

1

Additive Manufacturing – Module 8

Spring 2015

Wenchao Zhou

zhouw@uark.edu

(479) 575-7250

The Department of Mechanical Engineering University of Arkansas, Fayetteville

FDM

FEM

Several Sev

https://www.youtube.com/watch?v=p__-QbQbntl

A design of a motion system – motion can be described using kinematic equations when approximated as rigid structures

2

FDM

FEM

AM³ Lab Advanced Manufacturing | Modeling | Materials

Second Second

What if your design is deformable structure, involves heat transfer, or fluids

Several Sev

- Conservation Equations
 - Conservation of Mass
 - Conservation of Energy
 - Conservation of Momentum
- Partial Differential Equations
 - Describing change in space and time
- Constitutive Models for Materials
 - Hooke's Law
 - Newtonian Fluid
 - **& Etc**.

CAE

FDM

FEM

Second Second

CAE

Millennium Prize Problems P versus NP problem

Hodge conjecture Poincaré conjecture (solved) Riemann hypothesis Yang–Mills existence and mass gap Navier–Stokes existence and smoothness

Birch and Swinnerton-Dyer conjecture

V·T·E

Even much more basic properties of the solutions to Navier–Stokes have never been proven. For the three-dimensional system of equations, and given some initial conditions, **mathematicians have not yet proved that smooth solutions always exist**, or that if they do exist, they have bounded energy per unit mass.

What about higher order, higher dimension PDEs

$$F\left(x_1,\ldots,x_n,u,\frac{\partial u}{\partial x_1},\ldots,\frac{\partial u}{\partial x_n},\frac{\partial^2 u}{\partial x_1\partial x_1},\ldots,\frac{\partial^2 u}{\partial x_1\partial x_n},\ldots\right)=0.$$

Reality: Most PDEs CANNOT be solved analytically!!!

5

FDM

FEM

Several Sev

- Numerical solutions
 - Discretize and turn PDEs into a system of algebraic equations (mostly linear)

Most popular methods

- Finite difference methods
- Finite element methods

Other methods

- Finite volume method
- Boundary element method
- Discrete element method
- Spectral method
- Particle based methods

http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics#Numerical_methods_for_partial_differential_equations

Classification of PDEs

Second-order linear PDEs

$$au_{xx} + bu_{xy} + cu_{yy} + du_x + eu_y + fu + g = 0$$

are classified based on the value of the discriminant $b^2 - 4ac$

b² - 4ac > 0: hyperbolic

- e.g., wave equation: $u_{tt} u_{xx} = 0$
- Hyperbolic PDEs describe time dependent, conservative physical processes, such as convection, that are not evolving toward steady state.
- **a** $b^2 4ac = 0$: parabolic
 - e.g., heat equation: $u_t u_{xx} = 0$
 - Parabolic PDEs describe time-dependent dissipative physical processes, such as diffusion, that are evolving toward steady state.
- ♦ b² 4ac < 0: elliptic</p>
 - e.g., Laplace equation: $u_{xx} + u_{yy} = 0$
 - Elliptic PDEs describe processes that have already reached steady states, and hence are time-independent.

Wave equation

_aplace equation

FDM

•

CAE

FDM

FEM

Finite Difference Method

$$\partial_x f = \lim_{dx \to 0} \frac{f(x + dx) - f(x)}{\int_{x} dx}$$

$$\int_{y} \text{Discretize}$$

$$\partial_x f^+ \approx \frac{f(x + dx) - f(x)}{dx}$$
For

$$\partial_x f^- \approx \frac{f(x) - f(x - dx)}{dx}$$
Bac

Forward difference

Backward difference

$$\partial_x f \approx \frac{f(x+dx) - f(x-dx)}{2dx}$$

Centered difference

FDM

FEM

Finite Difference Method

Consider a 1D initial-boundary value problem for heat equation

$$u_t = \kappa u_{xx}, \ 0 \le x \le 1, \ t \ge 0$$

u(0,x) = f(x), Initial Condition

- $u(t,0) = \alpha$, Boundary Condition at x = 0
- $u(t,1) = \beta$, Boundary Condition at x = 1

Discretize the spatial domain [0, 1] into m + 2 grid points using a uniform mesh step size $\Delta x = 1/(m+1)$. Denote the spatial grid points by $x_j, j = 0, 1, \dots m + 1$.

$$0 = x_0 \quad x_1 \quad x_2 \quad \dots \quad x_{j-1} \quad x_j \quad x_{j+1} \quad \dots \quad x_m \quad x_{m+1} \stackrel{x_{j-1}}{=} 1$$

Credit: Vrushali A. Bokil and Nathan L. Gibson @ Oregon State U

FDM

FEM

Finite Difference Method

Consider a 1D initial-boundary value problem for heat equation

Similarly discretize the temporal domain into temporal grid points $t_k = k\Delta t$ for suitably chosen time step Δt .

Denote the approximate solution at the grid point (t_k, x_j) as U_j^k .

$$\alpha = u_0^k \quad u_1^k \quad u_2^k \qquad u_{j-1}^k \quad u_j^k \quad u_{j+1}^k \qquad u_m^k u_{m+1}^k = \beta \quad t_k = k\Delta t$$

$$0 = x_0 \quad x_1 \quad x_2 \quad \dots \quad x_{j-1} \quad x_j \quad x_{j+1} \quad \dots \quad x_m x_{m+1} \stackrel{x}{=} 1$$

The space-time grid can be represented as

Consider a 1D initial-boundary value problem for heat equation

Replace u_t by a forward difference in time and u_{xx} by a central difference in space to obtain the explicit FDM

$$\frac{U_j^{k+1} - U_j^k}{\Delta t} = \kappa \frac{U_{j+1}^k - 2U_j^k + U_{j-1}^k}{(\Delta x)^2}$$
$$\implies U_j^{k+1} = U_j^k + \frac{\kappa \Delta t}{(\Delta x)^2} \left(U_{j+1}^k - 2U_j^k + U_{j-1}^k \right), \ j = 1, 2, \dots m$$

Using Taylor series to determine order of accuracy for the approximation

$$f(x \pm dx) = f(x) \pm dx f'(x) + \frac{dx^2}{2!} f''(x) \pm \frac{dx^3}{3!} f'''(x) + \frac{dx^4}{4!} f''''(x) \pm \dots$$

First order accurate in time $\frac{f(x+dx)-f(x)}{dx} = \frac{1}{dx} \left[dxf'(x) + \frac{dx^2}{2!}f''(x) + \frac{dx^3}{3!}f'''(x) + \dots \right]$ = f'(x) + O(dx)Second order accurate in space $\left. \frac{\partial^2 u}{\partial x^2} \right|_i = \frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2} + O((\Delta x)^2)$ 11

CAE

FEM

FDM

FDM

FEM

Finite Difference Method

Consider a 1D initial-boundary value problem for heat equation

Computational Stencil

The local truncation error is $O(\Delta t) + O((\Delta x)^2)$.

• How to choose Δt and Δx ?

FDM

FEM

Finite Difference Method

- **initial condition:** discontinuous at x = 0.5
- Rapid smoothing of discontinuity as time evolves
- High frequency damps quickly. The heat equation is stiff

***** How to choose Δt and Δx ?

What happens if r is greater than 1/2?

- Unstable behavior of numerical solution
- At and Ax cannot be chosen arbitrarily. Must satisfy a stable condition.

CAE FDM

Implicit FDM

CAE FDM

FEM

Explicit computational stencil 15

FDM

FEM

Finite Difference Method

Implicit FDM

- Stable behavior of numerical solution
- At and Ax cannot be chosen to have the same order of magnitude. Unconditionally stable.

16

Implicit FDM – 2nd order accurate in time – trapezoid rule

$$\begin{aligned} \frac{U_{j}^{k+1} - U_{j}^{k}}{\Delta t} &= \frac{\kappa}{2} \left(\frac{U_{j+1}^{k} - 2U_{j}^{k} + U_{j-1}^{k}}{(\Delta x)^{2}} \right) + \frac{\kappa}{2} \left(\frac{U_{j+1}^{k+1} - 2U_{j}^{k+1} + U_{j-1}^{k+1}}{(\Delta x)^{2}} \right) \\ \implies U_{j}^{k+1} &= U_{j}^{k} + \frac{\kappa \Delta t}{2(\Delta x)^{2}} \left(U_{j+1}^{k} - 2U_{j}^{k} + U_{j-1}^{k} + U_{j+1}^{k+1} - 2U_{j}^{k+1} + U_{j-1}^{k+1} \right), \end{aligned}$$

 $\log_2(\Delta x)$

CAE

FDM

FDM for advection equation

CAE

FDM

FDM

FEM

Finite Difference Method

FDM for advection equation

 $\frac{U_j^{k+1} - U_j^k}{\Delta t} + a \frac{U_{j+1}^k - U_j^k}{\Delta x} = 0$ $\implies U_j^{k+1} = U_j^k + \frac{a\Delta t}{\Delta x} \left(U_j^k - U_{j-1}^k \right), \ j = 1, 2, \dots m$

Computational stencil

- Scheme is explicit
- First order accurate in space and time
- Δt and Δx are related by CFL number: $v = a\Delta t / \Delta x$

FDM for advection equation

The CFL Condition : For stability, at each mesh point, the Domain of dependence of the PDE must lie within the domain of dependence of the numerical scheme.

- ♦ CFL v <= 1</p>
- CFL is a necessary condition for stability of explicit FDM applied to Hyperbolic PDEs. It is not a sufficient condition.

CAE

FDM

FDM for Laplace equation

CAE

FDM

FEM

Boundary conditions

Discretization

FDM for Laplace equation – centered difference scheme

CAE

FDM

FEM

 $\frac{U_{j+1,k} - 2U_{j,k} + U_{j-1,k}}{(\Delta x)^2} + \frac{U_{j,k+1} - 2U_{j,k} + U_{j,k-1}}{(\Delta y)^2} = 0$

If $\Delta x = \Delta y$ this becomes

$$U_{j+1,k} + U_{j-1,k} + U_{j,k+1} + U_{j,k-1} - 4U_{j,k} = 0$$

FDM for Laplace equation – form a system of linear equations

CAE FDM

$\begin{array}{c} AU = b \\ \begin{bmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{array} \end{bmatrix} \begin{bmatrix} U_{1,1} \\ U_{2,1} \\ U_{1,2} \\ U_{2,2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Î
 b contains boundary information A is block tridiagonal Structure of A depends on the order of grid points Can be solved using iterative or direct methods, such as Gaussian elimination 	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 + 1 lock

Finite Element Method

Features

- Complicated geometries
- High-order approximations
- Strong mathematical foundation
- Flexibility

 u_1

Basic Idea

 u_{i-1}

- ϕ_j are basis functions
- u_j : M unknowns; Need M equations
- Discretizing derivatives results in linear system

 u_{i+1}

CAE FDM

٠

Finite Element Method

Poisson's Equation – Elliptic

$$-\Delta u(x) = f(x)$$

$$\Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

CAE

FDM

Finite Element Method

Weak Formulation

Multiply both sides by an arbitrary test function v and integrate

$$\int_0^1 -u''v dx = \int_0^1 fv dx$$
$$\int_0^1 u'v' dx - u'v|_0^1 = \int_0^1 fv dx.$$

$$\int_0^1 u'v'dx = \int_0^1 fvdx.$$

Since v was arbitrary, this equation must hold for all v such that the equation makes sense (v' is square integrable), and v(0) = v(1) = 0.

CAE

FDM

FDM

FEM

Finite Element Method

Approximation

$$\int_0^1 u'v'dx = \int_0^1 fvdx.$$

$$u(\mathbf{x}) \approx \hat{u}(\mathbf{x}) = \sum_{i=1}^{M} \xi_i \phi_i(x)$$

$$\int_{0}^{1} \hat{u}' \hat{v}' dx = \int_{0}^{1} f \hat{v} dx \xrightarrow{\hat{v} = \phi_i(x)} \int_{0}^{1} \sum_{i=1}^{M} \xi_i \phi_i' \phi_j' dx = \int_{0}^{1} f \phi_j dx$$

Thus if
$$A = (a_{ij})$$
 with $a_{ij} = \int_0^1 \phi'_i \phi'_j dx$ and $b = (b_i)$ with $b_i = \int_0^1 f \phi_i dx$, then

 $A\xi = b$ Linear System of Equations

Finite Element Method

Basis functions

we are looking for functions with the following property

... otherwise we are free to choose any function ...

The simplest choice are of course linear functions:

+ grid nodes

blue lines – basis functions ϕ_i

CAE FDM

Finite Element Method

Stiffness Matrix

$$A = (a_{ij})$$
 with $a_{ij} = \int_0^1 \phi'_i \phi'_j dx$

For the special case when $h_j \equiv h$ we have

$$\frac{1}{h} \begin{bmatrix}
2 & -1 & 0 & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & \vdots \\
0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & -1 & 2 & -1 \\
0 & \cdots & \cdots & 0 & -1 & 2
\end{bmatrix}$$

To assemble the stiffness matrix we need the gradient (red) of the basis functions (blue)

CAE FDM

FDM

FEM

Finite Element Method

Compare to FDM

$$b = (b_i)$$
 with $b_i = \int_0^1 f \phi_i dx$

Note that if Trapezoid rule is used to approximate the right hand side, then $b_i = hf_i$, and therefore the equations determining \hat{u} are

$$\frac{\xi_{i+1} - 2\xi_i + \xi_{i-1}}{h} = hf_i$$

which are exactly the same as FDM.

30

Finite Element Method

Simplest Matlab FEM code

```
source term
b=(1:nx)*0; b(nx/2)=1.;
% boundary left u 1 int{ nabla phi 1 nabla phij }
u1=0;
       b(1) = 0;
% boundary right u nx int{ nabla phi nx nabla phij }
unx=0; b(nx)=0;
% assemble matrix Aij
                           Domain: [0,1]; nx=100;
                           dx=1/(nx-1);f(x)=d(1/2)
A=zeros(nx);
                           Boundary conditions:
                           u(0)=u(1)=0
for i=2:nx-1,
   for j=2:nx-1,
      if i==j,
         A(i,j) = 2/dx;
      elseif j==i+1
         A(i,j) = -1/dx;
      elseif j==i-1
         A(i,j) = -1/dx;
      else
         A(i, j) = 0;
      end
   end
End
% solve linear system of equations
fem(2:nx-1)=inv(A(2:nx-1,2:nx-1))*s(2:nx-1)'; fem(1)=u1;
fem(nx)=unx;
```

CAE

FDM

FDM

FEM

Finite Element Method

32

Solving Linear Systems

Equations

CAE

FDM

FEM

$$10x_1 - 7x_2 = 7,$$

$$-3x_1 + 2x_2 + 6x_3 = 4,$$

$$5x_1 - x_2 + 5x_3 = 6.$$

Matrix form

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$$

In Matlab

$$X = A \backslash B$$
. Or $X = A^{-1}B$

Solving Linear Systems

- Linear Algebra (Solving Linear Algebraic Equations)
- Direct(LU factorization)
 - More accurate
 - Maybe cheaper for many time steps
 - Banded matrix
 - Need more memory
 - Typically faster
- Iterative
 - Matrix-free (less memory)
 - Sparse
 - SPD (Symmetric Positive Definite)
 - Converging Issue

CAE

FDM

