

1

Additive Manufacturing – Module 5

Spring 2015

Wenchao Zhou

zhouw@uark.edu

(479) 575-7250

The Department of Mechanical Engineering University of Arkansas, Fayetteville

Design for AM

3D scanning

Introduction

3D Scanning

CAD

Curve

Surface

Solid

3D image

Vision – has depth info

Medical applications

Picture Credit: Dr. Wojciech Matusik@MIT

3D scanning

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Building scan for quality control

Art, fashion, person, etc.

3D content for 3D printer, replication

Contact scanner

- Mechanical (CMM)
- Accurate but slow (<~100Hz)</p>

Non-Contact Transmissive Scanner CT MRI

Non-contact Optical scanner & Radar

- Sonar
- Optical

3D scanning – Optical scan

3D scanning – Optical scan

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Pros

- Non-contact
- Safe
- Sually inexpensive
- Usually fast

Cons

- Sensitive to transparency
- Often confused by specularity & inter-reflection
- Texture (sometimes helpful, sometime not)

3D scanning – Optical scan – passive

Shape from shading

- Given: image of surface with known, constant reflectance under known point light
 - Settimate normals, integrate to find surface
 - Problem: ambiguity

Pros

- Single image
- No correspondences

Cons

- Mathematically unstable
- Can't have texture

3D Scanning ♦

CAD

Curve

Introduction

Surface

Solid

3D Scanning

Curve

Solid

CAD

Geometry

3D scanning – Optical scan – passive

Shape from focus/defocus

- at which focus setting is a given image region sharpest
- how out-of-focus is each image region

Pros

- Single image
- No correspondences

Cons

- Mathematically unstable
- Inaccurate

3D Scanning

Curve

Surface

Solid

CAD

Geometry

3D scanning – Optical scan – passive **Stereo** Two cameras – like eyes Α D B0' O'p'p

Pros

- Passive
- Cheap hardware (2 cameras)
- Easy to accommodate motion
- Intuitive (similar to human vision)

Cons

- Need features for correspondence
- Noisy data (inaccurate)
- Bad around silhouettes

3D Scanning

Curve

Surface

CAD

Geometry

3D scanning – Optical scan – passive

3D scanning – Optical scan – active

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Pros

- Can get dense data
- Solution Nucleon Nu

Cons

Introduce light into scene (distracting, etc.)
More expensive

CAD

Curve

Surface

Solid

3D scanning – Optical scan – active

Stereo with projected texture

CAD

Curve

Surface

Solid

3D scanning – Optical scan – active Triangulation

Introduction

3D Scanning

CAD

Curve

Surface

Solid

3D Scanning

Curve

Surface

Solid

CAD

3D scanning – Optical scan – active **Triangulation – Light strip scanning** Project a light stripe of laser light ٠ Scan across surface Very precise, but need many images laser camera Multi-stripe laser triangulation rotation stage anslatory state

3D Scanning

Curve

Surface

Solid

CAD

3D scanning – Optical scan – active

Triangulation scanner issues

- Accuracy proportional to working volume (typically 1000:1)
- Can scale down to small working volume, but doesn't scale up
- Shadowing issue
- Triangulation angle: non-uniform resolution (useful angle range 15° to 30°)
- Material properties (dark, specular, etc)
- Subsurface scattering
- Laser speckle
- Edge curl
- Texture embossing

Slide Credit: Dr. Wojciech Matusik@MIT

3D Scanning

Curve

Surface

Solid

CAD

3D scanning – Optical scan – active

Triangulation – Multi-stripe

- Go faster;
- Need to determine which strip is which: color or time-coded

CAD

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Geometry

\$

Coordinate system

X

- Shape, size, position 🛊 Algebra
- Properties of space

Algebraic geometry

CAD – Curves (1D)

Introduction

3D Scanning

CAD

Curve

Surface

Solid

y = f(x) = ax + b;Explicit

$$x(t) = sin(t);$$

 $y(t) = cos(t)$

Parametric

- Shape independent of position
- Invariant under rotation or translation
- Enable user control

 $f(x,y) = x^2 + y^2 = 1;$ Implicit

Piecewise

- Discrete
- Flexible
- Each piece can be explicit, implicit, or parametric
- continuity (0th order, 1st order, 2nd order, etc.)

CAD – Curves (1D) – Parametric

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Cubic curve – polynomial $x(u) = a_{3x}u^3 + a_{2x}u^2 + a_{1x}u + a_{0x}$ $y(u) = a_{3v}u^3 + a_{2v}u^2 + a_{1v}u + a_{0v}$ $y^u(u) = dy(u) / du$ $Z(u) = a_{3z}u^3 + a_{2z}u^2 + a_{1z}u + a_{0z}$ Cubic curve – vector form $p(u) = a_3 u^3 + a_2 u^2 + a_1 u + a_0$

 $= [u^3 u^2 u 1][a_3 a_2 a_1 a_0]^T = U A$

Hermite curve

Derivative

 $x^{u}(u) = dx(u) / du$ $z^{u}(u) = dz(u) / du$

> Bezier curve – Pierre Bezier in 1960s 4 control vertices: p_0 , p_1 , p_2 , p_3 $p(u) = (1 - u)^3 p_0 + 3(1 - u)^2 u p_1 +$ $3(1 - u)u^2 p_2 + u^3 p_3$

- **Characteristic Polygon: Curves interpolate first** ٢ and last CV.
- Intermediate CV's shape the curve. •
- Changes tend to be localized. ٠
- Curve is tangent to first pair of CV's and last pair of CV's.
- Invariant under rotations and translations. ٢

CAD – Surfaces (2D)

Introduction

3D Scanning

CAD

Curve

Surface

Solid

 $z(x,y) = 3x^2 + 4y^2 + 2xy$ Explicit

$f(x,y,z) = x^2+y^2+z^2= 1$ Implicit

x=x(u,w); y=y(u,w); z=z(u,w); Parametric

\$

Piecewise (surface patches): consider continuity

Surface lofting (create surface from curves)

CAD – Surfaces (2D) – Parametric

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Hermite form

- 4 End Points: p(0,0), p(1,0), p(0,1), p(1,1)
- 8 Tangents at end points, pu(u,w), pw(u,w)
- 4 Twist Vectors at end points: puw(u,w)

 $\mathbf{p}^{uw}_{00} \quad \mathbf{p}_{00}$ $\mathbf{p}(u, w) = \sum_{i} \sum_{j} a_{ij} x^{i} y^{j}$ $\mathbf{p}(u, w) = \begin{bmatrix} 1 & u & u^{2} & u^{3} \end{bmatrix} \begin{bmatrix} a_{ij} \end{bmatrix} \begin{bmatrix} 1 \\ w \\ w^{2} \\ w^{2} \end{bmatrix}$ $\mathbf{p}(u, w) = \mathbf{UAW}$

Slide Credit: Dr. David Rosen@GaTech

CAD – Surfaces (2D) – Parametric

3D Scanning

CAD

Curve

Surface

Solid

- 4 corner points: p00,
 p03, p30, p33.
- 4 intermediate points: p11, p22, p12, p21 control cross slopes in same manner as twist vectors.
- 8 other points control boundary curves.

$$\mathbf{p}(u,w) = [(1-u)^3 \quad 3u(1-u)^2 \quad 3u^2(1-u) \quad u^3] \mathbf{P} \begin{bmatrix} q & w \\ 3w(1-w)^2 \\ 3w^2(1-w) \\ w^3 \end{bmatrix}$$
$$\mathbf{P} = \begin{bmatrix} p_{00} \quad p_{01} \quad p_{02} \quad p_{03} \\ p_{10} \quad p_{11} \quad p_{12} \quad p_{13} \\ p_{20} \quad p_{21} \quad p_{22} \quad p_{23} \end{bmatrix}$$

 p_{31} p_{32} p_{33}

 p_{30}

 $\int (1 - w)^3$

3D Scanning

CAD

Curve

Surface

Solid

Linear Loft $\mathbf{p}(u, w) = (1-w)\mathbf{p}_1(u) + w\mathbf{p}_2(u)$

Bilinear Loft

Linear loft from $p_1(u)$ to $p_3(u)$ $\mathbf{p}(u, w) = (1-w)\mathbf{p}_1(u) + w\mathbf{p}_3(u)$ Linear loft from $p_2(u)$ to $p_4(u)$ $\mathbf{p}(u, w) = (1-u)\mathbf{p}_2(w) + u\mathbf{p}_4(w)$

Combine $\mathbf{q}(u, w) = (1-w)\mathbf{p}_1(u, 0) + w\mathbf{p}_3(u, 1) + (1-u)\mathbf{p}_2(0, w) + u\mathbf{p}_4(1, w)$ $-\mathbf{p}_{00}(1-u)(1-w) - \mathbf{p}_{01}(1-u)w - \mathbf{p}_{10}u(1-w) - \mathbf{p}_{11}uw$

Slide Credit: Dr. David Rosen@GaTech

CAD – Solid(3D)

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Solid model

- **3D point sets**
- Inside & outside
- Physical properties:
 - mass, volume, moment of

inertia, stress, strain, etc. EMPro Platform

Calid

Emphasis on physical fidelity **Motivation**

CAD/CAM need solid info

FEM Simulator Finite Element Method Physically based simulations (e.g., FEM)

CT scan (generate solid data)

27

Pictures from Google Image

3D Scanning

Curve

Surface

Solid

CAD

CAD – Solid(3D)

General requirements

- Expressive power: have adequate info to answer any geometric questions
- Validity: manufacturability and realizability
- Unambiguity: unique representation
- Easy for transformation and Boolean operations
- Conciseness: storage requirement
- Computational ease: easy to write algorithm for
- Efficient display

General approaches

- Edges: wireframe model
- Surfaces: surface boundary
- Volume: entire volume

28

3D Scanning

Curve

Surface

Solid

CAD

CAD – Solid(3D)

Validity of 3D models

- Definition: A solid is a bounded, closed subset of E³ (Euclidean Space)
- Bounded: finite extent; Closed: has a boundary

2-manifold

A 2-manifold M is a topological space where every point has a neighborhood topologically equivalent to an open disk of E².

Non-manifold

Shared vertex Edge embedded in face Dangling face

3D Scanning

Curve

Surface

Solid

CAD

CAD – Solid(3D)

Not all 2-manifold are realizable

Sufficient condition: orientability

Orient a pyramid: all polygons oriented clockwise as seen from outside (consistently oriented).

AM³ Lab

Euler Characteristic

* $\mathbf{v} - \mathbf{e} + \mathbf{f} = 2(\mathbf{s} - \mathbf{h}); \mathbf{s} = \#$ shells, $\mathbf{h} = \#$ holes $\mathbf{v} = 5, \mathbf{f} = 5, \mathbf{e} = 8$ $\mathbf{v} - \mathbf{e} + \mathbf{f} = +2$ $2(\mathbf{s} - \mathbf{h}) = +2$ *2 = Euler Characteristic for all objects topologically equivalent to sphere

\$ CAD - Solid(3D)

Wireframe modeling – Problem: ambiguity

3D Scanning

Curve

Surface

Solid

CAD

Geometry

CAD – Solid(3D) – Implicit representation

Common quadratic shapes

- Sphere
- Ellipsoid \$
- Torus \$
- Paraboloid
- Hyperboloid

 $= \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1 = 0$

Pros

- Very concise ٠
- **Guaranteed validity**
- Easy to test if points are on surface or inside
- Easy to intersect two shapes

Cons

- Hard to describe complex shapes
- Hard to draw (interact with users)

3D Scanning

Curve

Surface

CAD

Geometry

CAD – Solid(3D) – Parametric representation

$$P(u, v, w) = \begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} x(u, v, w) & y(u, v, w) & z(u, v, w) \end{bmatrix}$$
$$u_{\min} \le u \le u_{\max}; v_{\min} \le v \le v_{\max}; w_{\min} \le w \le w_{\max}$$

Pictures credit: Dr Shriram Hegde@IITD

3D Scanning

Curve

CAD

Geometry

CAD – Solid(3D) – Boundary representation (B-rep)

B-rep (Baumgart 1970) – Explicit representation of:

- Boundary of an object
- Connectivity among faces, edges, and vertices
- Geometric and topological information

Solid

Surface

Winged-Edge Tables

Edge	Vstart	Vend	fcw	fccw	
e1	v1	v2	f1	f2	
e2	v2	v3	f1	f3	
e3	v3	v4	fl	f4	•••
e4	v4	v1	f1	f5	
e5	v1	v5	f2	f5	

CAD – Solid(3D) – Boundary representation (B-rep)

Winged-Edge Tables

Introduction	<u>Vertex</u>	Coords	Fi	irst Edge	<u>Fac</u>	e First Edge
3D Scanning	v1	x1 y1 z1		e1	f	
SD Scanning	v2	x2 y2 z2	2	e2	fZ	
CAD	v3			e3	f	
	v4			e4	f2	
Curve	v5			e9	f	
Surface	v6			e10	fe	6 e9
Junace	v7			e11		e5 F2
Solid	v8			e12		NCCW PCCW e6
	EDGE	NCW	PCW	NCCW	PCCW	(v_1) (v_2)
	e1	e2	e4	e5	e6	e1
	e2	e3	e1	e6	e7	PCW PCW e2
	e3	e4	e2	e7	e8	e4 F1
	<u>e4</u>	el	e3	e8	e5	Pros
	e5	e9	e1	e4	e12	Explicit topological info
	e6	e10	e2	el	e9	Easy to render
	e7	e11	e3	e2	e10	Cons
	e8	e12	e4	e3	e11	
	e9	e6	e5	e12	e10	Hard to check validity
	e10	e7	e6	e9	e11	Hard for Boolean operation
	e11	e8	e7	e10	e12	35
	e12	e5	e8	e11	e9	Pictures credit: Dr David Rosen@GaTech

CAD – Solid(3D) – Sweep representation

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Good for Uniform extrude objects or rotational geometry

Validation schemes unknown

Invalid Sweep

Invalid 2-D profile for sweep, nested more than 1 level

Introduction

3D Scanning

Curve

Surface

Solid

CAD

Partition space into a uniform grid
 Grid cells are called voxels (volume element, like pixels)

www.volumegraphics.com

Stanford University

Store properties of solid object with each voxel

- Occupancy
- Color
- Density
- Temperature
- etc.

Slides credit: Dr Hong Qin@Stony Brook U

Visible Human (National Library of Medicine)

Voxel storage

- O(n³) storage fo nxnxn grid (1 Billion voxels for 1000x1000x1000)
- Processing just like image processing

CAD

Curve

Introduction

3D Scanning

Surface

Solid

Boolean operations

- Compare objects voxel by voxel
- Trivial

CAD – Solid(3D) – Spatial Occupancy Enumeration Voxel display

Introduction

3D Scanning

Curve

Surface

Solid

CAD

Isosurface rendering: Render surfaces bounding volumetric regions of constant value (e.g., density)

Slicing

Isosurface visualization (Princeton University)

Draw 2D image from intersecting voxels with a plane

Slide credit - Dr. Wojciech Matusik@MIT

Visible Human (National Library of Medicine)

CAD – Solid(3D) – Spatial Occupancy Enumeration Voxel display

Introduction

3D Scanning

Curve

Surface

Solid

CAD

Isosurface rendering: Render surfaces bounding volumetric regions of constant value (e.g., density)

Isosurface visualization (Princeton University)

- Ray casting
 - Integrate RGB, opacity, etc. for rendering

Slide credit - Dr. Wojciech Matusik@MIT

Guang Li, et al. Journal of Applied Clinical Medical Physics

Geometry

CAD – Solid(3D) – Spatial Occupancy Enumeration Slicing

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Pros

- Simple, intuitive, unambiguous
- Same complexity for all objects ٠
- Natural acquisition for some apps.
- **Trivial Boolean operations**

Visible Human (National Library of Medicine)

Cons

- Approximate
- Not invariant for affine transformations
- Large storage requirements
- **Expensive display**

Quadtrees & Octrees

- Refine resolution of voxels hierarchically
- Encoded using a standard tree data structure

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Introduction

3D Scanning

Curve

Surface

Solid

CAD

Slide credit Dr. Tom Funkhouser@Princeton

CAD – Solid(3D) – Constructive Solid Geometry (CSG)

CSG: 1974 by Ian Braid

- Build complex objects from simple parts using Boolean operations
- Intuitive
- Represent solid object as hierarchy of Boolean operations
- Boolean operations are not evaluated
- Objects are represented implicitly with a tree structure

Simple shapes

- Cuboids
- Cylinders
- Prisms
- Pyramids
- Spheres
- Cones
- Extrusions/Sweepings

Pictures courtesy Dr. Wojciech Matusik@MIT

Introduction

3D Scanning

CAD

Curve

Surface

Solid

Introduction

3D Scanning

Curve

Surface

Solid

CAD

CAD

Slides credit: Dr Hong Qin@Stony Brook U

Introduction

3D Scanning

Curve

Surface

Solid

CAD

CAD – Solid(3D) – Constructive Solid Geometry (CSG)

Algorithm: Inside/Outside Test

- Given a point p and a tree T, determine if p is inside/outside the solid defined by T
 - If T is a solid

- Determine if p is inside T and return
- If *T* is a transformation – Apply the inverse transformation to *p* and recursion
- Otherwise *T* is a Boolean operation
 - Recursion to determine inside/outside of left/right children
 - If T is Union
 - If either child is inside, return inside, else outside
 - If T is Intersection
 - If both children are inside, return inside, else outside
 - If T is Subtraction
 - If *p* is inside left child and outside right child, return inside, else outside

Algorithm: Calculate volume

- Put bounding box around object
- Pick n random points inside the box
- Determine if each point is
- inside/outside the CSG Tree
- Volume = #inside/n

Slides credit: Dr Hong Qin@Stony Brook U

Int

3D

CA

Geometry

CAD – Solid(3D) – Summary

ntroduction		Implicit/ Parametric	B-rep	Voxel	Octree	BSP	CSG
D Scanning	Accurate	Yes	Yes	No	No	Some	Some
AD	Concise	Yes	Some	No	No	No	Yes
Curve	Affine invariant	Yes	Yes	No	No	Yes	Yes
Surface Solid	Easy acquisition	No	No	Some	Some	No	Some
	Guaranteed validity	Yes	No	Yes	Yes	Yes	No
	Efficient Boolean operations	Yes	No	Yes	Yes	Yes	Yes
	Efficient display	Yes	Yes	No	No	Yes	No
	Expressive power	Very Limited	Good	Excellent	Excellent	Excellent	Excellent 49

