }^{\text {th }}$ order, $1^{\text {st }}$ order, $2^{\text {nd }}$ order, etc.)

(c) 0)

* CAD - Curves [1D] - Parametric

Cubic curve - polynomial
$x(u)=a_{3 x} u^{3}+a_{2 x} u^{2}+a_{1 x} u+a_{0 x}$
$y(u)=a_{3 y} u^{3}+a_{2 y} u^{2}+a_{1 y} u+a_{0 y}$
$z(u)=a_{3 z} u^{3}+a_{2 z} u^{2}+a_{1 z} u+a_{0 z}$
Cubic curve - vector form

$$
\begin{aligned}
p(u) & =a_{3} u^{3}+a_{2} u^{2}+a_{1} u+a_{0} \\
& =\left[u^{3} u^{2} u 1\right]\left[a_{3} a_{2} a_{1} a_{0}\right]^{\top}=U A
\end{aligned}
$$

Hermite curve

$u=0$

end points: $p(0), p(1)$ end tangents: $\mathrm{p}^{\mathrm{u}}(0), \mathrm{p}^{\mathrm{u}}(1)$

Derivative

$$
\begin{aligned}
& x^{u}(u)=d x(u) / d u \\
& y^{u}(u)=d y(u) / d u \\
& z^{u}(u)=d z(u) / d u
\end{aligned}
$$

Bezier curve - Pierre Bezier in 1960 s

$$
3(1-u) u^{2} p_{2}+u^{3} p_{3}
$$

* Characteristic Polygon: Curves interpolate first and last CV.
* Intermediate CV's shape the curve.
* Changes tend to be localized.
* Curve is tangent to first pair of CV's and last pair of CV's.

$$
22
$$

* Invariant under rotations and translations.

Geometry

* CAD - Surfaces [2D]

$$
z(x, y)=3 x^{2}+4 y^{2}+2 x y \quad f(x, y, z)=x^{2}+y^{2}+z^{2}=1
$$ Explicit

Implicit
$\mathrm{x}=\mathrm{x}(\mathrm{u}, \mathrm{w})$;
$y=y(u, w)$;
Z=z(u,w);
Parametric

Piecewise (surface patches): consider continuity

Surface lofting (create surface from curves)

Geometry

* CAD - Surfaces (2D) - Parametric

Introduction

3D Scanning
CAD

Curve

Surface

Solid

$$
\begin{aligned}
& \mathbf{p}(u, w)=\sum_{i} \sum_{j} a_{i j} x^{i} y^{j} \\
& \mathbf{p}(u, w)=\left[\begin{array}{llll}
1 & u & u^{2} & u^{3}
\end{array}\right]\left[a_{i j}\right] \\
& \mathbf{p}(u, w)=\mathbf{U A W}
\end{aligned}\left[\begin{array}{c}
1 \\
w \\
w^{2} \\
w^{3}
\end{array}\right.
$$

Hermite form

* 4 End Points: $p(0,0)$. $p(1,0), p(0,1), p(1,1)$
* 8 Tangents at end points, pu(u,w). pw(u,w)
* 4 Twist Vectors at end points: puw(u,w)

[^0]
(c) 0 ?

* CAD - Surfaces (2D) - Parametric

Curve

Surface

Solid

Bezier surface

* 4 corner points: poo. p03, p30, p33.
* 4 intermediate points: p11, p22, p12, p21 control cross slopes in same manner as twist vectors.
* 8 other points control boundary curves.

$$
\begin{aligned}
& \mathbf{p}(u, w)=\left[\begin{array}{llll}
(1-u)^{3} & 3 u(1-u)^{2} & 3 u^{2}(1-u) & u^{3}
\end{array}\right] \mathbf{P}\left[\begin{array}{c}
(1-w)^{3} \\
3 w(1-w)^{2} \\
3 w^{2}(1-w) \\
w^{3}
\end{array}\right] \\
& \mathbf{P}=\left[\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23} \\
p_{30} & p_{31} & p_{32} & p_{33}
\end{array}\right]
\end{aligned}
$$

Geometry

* CAD - Surfaces (2D) - Loft

Linear Loft $\mathbf{p}(u, w)=(1-w) \mathbf{p}_{1}(u)+w \mathbf{p}_{2}(u)$

Bilinear Loft

Linear loft from $p_{1}(u)$ to $p_{3}(u)$
$\mathbf{p}(u, w)=(1-w) \mathbf{p}_{1}(u)+w \mathbf{p}_{3}(u)$
Linear loft from $p_{2}(u)$ to $p_{4}(u)$
$\mathbf{p}(u, w)=(1-u) \mathbf{p}_{2}(w)+u \mathbf{p}_{4}(w)$

Combine

$$
\begin{aligned}
\mathbf{q}(u, w)= & (1-w) \mathbf{p}_{1}(u, 0)+w \mathbf{p}_{3}(u, 1)+(1-u) \mathbf{p}_{2}(0, w)+u \mathbf{p}_{4}(1, w) \\
& -\mathbf{p}_{00}(1-u)(1-w)-\mathbf{p}_{01}(1-u) w-\mathbf{p}_{10} u(1-w)-\mathbf{p}_{11} u w
\end{aligned}
$$

Geometry

* CAD - Solid (3D)

Solid model

* 3D point sets
- Inside \& outside
* Physical properties: mass, volume, moment of inertia, stress, strain, etc. EMPro Platform

Emphasis on physical fidelity
Motivation

FEM Simulator Finite Element Method
Physically based
CAD/CAM need solid info simulations (e.g., FEM)
CT scan (generate solid data)

Geometry

* CAD - Solid (3D)

General requirements

* Expressive power: have adequate info to answer any geometric questions
* Validity: manufacturability and realizability
* Unambiguity: unique representation
- Easy for transformation and Boolean operations
* Conciseness: storage requirement
* Computational ease: easy to write algorithm for
- Efficient display

General approaches

* Edges: wireframe model
* Surfaces: surface boundary
* Volume: entire volume

(c) 0 ?

* CAD - Solid(3D)

Validity of 3D models

(Definition: A solid is a bounded, closed subset of E^{3} (Euclidean Space)

* Bounded: finite extent; Closed: has a boundary

2-manifold

- A 2-manifold M is a topological space where every point has a neighborhood topologically equivalent to an open disk of E^{2}.

No isolated/embedded
Neighborhoods points or line segments around points

Non-manifold

Shared vertex Edge embedded in face Dangling face

Geometry

- CAD - Solid(3D)

Not all 2-manifold are realizable * Sufficient condition: orientability

Orient a pyramid: all polygons oriented clockwise as seen from outside (consistently oriented).

Curve

Surface

Solid

Euler Characteristic

* $\mathbf{v}-\mathbf{e}+\mathbf{f}=\mathbf{2 (s}-\mathbf{h}$); $\mathbf{s}=$ \# shells, $\mathbf{h}=$ \# holes
$v=5, f=5, e=8$
v-e + f = +2
2(s - h) = +2
+2 = Euler Characteristic for all objects topologically equivalent to sphere

[^1]
Geometry

* CAD - Solid(3D)

Wireframe modeling - Problem: ambiguity

Geometry

* CAD - Solid (3D) - Implicit representation

Common quadratic shapes

* Sphere

Torus
Ellipsoid
Paraboloid

* Hyperboloid

Pros

* Very concise
* Guaranteed validity
* Easy to test if points are on surface or inside
* Easy to intersect two shapes

Cons

* Hard to describe complex shapes
* Hard to draw (interact with users)

Geometry

- CAD - Solid(3D) - Parametric representation

$$
\begin{array}{r}
P(u, v, w)=\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{ll}
x(u, v, w) \quad y(u, v, w) \quad z(u, v, w)
\end{array}\right] \\
u_{\min } \leq u \leq u_{\max } ; v_{\min } \leq v \leq v_{\max } ; w_{\min } \leq w \leq w_{\max }
\end{array}
$$

Hyperpatch

Pictures credit: Dr Shriram Hegde@IITD

* CAD - Solid(3D) - Boundary representation (B-rep)

B-rep (Baumgart 1970) - Explicit representation of:

* Boundary of an object
* Connectivity among faces, edges, and vertices
- Geometric and topological information

Winged-Edge Tables

Edge	Vstart	Vend	fcw	fccw
e1	v1	v2	fl	f 2
e2	v 2	v 3	f 1	f 3
e3	v 3	v 4	fl	f 4
e4	v 4	v 1	fl	$\mathrm{f5}$
e5	v 1	v 5	f 2	f 5

Geometry

* CAD - Solid (3D) - Boundary representation (B-rep)

Winged-Edge Tables

Curve

Surface

Solid

V

v1	$x 1$ yd z1	el
v2	$x 2$ yR z2	e2

v3
e3
v4
.....
e4
v5
v6
v7
v8

EDGE	NW	PCW	NCCW	PCCW
el	e2	e4	e5	e6
e2	e3	el	e6	e7
e3	e4	e2	e7	e8
e4	el	e3	e8	e5
e5	e9	el	e4	e12
e6	e10	e2	el	e9
e7	e11	e3	e2	e10
e8	e12	e4	e3	e11
e9	e6	e5	e12	e10
e10	e7	e6	e9	e11

ell
e 12
e8 e
e7
es
es
e 10
e 12
ell
e9

Face	First Edge
fl	el
f2	e9
f3	e6
f4	e7
f5	e12

ff

* Explicit topological info
* Easy to render

Cons

* Hard to check validity * Hard for Boolean operation University of of
ARKANSAS

Geometry

- CAD - Solid (3D) - Sweep representation

Linear Sweep

Pros

* Simple representation

i Circular sweep
* Good for uniform extruded * No formal theory objects or rotational geometry

Cons

Procedural Modeling: Describe 3D models using algorithms

* Limited domain
* Validation schemes unknown

Invalid Sweep

Invalid 2-D profile for sweep, nested more than 1 level

Geometry

* CAD - Solid(3D) - Spatial Occupancy Enumeration

Partition space into a uniform grid

* Grid cells are called voxels (volume element, like pixels)

Curve

Surface

Solid

Engine Block Stanford University

Store properties of solid object with each voxel

* Occupancy
- Color
- Density

Visible Human
(National Library of Medicine)

* Temperature
* etc.

- CAD - Solid(3D) - Spatial Occupancy Enumeration

Voxel storage

* $O\left[n^{3}\right.$) storage fo $n \times n \times n$ grid (1 Billion voxels for $1000 \times 1000 \times 1000$)
* Processing just like image processing

Boolean operations

* Compare objects voxel by voxel * Trivial

Geometry

- CAD - Solid (3D) - Spatial Occupancy Enumeration

Voxel display

* Isosurface rendering: Render surfaces bounding volumetric regions of constant value (e.g., density)

Slicing

* Draw

[^2]

Isosurface visualization (Princeton University)

Visible Human (National
Library of Medicine)

Geometry

* CAD - Solid (3D) - Spatial Occupancy Enumeration

Voxel display

* Isosurface rendering: Render surfaces bounding volumetric regions of constant value (e.g., density)

Isosurface visualization (Princeton University)

* Ray casting
* Integrate RGB, opacity. etc. for rendering

Geometry

- CAD - Solid(3D] - Spatial Occupancy Enumeration

Polygon generation

Solid

3D

- CAD - Solid(3D] - Spatial Occupancy Enumeration

Slicing

* Draw 2D image from intersecting voxels with a plane

Pros

- Simple, intuitive, unambiguous
* Same complexity for all objects
* Natural acquisition for some apps.
* Trivial Boolean operations

Cons

* Approximate
* Not invariant for affine transformations
* Large storage requirements
* Expensive display

Geometry

* CAD - Solid(3D) - Spatial Occupancy Enumeration

Quadtrees \& Octrees

* Refine resolution of voxels hierarchically
* Encoded using a standard tree data structure

$A \cup B$

$A \cap B$

- CAD - Solid(3D] - Spatial Occupancy Enumeration

 Binary space partitions (BSPs)* Recursive partition of space by planes
* Make leaf cells as inside or outside object

Object

* Regions decrease in size along tree depth and converge to the surface

1st level Approximation

2nd level Approximation

(CAD - Solid(3D) - Constructive Solid Geometry [CSG]

CSG: 1974 by Ian Braid

* Build complex objects from simple parts using Boolean operations
* Intuitive
* Represent solid object as hierarchy of Boolean operations
* Boolean operations are not evaluated
* Objects are represented implicitly with a tree structure

Simple shapes

* Cuboids
* Cylinders
* Prisms
* Pyramids
* Spheres
* Cones
* Extrusions/Sweepings

(c) 0 ?

Introduction

3D Scanning

Curve

Surface

Solid

* CAD - Solid(3D) - Constructive Solid Geometry (CSG)

Boolean operations

* Union
* Intersection
* Difference

Subtraction

Affine transformations

Reflect about origin
Reflect about x-axis
Reflect about y-axis

$\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Algorithm: Ray tracing

- INPUT: Assume that we have a ray R and a CSG tree T
- If T is a solid,
- compute all intersections of R with T
- return parameter values and normals
- If T is a transformation
- apply inverse transformation to R and recursion
- apply inverse transpose of transformation to normals
- return parameter values
- Otherwise T is a Boolean operation
- recursion on two children to obtain two sets of intervals
- apply operation in T to intervals
- return parameter values.
- OUTPUT: Display closest intersection points

(c) 0 ?

* CAD - Solid(3D) - Constructive Solid Geometry (CSG)

Algorithm: Inside/Outside Test

- Given a point p and a tree T, determine if p is inside/outside the solid defined by T
- If T is a solid
- Determine if p is inside T and return
- If T is a transformation
- Apply the inverse transformation to p and recursion
- Otherwise T is a Boolean operation
- Recursion to determine inside/outside of left/right children
- If T is Union
- If either child is inside, return inside, else outside
- If T is Intersection
- If both children are inside, return inside, else outside
- If T is Subtraction
- If p is inside left child and outside right child, return inside, else outside

Algorithm: Calculate volume

Put bounding box around object

- Pick n random points inside the box
- Determine if each point is inside/outside the CSG Tree
- Volume = \#inside/n

Geometry

- CAD - Solid(3D) - Summary

Introduction

3D Scanning

CAD

Curve

Surface

Solid

	Implicit/ Parametric	B-rep	Voxel	Octree	BSP	CSG
Accurate	Yes	Yes	No	No	Some	Some
Concise	Yes	Some	No	No	No	Yes
Affine invariant	Yes	Yes	No	No	Yes	Yes
Easy acquisition	No	No	Some	Some	No	Some
Guaranteed validity	Yes	No	Yes	Yes	Yes	No
Efficient Boolean operations	Yes	No	Yes	Yes	Yes	Yes
Efficient display	Yes	Yes	No	No	Yes	No
Expressive power	Very Limited	Good	Excellent	Excellent	Excellent	Excellent

Introductio
3D Scannin
CAD
Curve

Surface

Solid

THANK Y®U!

[^0]: Slide Credit: Dr. David Rosen@GaTech

[^1]: Pictures source:wikipedia

[^2]: Slide credit - Dr. Wojciech Matusik@MIT

