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Abstract. We present evidence that the Turing machine is too restric-
tive a model to sufficiently describe the computation of our analog com-
puter and, therefore, a more comprehensive model is needed. We report
on the construction of a prototype, the Optical Analog Recurrent Neu-
ral Network (OpticARNN), and experimental results showing that it
performs computations which are beyond those of computers based on
the Turing machine. We conclude that the behavior of OpticARNN is
better described by the super-Turing computational model proposed by
Siegelmann. To the best of our knowledge, this is the first application of
analog recurrent neural networks realized in a physical computer based
on this model.
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1 Introduction

The Turing machine (TM) is one of the most powerful models in the history of
science. It is the mathematical basis of digital computers and a major enabling
factor for ushering in the Information Age. Indeed, the TM’s success at modeling
new types of computation has led to the ‘widespread belief’ amongst some that
”models of computation more expressive than TMs are impossible” [1].

We developed a physical realization of a machine based on a computational
model that subsumes the Turing model. The super-Turing theory of computa-
tion [2–4, 6] demonstrated that an analog recurrent neural network (ARNN) can
represent a hierarchy of complexity classes, including the Turing machine. We
show that our physical machine is capable of performing some kinds of computa-
tion that a physical realization of the Turing Machine (digital computer) cannot
perform. In the following sections, the super-Turing theory of computation is
presented, followed by the design and development of OpticARNN, our Optical
Analog Recurrent Neural Network computer. We describe the tests performed to
verify its super-Turing capability and the results obtained through experiments
conducted on OpticARNN.
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1.1 Theory Background: Super-Turing Analog Recurrent Neural
Networks

The computational power of a machine can be classified according to the com-
plexity class of the problems that it can solve. These complexity classes are quite
abstract and have precise mathematical relationships to each other. However, for
the purposes of this paper, the names of each complexity class serve as identifiers
indicating relative computational strength.

Siegelmann developed a super-Turing computational model based on ana-
log recurrent neural networks [2–4, 6]. Turing Machines can solve problems of
complexity class P, as can an ARNN with rational weights and discrete-time
signals. ARNNs with deterministic, real-valued signals can solve problems of
class P/poly, which is a strict superset of class P. In addition, ARNNs with
rational weights and signals that have stochastic noise can solve problems of
complexity class BPP/log*, which is also super-Turing but of lower computa-
tional complexity than P/poly. In fact, there is an infinite hierarchy of classes
that can be computed efficiently between the TM and a super-Turing computer,
including BPP/log* [2].

In our optical ARNN (OpticARNN), stochasticity is generated by the fun-
damental statistical and quantum physics of its laser and analog components.
Indeed, stochasticity cannot be removed from the system. The underlying physics
allows that this stochasticity can be characterized by real-numbered values. The
probability of the ‘coin’ being ‘heads’ can be 1/

√
2, for example.

A long sequence of measurements allows indirect access to the real-valued
quantity, facilitating its approximation to high precision [2] (p.122). As a conse-
quence, any physically realizable super-Turing machine must be non-deterministic.
Turing proposed this idea when discussing how to make a machine behave like
a brain by making ”its behavior depend on something like a roulette wheel or a
supply of radium” [7].

The stochastic noise in the intensity of an optical signal corresponds to fluctu-
ations of the least significant bit in a series of measurements of a physical value.
One can view this ”jitter” as being determined by a coin flip. Heads means that
the noise bit of a particular measurement is 1; tails, the bit is 0. To be prov-
ably super-Turing, the probability of a given measurement being heads (or tails)
must be a real number. This is significant because a machine that computes with
deterministic real-valued signals might not be physically realizable, however an
ARNN with stochastic signals can be constructed.

This indirect access to the real-numbered value is similar to Stochastic Res-
onance [8] which is used to increase measurement precision in areas from Exper-
imental Physics to Neurobiology. Note that this true noise stochasticity is not
the same as adding deterministic noise, such as from a Pseudo-Random Number
Generator. This is because deterministic noise + digitized signal is in a discrete
state space, not the continuous space of the ARNN.

The above suggests the following Conjecture: All physically realizable Super-
Turing machines are stochastic.
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1.2 Important Note

We are trying to extend Computational Modeling from discussions of abstract
models toward use in the design and development of physically realized machines.
Our hypothesis is that the abstract notions of computational power from theory
can be reflected in physical realizations of these models. The ARNN super-Turing
theory guided the design of our OpticARNN and we show it has more powerful
computational abilities than a physically realized machine based on the Tur-
ing Machine model. We necessarily must compare physical implementations of
Turing Machines to physical implementations of super-Turing machines. The ab-
stract Turing Machine is unbounded in memory size, while the common physical
realization of Turing Machines–digital computers–have finite size.

Science has many examples of a (sometimes quite idealized) theory result-
ing in prediction of actual physical phenomena. Quantum and relativistic effects
cause Newtons Laws to not be an exact model of reality. However, nobody would
dispute Newtonian theory’s usefulness. In the area of neural networks, the Uni-
versal Approximation Theorem only holds rigorously for real-numbered weights
and signals, but it is perhaps the most powerful theorem in the field[9]. Even
theoretical results based (at least initially) on discrete vs. continuum arguments
(as does ARNN theory) have resulted in predictions of phenomena that have
been experimentally proven. The Casimir force is such an example [10].

One would probably not use a super-Turing-based computer to compute
check-book balances or the trajectory of an ICBM. Digital computers are well-
suited for these tasks, and many others. We do not know if classical computa-
tional modeling problems, such as the famous Halting Problem, can eventually
be solved by any of these machines. However, super-Turing-based systems are
expected to perform well on tasks the larger problem space is important, such
as pattern recognition, modeling biological neurons, artificial neural network
robustness and processing real-world data [4]. This expectation was noted by
Turing himself in 1950: ”The nervous system is certainly not a discrete-state
machine. A small error in the information about the size of a nervous impulse
impinging on a neuron, may make a large difference to the size of the outgoing
impulse. It may be argued that, this being so, one cannot expect to be able to
mimic the behavior of the nervous system with a discrete state system.” [7].

2 OpticARNN Description of Operation

We designed and constructed an Optical Analog Recurrent Neural Network
guided by the super-Turing model. We present only a summary herein (refer
to [11] for more complete engineering details).

While it would have been possible to construct a purely analog system, doing
so was impractical within the scope of our work. In addition, it is only neces-
sary for the core computation to occur using analog data in order to demon-
strate super-Turing capability. So, as a matter of convenience, we generated
OpticARNN inputs and processed its outputs digitally.
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The OpticARNN is based on the Optical Stanford Matrix-Vector Multiplier
[12]. The signal flow starts in the lower center of Fig. 1, where neuron activa-
tion values sent from the Host Computer are converted to modulated electrical
currents by a Field Programmable Array (FPGA). The FPGA generates laser
modulation and driver signals for up to 60 source neurons, where each neuron is
represented by one laser beam.

Fig. 1. Optical Analog Recurrent Neural Network

The 60 source Vertical Cavity Surface Emitting Lasers, shown in the upper
left (Fig. 1), are mounted on the circular circuit board in a horizontal, linear
array. Optical components project the signals onto a Spatial Light Modulator,
which performs the synaptic multiplications (center top) by intensity reductions,
or attenuations, of multiple portions of each vertical laser signal.

The OpticARNN uses a Digital Micro-Mirror Device (DMD) for its spatial
light modulator. The DMD works in reflective mode and consists of a 1024 x
738 array of tiny mirrors. Each mirror can be independently and rapidly set to
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either ON (attenuation, 0) or OFF (attenuation, 1). Each synapse has its own
rectangular region of interest (ROI) on the DMD. The synaptic weight of the
ROI is set by adjusting the portion of ON vs. OFF mirrors.

The optics of the system causes light to focus onto a vertical linear array of
2048 CCD photodetectors (top right). The individual intensity-modulated pulses
are horizontally summed by the optics, and temporally integrated by the CCD
photodetectors. Both of these are analog computational processes.

Finally, the signals are digitized and sent to the host computer, where the
excitatory and inhibitory signals are combined and a squashing function applied.

2.1 Hardware-in-the-Loop Training

Software digital neurons and synapses perform their computations using the
same, identical, idealized behavior based on their coding. Digital hardware de-
vices achieve nearly-idealized behavior by imposing a digital result on their out-
puts. Occasionally, this does cause a rounding error, but the error rate is very
small in today’s digital devices. Analog neurons and synapses, however, can-
not be created identically. They are individual components having non-idealized
behavior. This creates a difficult problem in terms of exactly replicating Opti-
cARNN results from one run to the next.

Our solution was to train the initial synaptic weights with hardware-in-the-
loop, meaning that the analog hardware does all of the forward-propagation
computations. Software on the host computer performs synaptic weight updates
using information, such as the activations of all of the neurons, from the hard-
ware. Simulated annealing was then applied to reduce the mean-squared error.

The advantage of using simulated annealing for hardware-in-the-loop train-
ing is that it treated the ARNN as a black box and made no assumptions about
its internal structure. However, it may not have been optimal in this case. Frye,
et al. [13] found that using backpropagation of errors was faster than simulated
annealing for hardware-in-the-loop training. This is a potential future enhance-
ment.

3 Testing for Computation Beyond the Turing Limit

We next translate the abstract theoretical analysis of the ARNN models into
an operational experimental test of super-Turing capability. Theoretical defini-
tions of terms such as ‘computation’, ‘number-system’, and ‘stochastic’ must be
interpreted in physical terms.

Some definitions of ‘computation’ require that the result be exactly the same
for each computation. This does not allow for non-deterministic or approxi-
mate calculations, as in the use of slide rules and similar devices. Generations
of scientists and engineers would disagree with this interpretation, so we relax
this too-strict definition. Computation is an information process that transforms
inputs to outputs. This physical interpretation does not require deterministic ex-
actness and is broadly inclusive. It encompasses the activity of biological neural
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networks, conventional analog computers, and Turing machines.

Definition: We will call a physically realized Turing Machine a digital com-
puter. We exclude any extra functionality that a given actual computer may
have that is beyond the TM model, such as a true random number generator or
real-time clock. This definition also means that the machine is deterministic and
operating with bounded memory.

Definition: A physically realized super-Turing machine must be capable of:
Criterion 1: Doing any computation that a digital computer can
Criterion 2: Doing at least one computation that a digital computer cannot

Criterion 1 was proven in [2], namely that an ARNN with rational weights
and signals is equivalent to a TM. Based on this proof, we assume that a physi-
cally realized ARNN will meet this criterion, at least in principle. (Our current
prototype may not be large enough to do this).

Criterion 2 bounds the problem i.e. it is only necessary for a super-Turing
machine to solve at least one problem, but not all problems, beyond the Turing
limit.

In order to test super-Turing computation, a suitable problem must be found.
In this case, the answer came from the area of chaotic systems. The dynamics
of chaos are both aperiodic and defined on a continuous phase space. As such,
they cannot be mimicked by a Turing Machine [2](p.155).

We examined a well-known chaotic time series, the Logistic Map:

yn = rxn(1− xn) ; xn+1 = yn (1)

The r parameter determines the behavior of the time series. While the generated
time series is stable for a range of r values, it becomes chaotic for values between
3.9 and 4.0. We used the value of r = 3.99 throughout this study.

When generating a time series, a digital computer attempting to simulate
chaos will settle into a repeating pattern i.e. every digitally generated time se-
ries eventually becomes periodic. We call this phenomenon the ‘Digital Artifact’.
It was explored in detail by Blank [14] where he described it as ”a ‘localization’
process” where ”trajectories which should normally remain dense remain con-
fined to a small number of points”. The Digital Artifact is characterized by the
repeat period of a digitally-generated chaotic time series and it depends on the
number of significant bits in the calculation. Increasing the number of significant
bits increases the repeat period but will not remove it. The Digital Artifact is
caused by the deterministic computation of the digital computer and its limited
precision in performing mathematical operations.

To confirm this Digital Artifact, we generated a Hénon Map (a = 1.31, b = 0.3)
time-series with various precision data in MATLAB. Fig. 2 shows the period of
the chaotic time series for different levels of precision. For example, for 30 bits of
precision the time series has a Digital Artifact period of about 104 data points.
These simulation results were consistent with those of [14].
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Fig. 2. The Digital Artifact.

4 Experimental Results

4.1 Data Set Generation

Table 1 shows four sets of time series data generated for use in our experiments.
The Logistic Map Training data time-series was generated by MATLAB double
precision based on Eq. (1). Note that for the double-precision Training data,
the period of the Digital Artifact is greater than 106 – much too long to show
up in the 20,000-point time series. All digital neural networks were trained by

Table 1. Time series data sets

Time series Input/Output Generated by Hardware Precision

Training Input digital double

DRNN9 output digital 9 bits

DRNN18 output digital 18 bits

OpticARNN output analog 7 bits

the MATLAB nntool with the GDX option enabled using the double precision
Training data. In addition, they were trained in feed-forward mode to gener-
ate 20,000 (x, y) data points using Eq. (1). The OpticARNN was also trained
using the Training time-series data. Simulated annealing and hardware-in-the-
loop were used as previously discussed. A one-sided decision was used to always
accept results which had better performance. Approximately 100 epochs were
needed to reduce the training error to acceptable bounds.

All of the neural networks were configured with 2 input neurons (x and bias),

five hidden neurons with the ‘logsig’ squashing function f(s) = [1 + exp(−s)]−1
,

and one linear output neuron limited to the range [0,1].
After training, all networks were evaluated in recurrent mode. The initial

input value was 0.2 for all networks. The output of the network for step n was
presented as the new input for step n + 1, thus generating a time series. For
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DRNN9, the output was rounded to 9 bits before recurrence, for DRNN18, it
was rounded to 18 bits. The recurrence was executed for 20,000 iterations. The
last 8184 points were evaluated in testing for chaos (8175 for DRNN18). Using
the later values of the time series insured that the networks had time to get
beyond any transient behavior and settle into a steady state.

Our initial precision estimate of OpticARNN was approximately 9 bits, which
was used to set the DRNN9 rounding precision. Later, the OpticARNN precision
was found to be between 7 and 8 bits. To be conservative, we kept the DRNN9
as 9 bits because that gave it a slight performance advantage over OpticARNN
when analyzing results.

4.2 Testing for Compatibility with Chaos

There were two major difficulties involved in analyzing the neural networks for
chaotic behavior.

The first was that the function mapping learned by the network was not
exactly the same as the training data. Neural networks are universal approxi-
mators and learn the mapping to within a specified error. Normally, this is not
a major issue - one trains the network, adjusts hidden layers, etc. until the ap-
proximation is good enough. Chaotic systems are aperiodic and very sensitive
to initial conditions. Consequently, the trained OpticARNN chaotic behavior
did not look exactly like the Training data. Analysis of the results, however,
clearly demonstrated that OpticARNN was able to learn chaos while its digital
counterparts could not. We anticipate that larger ARNNs and more effective
hardware-in-the-loop training will generate a more accurate mapping.

This expectation is based on the work of Blank [14], who proposed that a
small amount of true noise can cure the pathology. He also noted that even in the
general case, one can verify the existence of a genuine trajectory of the system
in the neighborhood of the numerical trajectory.

The second difficulty was that no test can prove that the dynamics of a
system are chaotic. While finding periodicity in a time series shows that it is
not chaotic, the best positive outcome that can be achieved is to show that the
series is compatible with chaos[15]. We demonstrate OpticARNNs compatibility
with chaos in our results.

4.3 Test Results

We ran two sets of tests for compatibility with chaos on our data sets: The
Autocorrelation Test and the Largest Lyapunov Exponent (LLE) Test.

Autocorrelation Test. We used the autocorrelation test to determine pe-
riodicity in the outputs generated by the DRNNs and OpticARNN. Results are
displayed in Table 2. As expected, the DRNN9 data showed a strong correlation
to a periodic dynamical system. Inspection revealed that the Digital Artifact
in the DRNN9 time series was exactly 22, confirming that DRNN9 is not ape-
riodic and, therefore, not chaotic. DRNN18 is similarly not chaotic because it
contained a Digital Artifact of 109 steps.
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Table 2. Autocorrelation Results

Time Series Periodic Period Compatible with Chaos?

DRNN9 yes 22 Steps No

DRNN18 yes 109 Steps No

OpticARNN no N/A Yes

Figure 3 shows the autocorrelation function for DRNN9 and OpticARNN.
The dissimilarities between DRNN9 and OpticARNN figures highlight the dif-
ferences between periodic and chaotic time series.

Fig. 3. Autocorrelations of DRNN9 and OpticARNN

Largest Lyapunov Exponent Test. When the Lyapunov Exponent spec-
trum of a system is computed, the system is compatible with chaos if it has
positive exponent(s). Usually, only the largest Lyapunov exponent (λ) needs be
estimated from the time series data. We implemented the Rosenstein et. al [16]
method for calculating λ because it uses all available data in the calculation and
is robust to noise, time series length, embedding dimension, and time lag.

The first step in calculating the largest Lyapunov exponent is to reconstruct
the phase space. By Takens’ theorem, the technique of translating a time series
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into p-dimensional space, called time-lag embedding, yields dynamics that are
geometrically similar to the original series[16]. The time-lag parameter τ selects
the interval between time series points making up the embedding: 1 means choose
each point, 2 means choose every other point, etc. The embedding dimension
parameter is p. We avoid the problem of needing to calculate several Lyapunov
exponents at different time-lag and embedding dimensions because the optimal
values are well known for the Logistic Map (τ = 1; p = 2)[16].

Next, for all points in the reconstructed space, the nearest neighbor of each
point is determined by minimizing the Euclidean distance between it and all
other points. Each pair of neighbors represent the initial conditions of two nearby
trajectories. The mean rate of divergence of these trajectories is used to estimate
the largest Lyapunov exponent.

The theoretical value of λ reported in Rosenstein et al. [16] for the Logistic
Map with r = 4.0 is 0.693. We calculated a value of λ = 0.624 for the Training
data (r = 3.99). Our experimental results are displayed in Table 3. Note that
”N+” indicates that no positive Lyapunov exponent was found, consequently
the dynamics of that time series is not compatible with chaos.

Table 3. Largest Lyapunov Exponent

Time Series λ Compatible with Chaos?

DRNN9 N+ No

DRNN18 N+ No

OpticARNN 1.083 Yes

5 Discussion

There has been an increased interest in analog computational devices, both elec-
tronic[17, 18] and optically based[19, 20]. There are significant energy, speed, size,
and cost advantages of these devices. However, as far as we know, none of these
designs have used super-Turing theoretical considerations in their design. We
believe that these considerations are important to making these devices have
maximum computational abilities. There is a new level of potential computa-
tional power possible, but this potential is underrecognized and underutilized.

Beggs et al. [6] suggested that systems computing in BPP/log* ”will not
support programming, since programming in such a context turns to be a set-
tlement of a real number” but would likely be better suited to learning tasks.
This suggests that fully analog neural recurrent pathways are important to in-
crease the power of our physical implementation because they are capable of
very effective types of learning.

We also learned that the practical use of ARNNs should involve integration
with conventional digital systems. Digital computers have advantages in mem-
ory, speed, flexibility and have a large number of software development tools
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- compilers, integrated development systems, GUIs, GPUs, and access to the
internet. Most data are in digital form.

It has also been suggested that the Digital Artifact can be removed by using
larger number of significant digits in the calculations, or by introducing pseudo-
random noise in the calculation. This procedure could increase the period to the
point where it is not detectable in the simulation. However, the artifact will still
be present. We believe that this suggestion, while true, misses the point - the
OpticARNN inherently does this in its computation process, without consuming
ever increasing memory and time. Moreover, the OpticARNN shows no sign of
the Digital Artifact even in a region of significance where digital computer results
show drastic pathology.

6 Conclusion

We presented OpticARNN, an optical analog computer which is based on a
super-Turing computation theory. We devised a test for super-Turing capability
based on the idea that realized Turing machines, implemented as digital com-
puters, always produce a periodic time series when modeling chaotic systems.

We trained recurrent neural networks, both digital and analog, on the chaotic
Logistic Map time series. Their outputs were subsequently tested for compati-
bility with chaos using two well known metrics, autocorrelation and the largest
Lyapunov exponent. Both metrics confirmed that the output produced by Op-
ticARNN was compatible with chaos. In contrast, both metrics for the digital
recurrent neural networks of approximately equal precision and twice the preci-
sion of OpticARNN were shown not to be compatible with chaos.

The DRNNs output exhibited an expected periodicity that is due to the de-
terministic nature of TMs and the finite precision inherent in digital computers.
Significantly, the OpticARNN output never displayed the Digital Artifact, even
in time series output 372 times longer than was needed for the Digital Artifact to
show up in DRNN9, its digital sibling. While robust systems can program their
way around it, the Digital Artifact cannot be eliminated on digital computers
that operate on 0s and 1s.

We have empirically shown that a real, physical computing machine can be
built to solve problems beyond that of digital machines. However, we have only
scratched the surface of analog computing.
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