

1

Additive Manufacturing – Module 9

Spring 2015

Wenchao Zhou

zhouw@uark.edu

(479) 575-7250

The Department of Mechanical Engineering University of Arkansas, Fayetteville

Kruth, Mercelis, Froyen, Rombouts, "Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting," Proc. Solid Freeform Fabrication Symposium, Austin, TX, Aug. 2-4, 2004.

Processes

Overview

Laser

Powder

Powder Processes

AM³ Lab

Advanced Manufacturing | Modeling | Materials

High power energy source: LASER

Wetting

Sinter

P-S-P relation

Powder: properties and manufacturing

-Solid w/ Lf Poro=30%

Poro=45%

oro=30%

oro=459 Poro=609

Coolin 2 3 ime (us)

Temperature fields eometries of powder bed of various levels of porosity rates of center point for various levels of porosity University of Alabama-Mechanical Engineering

Heat transfer (heat and reheat)

Thermal expansion and internal stress

Sintering kinetics

Phase transformation

Wetting dynamics: interaction between melts and powder particles

LASER

Light Amplification by Stimulated Emission of Radiation

LASER

AM³ Lab Advanced Manufacturing | Modeling | Materials

First Ruby Laser 1960 by Theodore Maiman in Hughes Lab

LASER

Lasing materials

- Certain crystals (solid state laser): ruby, sapphire, Nd:YAG, glass (or fiber) etc., typically doped with ions.
 - High power weapon
- Gas (laser): CO₂, Helium/Neon, metal vapor, etc.
 - CO2 laser can produce ~100 kW for welding, cutting, etc.
- Laser Matter
- Powder

Powder processes

Overview

Laser

- Heat transfer
- **Residual stress**
- Sinter

Phase change

Wetting

SLS

P-S-P relation

- Liquid dye (dye laser): rhodamine (orange), fluorescein (green), etc.
 - Wide range of wavelength
- Semiconductor (laser diode): gallium arsenide (GaAs), indium gallium arsenide (InGaAs), or gallium nitride (GaN).
 - Most common laser
 - Apps; barcode reader, fiber optic communication, laser pointer, DVD recording, laser printing/scanning

Pumping methods

- Optical pumping (e.g., arc, external laser)
- **Direct electron excitation** ۲
- Atom collision ٢
- **Chemical process** ٠

Po

Powder Processes

LASER

Operation (Both have been used in SLS)

	Continuous wave (CW) operation: output power steady over long							
wder processes	timescales, need high gain lasing medium							
Overview	 Pulsed ope Q-switcl 	ration (refer to a hing: build up en	anything non-cor ergy by holding ι	ntinuous wave, hi Ip lasing	igh peak power)			
Laser	Mode-lo	 Mode-locking: pico/femo second pulse, extremely high peak power, by 						
Laser - Matter	coupling	g laser cavity pha	se with light wav	e phase				
Powder	Pulsed p	oumping: use pul	sed energy sourc	ce for pumping				
Heat transfer	Excimer	193-248nm	Pulsed	10's of Watts				
Residual stress								
Sinter	Nd-YAG	1064 nm	CW or Pulsed	kW				
Phase change	CO ₂	10600 nm	CW or Pulsed	kW				
Wetting	2							
SLS	Cu-Vapor	534 nm	Pulsed	10's of Watts				
P-S-P relation								
	Ti-Sapphire	700-1000 nm	CW or Pulsed	10's of Watts				
	9 Important commercial lasers							

\$ LASER

8	Characteris tics	Nd-YAG laser	He-Ne laser	CO ₂ laser	Semiconductor (Ga-As) laser
Powder processes	Туре	Doped insulator laser(solid state laser)	Gas laser	Molecular gas laser	Semiconductor laser
Overview Laser	Active medium	Yttrium Aluminium Garnet $(y_3AI_5O_{12})$	Mixture of Helium and Neon in the ratio 10:1	Mixture of CO_2 , N_2 and Helium (or) water vapour	P-N junction diode
Laser - Matter	Active centre	Neodymium(Nd ³⁺ ions)	Neon	CO ₂	Recombination of electrons & holes
Powder Heat transfer	Pumping method	Optical pumping	Electrical pumping	Electric disharge method	Direct pumping
Residual stress Sinter Phase change	Optical resonator	Ends of the rods polished with silver and two mirrors. One of them is to totally reflected and the other is partially reflecting	Pair of concave mirrors	Metallic mrror of gold (or) silicon mirrors coated with aluminium	Junction of diopdes- polished
Wetting	Power output	2* 10 ⁴ watts	0.5-50 mW	10 k W	1 m W
SLS P-S-P relation	Nature of output	Pulsed	Continuous waveform	Continuous (or) pulsed	Pulsed (or) continuous wave form
	wavelength	1.064 µm	6328 A ^o	9.6 µm &10.6 µm	8400A ⁰ - 8600A ⁰

LASER

TEM₀₀

w

Wo

₩ W₀

Propagation ٠

 $\frac{1}{\rho^2}$ irradiance surface

TEM₀₁*

TEM₁₀

asymptotic cone

$$I(r) = I_0 e^{-2r^2/w^2} = \frac{2P}{\pi w^2} e^{-2r^2/w^2}$$

Powder processes

Overview

Laser

Laser - Matter

Powder

Heat transfer

Residual stress

Phase change

Wetting

SLS

P-S-P relation

 $R(z) = z \left| 1 + \left(\frac{\pi w_0^2}{\lambda z} \right)^2 \right|$ Need to characterize beam spot size and traverse mode

Traverse mode: Gaussian beam (lowest order mode), need mode control

 $\frac{z}{W_0}$ -

LASER – Material interaction

Laser parameters

Credit: Dr. Mool C. Gupta at University of Virginia

LASER – Material interaction

Laser parameters

 P_a = Average power A = Spot area E_p = Peak energy

13

Overview

Laser - Matter

Heat transfer

Residual stress

Phase change

P-S-P relation

Laser

Powder

Sinter

Wetting

SLS

Powder Processes

LASER – Material interaction

- Laser parameters
- Continuous wave (CW): Important parameter is the Powder processes power in Watts between 100W and 20kW for materials processing
 - **Pulsed** Important parameters \$ are Joules per Pulse and number of Pulses per Second
 - Energy per pulse: 1mJ -1kJ \$
 - Pulse length: 1ms -1ns-100 fs
 - Pulse repetition rate: 0.1/s to 1 ٩ MHz

Dark area: Heat affected zone 💛 Blue line: Shock waves

LASER – Material interaction

Material properties

- Powder processes
 - Overview
 - Laser
 - Laser Matter
 - Powder
 - Heat transfer
 - **Residual stress**
 - Sinter
 - Phase change
 - Wetting
 - SLS
 - P-S-P relation

- Reflectivity
- Thermal Conductivity
- Specific Heat
- Latent Heat

- The lower these parameters the more efficient the process since less energy is required to melt the material.
- Beer Lambert's Law: relates the attenuation of light to the properties of the material through which the light is traveling

$$\mathbf{I} = \mathbf{I}_0 \exp\left(-4\pi\alpha d/\lambda\right)$$

- Where α = extinction coefficient;
- $\lambda =$ wavelength;
- I = intensity at depth d
- I₀ = intensity at the surface

LASER – Material interaction

Temperature Distribution

~ 2 -

Powder processes

$$\partial c_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial z^2} = AI(r)e^{-\alpha z}$$

Overview

Laser

Credit: Dr. Mool C. Gupta at University of Virginia

LASER – Material interaction

Reflectivity change with wavelength

700

800

LASER – Material interaction

LASER – Material interaction

LASER – Material interaction

Absorption change with wavelength

Powder – dream powder

- Perfect sphere = Minimum surface area
 - Low risk of fire/explosion
 - Maximum powder lifetime (e.g., low oxidation)
- Powder processes
 - Overview
 - Laser
 - Laser Matter
 - Powder
 - Heat transfer
 - Residual stress
 - Sinter
 - Phase change
 - Wetting
 - SLS
 - P-S-P relation

- High flowability (ASTM B213)
 - Improves powder feeding
 - Smooth powder layer
- High apparent density (ASTM B212)
 - Improves sintering density
 - Improves heat conduction
 - Rule of thumb: > 50% bulk density
- No internal porosity inside the particles
 Pores tend to survive into built parts
- No particles smaller than 10 um
 - Reduce unhealthy dust
 - Reduce risk of fire

Overview

Laser

Powder

Sinter

Wetting

SLS

Heat transfer

Residual stress

Phase change

Powder Processes

Powder

- **Pre-alloyed powder is preferred** ٠
- Blended powder has some risks:
 - Powder segregation due to different density, size, or shape
 - Exothermic reactions, e.g., Ti+Al ٢
 - **Excessive evaporation due to different melting points**
 - Inhomogeneity in final part ٠

Powder

Laser

Laser - Matter

Powder

Heat transfer

Residual stress

Sinter

Phase change

Wetting

SLS

P-S-P relation

Angular

Different powder shapes

- Good!

Overview

Laser - Matter

Heat transfer

Residual stress

Phase change

P-S-P relation

Laser

Powder

Sinter

Wetting

SLS

Powder Processes

Powder

Gas atomization

- Molten metal converted to droplets by flowing inert gas, e.g., argon or nitrogen
- Spheroidal particles with satellites
 - + Good flowability & density
 - + High productivity
 - + Reasonably priced
 - Satellites
 - Internal porosity

Melting method

- Crucible
 - + Can use scrap metal
 - + Easy to tailor chemistry
 - Possible contamination
- Induction coil melting of bars
 - + Non-contact = high purity
 - Need solid bars

Powder

Water atomization

- Molten metal converted to droplets by water jet
- Very irregular particles
 - + High productivity
 - + Very good price
 - Poor flowability and density
 - High risk of oxidation
 - Unsuitable for reactive metals such as Ti

-

Laser - Matter

Powder

Powder processes

Overview

Laser

Heat transfer

Residual stress

Sinter

Phase change

Wetting

SLS

Overview

Laser - Matter

Laser

Powder

Plasma atomization

- Thin metal wire melted and converted to droplets in argon plasma
- Spherical particles without satellites
 - + Very good flowability and density
 - + High purity
 - Some internal porosity
 - Low productivity
 - High price

He cas

motor

rotating electrode (Be)

Powder

Centrifugal atomization Plasma Rotating Electrode Process \$ Spinning metal bar melted by gas plasma Powder processes W electrode **Perfectly spherical particles** + Overview High density (flow like water) No internal porosity Laser + arc Non-contact Laser - Matter **Poor yield** Powder **High price** Heat transfer **Residual stress** Sinter Phase change Wetting SLS **P-S-P** relation

Overview

Laser - Matter

Heat transfer

Residual stress

Laser

Powder

Powder Processes

Powder

Spongeous powders

- Usually made via chemical methods, e.g., electrolysis
 - + Low cost
 - Low flowability & density
 - Internal porosity

Angular powders

- Usually made via mechanical methods, e.g., milling
 - + Low cost
 - Low flowability & density
 - Low purity

Wetting

Phase change

SLS

Sinter

Overview

Laser - Matter

Heat transfer

Residual stress

Phase change

P-S-P relation

Laser

Powder

Sinter

Wetting

SLS

Powder Processes

Powder

Satellites

- Typical for gas atomized powders
- Satellites density depends on atomizing parameters

powder layer without satellites

powder	layer	with	satel	lites
Ponter	,		~~~~	

Affecting coating thickness: typically thickness before sintering is 2 – 3X of after sintering

AM³ Lab Advanced Manufacturing | Modeling | Materials

Heat transfer

Overview

Laser

Laser - Matter

Powder

Heat transfer

Residual stress

Sinter

Phase change

Wetting

SLS

P-S-P relation

(e) Random

Gusarov, A. V., and E. P. Kovalev. "Model of thermal conductivity in powder beds." Physical Review B 80.2 (2009): 024202.

Thought process

- Study how the thermal conductivity changes for two individual powder particles
- Estimate effective thermal conductivity for different packing

Gusarov, A. V., and E. P. Kovalev. "Model of thermal conductivity in powder beds." Physical Review B 80.2 (2009): 024202.

Heat transfer

Effective thermal conductivity for different volume fraction (packing)

Gusarov, A. V., and E. P. Kovalev. "Model of thermal conductivity in powder beds." *Physical Review B* 80.2 (2009): 024202.

Credit: Dr. Wei Zhang @ Ohio State U

Powder Processes

Thermal expansion

 Origin of residual stress – three bar problem to approximate layer by layer scanning

Heat transfer

Residual stress

Sinter

Phase change

Wetting

SLS

- Case A: Temperatures in all three bars are simultaneously risen from 300 to 1,100 K and then cooled down to 300 K?
- Case B: Temperature in the middle bar is risen from 300 to 1,100 K and then cooled down to 300 K? The two side bars are kept at 300 K.

Thermal expansion

 Origin of residual stress – three bar problem to approximate layer by layer scanning

Thermal expansion

Origin of residual stress

Key factors for residual stress and distortion

- Thermal expansion
- Plastic deformation
- Spatially non-uniform distribution of temperature

Modeling

Powder

Powder processes

Overview

Laser

Heat transfer

Laser - Matter

Residual stress

Sinter

Phase change

Wetting

SLS

P-S-P relation

Continuum mechanics approach:

• Fourier's law of heat conduction for temperature

$\int \frac{\partial T}{\partial t} - k$	$\partial^2 T$	$\partial^2 T$	$\partial^2 T$
$\partial C_P \frac{\partial t}{\partial t} = \kappa$	∂x^2	∂y^2	∂z^2

• Force equilibrium for stress and strain

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + F_x = 0$$

Measurement of residual stress

	Hooke's law of linear elasticity:
wder processes	
Overview	$\sigma_{xx} = (2\mu + \lambda)\varepsilon_{xx} + \lambda \cdot \varepsilon_{yy} + \lambda \cdot \varepsilon_{zz}$
Laser	$\sigma_{vv} = \lambda \cdot \varepsilon_{xx} + (2\mu + \lambda)\varepsilon_{vv} + \lambda \cdot \varepsilon_{zz}$
Laser - Matter	
Powder	$\sigma_{yy} = \lambda \cdot \varepsilon_{xx} + \lambda \cdot \varepsilon_{yy} + (2\mu + \lambda)\varepsilon_{zz}$
Heat transfer	Principle directions assumed and thus ze
Residual stress	• s s and s are normal elastic s
Sinter	c_{XX}, c_{yy} and c_{ZZ} are normal <u>clastic</u> c
Phase change	$\varepsilon_{xx} = \frac{d_x - d_0}{d_0}$ d_x and d_0 are the
Wetting	
SLS	conditions, respe
P-S-P relation	Neutron diffraction/scattering

Lamé constants:

$$\lambda = \frac{Ev}{(1+v)(1-2v)}$$
$$\mu = \frac{E}{2(1+v)}$$

ed and thus zero shear strains.

ormal <u>elastic</u> strains.

and d_0 are the lattice spacing ler stressed and stress-free ditions, respectively.

ering

Laser

Powder Processes

Sintering

Figure 6.4. A three-particle sketch of sintering, showing the several possible paths of atomic motion involved with particle bonding (neck growth) and pore shrinkage (densification).

Mechanisms

SLS

Wetting

Sinter

P-S-P relation

٠

Phase change

- **Surface diffusion** Diffusion of atoms along the surface of a particle **Vapor transport** – Evaporation of atoms that condense on a different surface
- **Volume diffusion** atoms diffuses through volume
- **Grain boundary diffusion** atoms diffuse along grain boundary ٠
- **Plastic deformation** dislocation motion causes flow of matter

Laser

SLS

Powder Processes

Liquid phase sintering and melting

green

liquid spreading

solutionreprecipitation

solid skeleton

Figure 6.14. Liquid-phase sintering usually involves mixing an iron powder with a liquid forming powder (boride, carbide, phosphide, copper, tin) and heating to a temperature where the liquid forms, spreads, and contributes to particle bonding and densification.

Selective laser melting

AM³ Lab Advanced Manufacturing | Modeling | Materials

Sintering – Diffusion

Sintering – Diffusion – Activation energy

Powder

Heat transfer

Energy

Residual stress

Sinter

Phase change

Wetting

SLS

P-S-P relation

Arrhenius-type equation

 $D = D_o \exp\left(-\frac{Q_d}{RT}\right)$

D = diffusion coefficient [m²/s]

 $D_o = \text{pre-exponential } [\text{m}^2/\text{s}]$

 Q_d = activation energy [J/mol]

R = gas constant [8.31 J/mol-K]

T = absolute temperature [K]

Powder Processes

Sintering – Diffusion – Flux

		Thermodynamic Force (Gradient of Potential)				
Powder processes	Flow J	Hydraulic head	Temperature	Electrical	Chemical concentratio n	Stress
Laser Laser - Matter	Fluid	Hydraulic conduction Darcy's law	Thermo-osmosis Density changes	Electro-osmosis	Chemical osmosis Density change	consolidation
Powder Heat transfer	Heat	Isothermal heat transfer	Thermal conduction Fourier's law	Peltier effect	Dofour effect	Fully coupled thermoelastcity Phase change
Residual stress Sinter Phase change	Current	Streaming current	Thermoelectricity Seebeck effect	Electric conduction Ohm's law	Diffusion potential and membrane potential	Piezoelectricity
Wetting	Ion	Streaming current	Thermal diffusion of electrolyte Soret effect	Electrophoresis	Diffusion Fick's law	Dissolution/ precipitation
P-S-P relation	Strain	consolidation (change in effective stress) fracture	Thermal expansion Density changes	Piezo- electricity	Dissolution and precipitate Consolidation (double-layer contraction)	Elasticity Viscoelasticity Plasticity Viscous flow Consolidation

43

Sintering – Diffusion – Flux

Powder processes	Transported quantity	Physical phenomenon	Physical law	Equations	Driving force
Overview Laser	Fluid volume flux	Fluid through porous medium	Darcy's law	$q_i = -k_{ij} \frac{\partial P}{\partial x_j}$	Pressure gradient
Laser - Matter Powder Heat transfer	Mass flux	Diffusion	Fick's law	$j_i = -D_{ij} \frac{\partial c}{\partial x_j}$	Concentration gradient
Residual stress Sinter	Electrical current flux	Electricity conduction	Ohm's law	$i_i = -R_{ij} \frac{\partial V}{\partial x_j}$	Electrical potential gradient
Wetting SLS	Heat energy flux	Heat conduction	Fourier's law	$q_i = -k_{ij} \frac{\partial T}{\partial x_j}$	Temperature gradient
P-S-P relation	Momentum flux	Viscosity	Newtonian fluid	$\tau_{ij} = -\mu \frac{\partial \rho u_i}{\partial x_j}$	Momentum gradient 44

Sintering – Diffusion – Flux

dc

- Only applies to neutral non-interacting particles (e.g., H in metals)
- In other cases, D is not a constant
- Physical meaning of D is not clear ٢

Re-examine Fick's law with fundamentals

$$j_i = cv_i \quad v_i =$$

 $\mathbf{F}_i =$

Phase change

Heat transfer

Residual stress

Wetting

Sinter

SLS

- - $M\mathbf{F}_{i}$

$$-\frac{d\mu}{dx_i} \quad \mu = \frac{\partial G}{\partial N}$$

$$G = G(T, P, N) = U + PV - TS$$
$$U = TS - PV + \mu N$$
$$j_i = -M\nabla \mu$$

- v is drift velocity
- M is mobility (quantifying how hard it is to move something)
- F is force
- **G** is **Gibbs** free energy
- U is internal energy ٠
- **Conjugate variables: Pressure** (P) & Volume (V); Temperature (T) & Entropy (S); Chemical potential (µ) and number (N)

Sintering – Diffusion – Flux

- Only applies to neutral non-interacting particles (e.g., H in metals)
- In other cases, D is not a constant \$
- Physical meaning of D is not clear ٢

Re-examine Fick's law with fundamentals

$$j_i = cv_i \quad v_i =$$

Phase change

Heat transfer

Residual stress

Wetting

SLS

Sinter

- - $M\mathbf{F}_i$
- $\mathbf{F}_i = -\frac{d\mu}{dx} \quad \mu = \frac{\partial G}{\partial N}$

$$G = G(T, P, N) = U + PV - TS$$
$$U = TS - PV + \mu N$$
$$j_i = -M\nabla \mu$$

- v is drift velocity
- M is mobility (quantifying how) hard it is to move something)
- F is force
- G is Gibbs free energy
- U is internal energy
- **Conjugate variables: Pressure** (P) & Volume (V); Temperature (T) & Entropy (S); Chemical potential (µ) and number (N)

Sintering – Diffusion – Flux

Heat transfer

Residual stress

Laser

Powder

Phase change

Wetting

SLS

Phase transformation

- Melting: order to disorder
- Solidification: disorder to order (more complex)

Phase transformation

Phase transformation

Phase change

Wetting

Laser

SLS

Surface tension force balance
$$\longrightarrow \gamma_{\alpha\beta} Cos \theta + \gamma_{\beta\delta} = \gamma_{\alpha\delta}$$

$$\Delta G = (V_{lens}) \Delta G_{\nu} + (A_{lens}) \gamma_{\alpha\beta} + (A_{circle}) \gamma_{\beta\delta} - (A_{circle}) \gamma_{\alpha\delta}$$

$$V_{lens} = \pi h^{2} (3r-h)/3 \quad A_{lens} = 2\pi rh \quad h = (1-\cos\theta)r \quad r_{circle} = r \sin\theta$$

$$\Delta G_{hetero}^{*} = \frac{1}{4} G_{homo}^{*} (2 - 3Cos \theta + Cos^{3} \theta)$$

Phase transformation

Growth

- * At transformation temperature the probability of jump of atom from $\alpha \rightarrow \beta$ (across the interface) is same as the reverse jump
- Growth proceeds below the transformation temperature, wherein the activation barrier for the reverse jump is higher

Phase change

Wetting

SLS

Transformation rate =
$$f(Nucleation rate, Growth rate)$$

$$\mathbf{T} = \frac{dX_{\beta}}{dt} = f(\mathbf{I}, \mathbf{L})$$

$$X_{\beta} = 1 - e^{-\left(\frac{\pi I U^{3} t^{4}}{3}\right)}$$

Phase transformation

Martensitic transformation

Military transformation: collective, short

AM³ Lab

Advanced Manufacturing | Modeling | Materials

Powder processes distance, usually interatomic Overview Time- Temperature-Transformation (TTT) Curves – *Isothermal Transformation* Laser Eutectoid steel (0.8%C) Laser - Matter Eutectoid temperature 723 Powder Austenite Coarse Pearlite Heat transfer Fine **Residual stress** Pearlite + Bainite Bainite H Phase change Austenite Wetting 200Not an isothermal SLS transformation Mf 100 **P-S-P** relation Martensite 10^{3} 10^{2} 10^{4} 10^{5} 0.1 10 t (s) \rightarrow

54

Phase transformation

Martensitic transformation

P = Pearlite

M = Martensite

No-Slip Boundary Condition breakdown near the wall

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Powder processes

Overview

Laser

Laser - Matter

Powder

Heat transfer

Residual stress

Sinter

Phase change

Wetting

SLS

P-S-P relation

- Surface tension
- Viscous force
- Inertial force

Need to solve Navier-Stokes Equations with complex geometric boundaries

Selective laser sintering

Residual stress

Sinter

Phase change

Wetting

SLS

- Bed is heated to just below powder's melting temperature.
- SLS powder beds are porous, powder sizes typically 20-40 mm.
- Conduction, convection, and radiation modes of heat transfer.
- Material properties (temp. dependent):
 - density r [kg/m3]
 - specific heat Cp [J/kg K]
 - thermal conductivity k [W/m K]
 - thermal diffusivity a [m2/s]: a = k / (r Cp)
- Couple all the physics together

Selective laser sintering

Properties of sintered structure

Wetting

SLS

- Process Structure Property relationship
- Question: with the simulation of all the physics coupled together, how to obtain the properties of the part?

Powder processes THANK Overview Laser Laser - Matter YCU! Powder Heat transfer **Residual stress** Phase change Wetting SLS P-S-P relation

Po

Powder Processes

LASER

wder processes	LASER	POWER RANGE (W)	WAVE- LENGTH (µm)	TYPICAL INDUSTRIAL APPLICATIONS
Overview Laser	CO ₂ – Flowing Gas (Continuous Wave and Pulsed)	500 – 45,000	10.6	Cutting, welding, cladding, free forming, and hardening
Laser - Matter Powder	CO ₂ – Sealed (Pulsed)	10 – 1,000	10.6	Micro-welding, cutting, scribing, and drilling
Heat transfer Residual stress	Nd:YAG (Continuous Wave)	1,000 – 5,000	1.06	Welding, cutting, cladding, and hardening
Sinter Phase change	Nd:YAG (Pulsed)	10 – 2,000	0.53 - 1.06	Micro-welding, cutting, drilling, scribing, and marking
Wetting	Nd:YAG -Diode Pumped (Pulsed)	10 - 500	1.06	Cutting, drilling, scribing, marking, and micro- machining.
P-S-P relation	Excimer (Pulsed)	0.001 - 400	0.157 – 0.351	Micro-machining, marking, and photolithography

Powde

Ô٧

Las

Las

Ро

He

Re

Several Sev

r processes	Prototyping Technologies	Base Materials
erview	Selective laser sintering (SLS)	Thermoplastics, metal powders
er	Fused deposition modeling (FDM)	Thermoplastics, eutectic metals
er - Matter	Stereolithography (SLA)	Photopolymer
wder	Laminated object manufacturing (LOM)	Paper
at transfer	Electron beam melting (EBM)	Titanium alloys
sidual stress	3D printing (3DP)	Various Materials
ter		

https://www.youtube.com/watch?v=p__-QbQbntl

Phase change

Wetting

SLS

P-S-P relation

A design of a motion system – motion can be described using kinematic equations when approximated as rigid structures