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Charging capacitors from thermal fluctuations using diodes
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We theoretically consider a graphene ripple as a Brownian particle coupled to an energy storage circuit. When
circuit and particle are at the same temperature, the second law forbids harvesting energy from the thermal motion
of the Brownian particle, even if the circuit contains a rectifying diode. However, when the circuit contains
a junction followed by two diodes wired in opposition, the approach to equilibrium may become ultraslow.
Detailed balance is temporarily broken as current flows between the two diodes and charges storage capacitors.
The energy harvested by each capacitor comes from the thermal bath of the diodes while the system obeys the
first and second laws of thermodynamics.
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I. INTRODUCTION

Numerous sources of ambient energy including kinetic,
solar, ambient radiation, acoustic, thermal, etc., are readily
available for energy harvesting. Energy harvesting in a quiet,
dark setting is the most challenging because only thermal en-
ergy is present. In such an environment the Brownian motion
of electrons produces a stochastic alternating current [1,2].
If this signal is rectified, then energy could be harvested by
charging a capacitor. Using a diode to rectify noise in thermal
equilibrium was ruled out by Brillouin because it violates
detailed balance [3]. Gunn added more insight by showing that
diode nonlinearity generates an oppositely flowing current
that cancels out the conventional rectified current [4,5]. Feyn-
man popularized the notion that it is impossible to harvest
thermal energy at a single temperature in his lecture series
“Ratchet and pawl” [6].

Renewed interest in thermal energy harvesting emerged
in the 1990s, when it was discovered that diodes can rectify
stochastic signals provided long-time correlations (non-white
noise) are present [7,8]. More recently, it was discovered that
electrical circuits containing multiple loops can give rise to
unusual correlations with vortex dynamics [9–11]. This fueled
further interest in this problem.

The simplest nonlinear circuit that can potentially store
charge has a diode and a capacitor. The master equation for
this circuit was first derived and studied by van Kampen in
1960 [12]. He showed in equilibrium the capacitor has zero
charge and developed an approximate Fokker-Planck equa-
tion (FPE) that does not satisfy the fluctuation-dissipation
theorem. Later a diode-capacitor-resistor circuit was studied
by Sokolov in the late 1990s [13,14]. He derived a FPE that
satisfies the fluctuation-dissipation theorem. In his study, the
resistor and diode are held at different temperatures and the
steady-state heat engine efficiency is determined. What has
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not been studied thus far is the full transient response of
the charge on a storage capacitor for various diode-capacitor
systems held at a single temperature.

In this study, we present a system capable of harvesting
energy from thermal noise at a single temperature without
violating the first or second law. Our system uses a small vari-
able capacitor wired to two diodes and two storage capacitors
using two current loops. Surprisingly, the nonlinearity of the
diodes combined with the multiple current paths charges
the capacitors with an ultraslow convergence to equilibrium.
The harvested energy comes from the thermal baths of the
diodes [15].

II. MODEL CIRCUIT

The two current loop circuit model used for this study
is shown in Fig. 1(a). It includes a capacitor formed by a
graphene membrane suspended near a STM tip and a dc bias
voltage (V ), which can be used to alter the average charge on
the graphene capacitor. Due to thermal fluctuations, the dis-
tance between the graphene membrane and electrode changes,
giving rise to a variable capacitance that can be written as
C(x) = C0/(1 + x

d ), where C0 = εA/d , ε is the permittivity,
A is the effective area, d is the fixed distance between the
membrane support and the tip, and x(t ) is the graphene po-
sition. The series combination of V and C(x) acts as an ac
power source, as charge must flow on and off the capaci-
tor according to q(t ) = C(t )V [16,17]. Earlier experimental
and theoretical studies of this circuit using scanning tunnel-
ing microscopy and Langevin equation found that graphene’s
movement redistributes its thermal power to technologically
important lower frequencies [18,19]. This, coupled with
graphene’s unusual flexibility, makes it an ideal kinetic source
of energy.

We have modified the earlier circuit [18] to include storage
capacitors for energy harvesting. To achieve this, it is crucial
to induce long-lived transients during which the capacitors
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FIG. 1. Circuits and diode characteristics using R = 1. (a) Two-
diode circuit with variable capacitance graphene membrane. The
inset is a single diode with a capacitor. (b) Current-voltage charac-
teristics of the diodes used in this study for three values of diode
parameter u0. (c) Plots of the derivative of the diode conductance μ′

are shown for the same three values of u0.

charge before they discharge to reach overall thermal equilib-
rium. The key to this is to connect the diodes to capacitors in
the circuit such that the current passes only in one direction.
This allows transient charging of capacitors. Of course, real
diodes leak in the low conduction direction, and the system
will eventually relax to thermal equilibrium. The circuit pre-
sented here maximizes the transient stage where the capacitors
can charge and store energy amenable to harvesting.

At the graphene-diode junction in Fig. 1(a), current can
either flow through diode D1 and charge storage capacitor C1

or flow through D2 and charge C2. The diodes are wired in
opposition. Forward current senses minimal resistance when
flowing either from D1 to C1 or from C2 to D2. This circuit
with diodes, storage capacitors, and variable graphene ca-
pacitor is potentially a full-wave rectifying energy harvesting
circuit. We model the harvested energy of the circuit using the
Hamiltonian:

Hq(q, q1, q2) = q2

2C(x)
+ q2

1

2C1
+ q2

2

2C2
+ qV, (1)

where q, q1, and q2 are the charges on the graphene and
the two storage capacitors. The performance of the circuit
depends on the current-voltage characteristics of the diodes.
Each diode current Ii is related to diode conductance μi and
voltage drop across the diode ui via

I1(u1) = μ1(u1)u1, I2(u2) = μ2(−u2)u2, (2)

μ(u) = 1

R

1

1 + e−u/u0
, (3)

where the minus sign in diode current I2 aligns the forward
bias direction to be opposite current I1, and the diode con-
ductance μ(u) is modeled as a sigmoid with parameter u0,
which controls how leaky the diodes are in reverse bias, as
shown in the I-u curves in Fig. 1(b). The current-voltage
curve is similar to an ideal diode in series with a resistor,
which is more realistic, and except for the resistance R it
depends on a single parameter u0 [20]. It is not necessary to
use the sigmoid function, as capacitor charging is found using
a polynomial expansion of the ideal diode formula as well.
Also shown in Fig. 1(c) is the derivative of the diode con-
ductance μ′ = dμ/du, which is a key function in the energy
harvesting process. Note that while the current at zero volts is
zero [Fig. 1(b)], the derivative of the diode conductance μ′ is
nonzero at zero volts and its value increases as u0 decreases.

The diode voltages follow from Kirchhoff’s loop law (or
derivatives of the Hamiltonian with respect to charges q1 and
q2):

ui = −∂Hq

∂qi
= −

[
qi

Ci
+ V + q1 + q2

C(x)

]
, (4)

where we have used q = q1 + q2 from Kirchhoff’s junction
law I = I1 + I2.

III. FOKKER-PLANCK EQUATION

The probability density ρ(q1, q2, t ) for capacitor charges
q1 and q2 obeys the Fokker-Planck equation (FPE) derived
from an electron master equation in the continuum limit [18]:

∂ρ

∂t
+ ∂ j1

∂q1
+ ∂ j2

∂q2
= 0, (5)

where ji = μi(ui )(uiρ − kBT ∂iρ). See Appendix A for the
full system FPE. The relaxation time of graphene is much
shorter than the circuit RC time; therefore, it reaches equi-
librium much faster. In this limit, stochastic averaging [21,22]
over the graphene dynamics allows us to replace C(x) with
C0 provided the variation of x(t ) is small compared to d
(see Appendix A). This is confirmed by numerical simulation
of the Ito SDEs associated with the FPE (see Appendix F).
We simplify this presentation further and set V = 0 to study
energy harvesting solely from the thermal environment. We
also studied the role of adding a nonzero bias voltage. The
main outcome is to alter the final equilibrium charge on the
storage capacitor to be q = C0V , instead of q = 0.

A. One diode-one capacitor circuit

To highlight the special features of the two-loop circuit,
we first present numerical solutions for the one diode one
capacitor circuit [inset of Fig. 1(a)]. The FPE for this circuit
is given by (see Appendix B)

∂ρ

∂t
= ∂

∂q

[
μ0

(
q

C0
ρ + kBT

∂ρ

∂q

)]
, μ0 = μ(−q/C0). (6)

The average charge on the graphene capacitor in time is shown
in Fig. 2(a) for three different u0 values for fixed C0 = 4,
kBT = 1, and R = 1. We have chosen parameters that allow
the simulation to capture qualitatively the important physics.
A quantitative comparison is made later. The unit of charge is
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FIG. 2. Numerical solution of Fokker-Planck equation using
kBT = 1, R = 1, and various diode parameter values are displayed.
(a) The average charge on the capacitor and (b) charge variance as
functions of time for the single diode-capacitor circuit with different
values of uo as labeled. (c) The average charges on the capacitors and
(d) their variance for the full two-diode circuit as functions of time
for two different values of u0 as labeled.

given by
√

kBTC0 and the unit of time is given by RC0. In all
three cases, the average charge on the capacitor increases from
zero to a negative maximum and then decays to equilibrium
value zero. The relative sign of the charge reflects the choice
of the positive direction for the current. The smallest value of
the diode parameter (u0 = 0.025) achieves the largest charge
before slowly relaxing to zero. For the largest value of u0, the
charge reaches the equilibrium in the shortest time.

The variance of the capacitor charge for the same diode
parameters is shown in Fig. 2(b). It grows monotonically
in time. For a perfect diode, the circuit would reach ther-
mal equilibrium for 〈q〉 < 0. This corresponds to probability
density ρ∞ = e−q2/(2C0kBT )�(−q)

√
πC0kBT/2, where �(x) is

the Heaviside unit step function. The average charge of this
distribution is 〈q〉 = −√

2kBTC0/π and the variance 〈(q −
〈q〉)2〉 = kBTC0(1 − 2/π ). The maximum average charge and
variance in Figs. 2(a) and 2(b) tend to these values as u0 → 0.
In the small temperature limit, kBT � C0u2

0, it is possible to
describe analytically the evolution of the probability density
from an initial condition (see Appendix B). The probability
density is a skew Gaussian, where one side quickly reaches
the equilibrium density. The other side advances as a front
that slows down as it approaches equilibrium.

B. Full circuit

For the full circuit with two diodes and three capacitors,
a new charging dynamic arises, as shown in Fig. 2(c). The
graphene capacitance is kept at C0 = 4, while the storage
capacitances are set at C1 = C2 = 100. The average charges

on C1 and C2 as functions of time are shown in Fig. 2(c) for
two different diode parameters. In the initial charging phase,
we see a rapid increase in charge. Charges q1 (negative) and
q2 (positive) are perfectly anticorrelated with each capacitor
storing an equal amount of energy. However, after the initial
rapid charging phase the charge does not monotonically decay
to zero as in the one-diode-capacitor circuit. Depending on
the value of u0, it may continue to increase before relaxing
to zero. To illustrate dependence on the diode parameter u0,
a second set of charging curves is shown in Fig. 2(c) with
a larger u0. In this case, the charge decays more quickly to
zero. The variance of the charge in time for both values of u0

increases monotonically, as shown in Fig. 2(d). The variance
eventually reaches the same equilibrium value for both.

To understand the origin of the initial rapid rise of the
capacitor charge, we consider the equation for the average
charge on the storage capacitor, which follows from Eq. (5),

d

dt
〈qi〉 = 〈uiμi(ui )〉 − kBT

(
1

C0
+ 1

Ci

)
〈μ′

i(ui )〉. (7)

The first term on the right is the conventional Ohm’s law
current. The second term is the nonlinear thermal current
proportional to the temperature. From this equation, the initial
charge growth, with ρ = δ(q1)δ(q2) is given by d

dt 〈qi〉|t=0 =
−kBT ( 1

C0
+ 1

Ci
)μ′

i(0). This shows that the initial charging of
the capacitors is possible only for nonlinear resistive devices
with nonzero conductance slope μ′

i(0) = (−1)i+1/(4Ru0),
which from Fig. 1(c) can be sizable for small u0. The initial
diode current flows opposite to the conventional current and
puts negative charges on storage capacitor C1. A detailed
discussion of initial charging for both one diode and one
capacitor as well as the three capacitor systems is provided
in Appendices C and D.

The dependence of maximum charge on various circuit pa-
rameters is explored in Fig. 3. The maximum average charge
increases with the charging capacitance, as shown in Fig. 3(a)
for two different diode parameters. The maximum charge as a
function of the diode parameter for a fixed storage capacitance
decreases as shown in Fig. 3(b). The time to reach maximum
charge increases as u0 decreases, as shown in Fig. 3(c). The
time to reach maximum charge is very sensitive to the value of
C0. Here the smaller the value of C0, the longer the capacitors
remain charged, which is opposite to the the single diode case.
In summary, better performance of the circuit in regard to
energy harvesting is achieved for small u0 and small values
of the ratio C0/C1. To understand the mechanism behind
the charging of the storage capacitors, time evolution of the
probability distributions of charges must be considered. For
the plot of Fig. 2(c) with u0 = 0.025, we present plots of the
probability density of charges. Figure 4(a) shows the two-
dimensional probability density, ρ(q1, q2, t ) for t = 800. The
probability density is symmetric about q1 = −q2. The one-
dimensional marginal charge distributions for each storage
capacitor ρ(q1, 800) and ρ(q2, 800) are shown in Fig. 4(b).
In the limit as the diode parameter u0 is reduced to zero
and the time increased, these distributions approach one sided
Gaussian distributions. The two are mirror images of one
another. Figure 4(c) shows the marginal charge distribution
ρ(q1, t ) every 100 time units. The distribution spreads out
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FIG. 3. Numerical solution of Fokker-Planck equation for our
full circuit model using kBT = 1 and R = 1. (a) Maximum average
charge on the storage capacitors as a function of capacitance for
two different values of the diode parameter u0. (b) Dependence of
maximum average charge on storage capacitors on diode parameter
u0. (c) Time to reach the maximum charge as a function of diode
parameter u0. (d) The time to reach the maximum charge vs graphene
capacitance parameter C0.

toward the thermal equilibrium distribution; however, it is
apparent that the spread slows down. Just as the variance
takes an extremely long time to reach equilibrium value
[Fig. 2(d)], the right side of the distribution in Fig. 4(c) slows
down. Thus, the two-diode circuit has created an ultraslow
approach to equilibrium. From the time-dependent probability
distributions, we can calculate the evolution of the Shan-
non entropy, which is shown in Fig. 4(d) (see Appendix D)
[23]. The entropy monotonically increases in agreement with
the second law and approaches the equilibrium value in the
long-time limit.

Energy transferred to the storage capacitors came from the
thermal bath. For the single ideal-diode-capacitor case, the
energy harvested can be found analytically to be kBT/π . More
importantly, the power is found to be kBT/(πRC). A series of
these units may be built on an integrated circuit with each us-
ing a space of less than 0.1 square microns, with the potential
to produce a significant power density (see Appendix F) [24].
Surprisingly, a recent study found the average power density
for wind and solar farms is relatively low, at 0.50 and 5.4
W/m2 [25].

IV. DISCUSSION

The FPE (5) has a unique stable equilibrium solution corre-
sponding to the minimum free energy and zero average stored
charge (see Appendix D). However, before reaching thermal
equilibrium, the circuit of Fig. 1(a) for a small value of u0

FIG. 4. Numerical solution of Fokker-Planck equation for
our full circuit model using kBT = 1 and R = 1. (a) Two-
dimensional charge distribution ρ(q1, q2, 800). (b) Charge distribu-
tions ρ(q1, 800) (full curve) and ρ(q2, 800) (dashed curve) for the
storage capacitors at the time of maximum charge. (c) Time evolution
of the charge distribution for the storage capacitors shown in equal
time intervals from 100 to 800. (d) Time evolution of Shannon
entropy.

produces a long-lived transient state in which the capacitors
store charges proportional to their capacitance. Pushing off
equilibrium for a sufficient time period allows the storage
capacitors to be disconnected from the circuit and the energy
taken from the thermal surroundings to be used. For energy
harvesting, the circuit topology investigated here enhances the
total charge and time to discharge, while providing additional
handles for manipulating the outcome. It would be interesting
to study other circuit designs, such as multiple stages of our
circuit connected together in parallel or series. It is feasible to
build a circuit array at a foundry as an integrated circuit using
silicon fixed capacitors. This study demonstrates that energy
can be harvested from the thermal surroundings at a single
temperature without violating the laws of thermodynamics.

In an earlier study [17], we used a similar circuit to charge
capacitors using a variable capacitor driven by a motor. The
source of power charging the storage capacitors was the
motor. In contrast, here we demonstrate that the ambient
thermal environment can be a source of power for charg-
ing storage capacitors. With the circuit and environment at
the same temperature, we prove that charging the capacitors
does not violate the laws of thermodynamics. Furthermore,
we have discovered a circuit topology that provides addi-
tional degrees of freedom which enable ultrafast charging of
the storage capacitors combined with ultraslow convergence
to equilibrium. These aspects have practical significance, as
they allow time to disconnect the storage capacitors from the
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TABLE I. Units for nondimensionalizing the equations of the
model. C0V 2

0 = kBT , R = 1/μ f .

x p q, qi t H V

l
√

mT C0V0 RC kBT V0

circuit for possible energy harvesting before they lose their
charge.

In summary, we have studied theoretically the spontaneous
thermal fluctuations of a circuit with diodes having nonlinear
current-voltage characteristics and storage capacitors. If the
storage capacitors have an initial charge of zero, then the
circuit draws power from the thermal bath to charge them.
Throughout the process, the system satisfies both the first
and second laws of thermodynamics. From Brillouin, as men-
tioned earlier, we know that the diode nonlinearity generates
an oppositely flowing current which exactly cancels out the
rectified current to maintain detailed balance. However, this
opposite current also initially charges the storage capacitors.
The larger the storage capacitance, the more charge it can
harvest. A smaller graphene capacitance provides a higher

initial rate of charging. In addition, a smaller graphene capac-
itance yields a longer charging time.
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APPENDIX A: ELIMINATING GRAPHENE LOCAL
EQUILIBRIUM FROM CIRCUIT

The FPE of the full system comprising graphene and circuit
in Fig. 1 is [18]

∂ρ

∂t
−

2∑
i=1

∂

∂qi

[
μi(ui )

(
ρ

∂H
∂qi

+ kBT
∂ρ

∂qi

)]
+ p

m

∂ρ

∂x
− ∂

∂ p

[
ρ

∂H
∂x

+ η

(
p

m
ρ + kBT

∂ρ

∂ p

)]
= 0, (A1a)

H = p2

2m
+ U (x) − C0V 2x

2d
+ (q1 + q2)2

2C(x)
+

2∑
j=1

q2
j

2c j
+ (q1 + q2)V. (A1b)

That the equilibrium ρeq ∝ e− H
kBT is a globally stable solution of Eq. (A1a) can be proved by showing that the relative entropy,

F[ρ](t ) = −kB

∫
ρ(x, p, q1, q2, t ) ln

[
ρ(x, p, q1, q2, t )

ρeq(x, p, q1, q2)

]
dx d p dq1dq2, (A1c)

is a Lyapunov functional of Eq. (A1a); see Ref. [26]. Using the nondimensional units of Table I in Eqs. (A1), we obtain

ε

{
∂ρ

∂t
− ν

2∑
i=1

∂

∂qi

[
μi

(
ρ

∂H
∂qi

+ ∂ρ

∂qi

)]}
+ δp

∂ρ

∂x
− ∂

∂ p

[
δ ρ

∂H
∂x

+ pρ + ∂ρ

∂ p

]
= 0, (A2a)

H = p2

2
+ U (x) − x

2λ
+ (q1 + q2)2

2�(v)

(
1 + x

λ

)
+ ν

2∑
j=1

q2
j + (q1 + q2)v, (A2b)

ε = m

ηRC
, δ = UB

√
m

ηl
√

kBT
, λ = d

l
, ν = C0

C
, v = V

V0
, V0 =

√
kBT

C0
. (A2c)

We now derive averaging formulas for the FPE and the Ito stochastic differential equations (SDEs) [27] assuming ε � 1.
This is reasonable as m/η is the reciprocal of the phonon frequency (picosecond scale) and RC is typically on the nanosecond
scale. In a fast timescale τ = t/ε, the leading-order probability density evolves to the local equilibrium ϒ below. Inserting

ρ = ϒ(x, p, q1 + q2)ρ̃(q1, q2, t ) + ε f (x, p, q), (A3a)

ϒ(x, p, q) = 1

Z (q)
e−Hr , (A3b)

Hr = p2

2
+ U (x) − x

2λ
+ q2

2�(v)

(
1 + x

λ

)
, (A3c)

∫
ϒ(x, p, q) dx d p = 1,

∫
ρ̃(q1, q2) dq1dq2 = 1, (A3d)
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into Eq. (A1a), we obtain

∂

∂ p

(
f
∂H
∂x

δ + p f + ∂ f

∂ p

)
− p

∂ f

∂x
δ = ϒ

∂ρ̃

∂t
− ν

2∑
i=1

∂

∂qi

[
μi(ui )

(
ϒρ̃

∂H
∂qi

+ ∂ϒρ̃

∂qi

)]
, (A4)

plus higher-order terms. The solvability condition for the lin-
ear Eq. (A4) is that the integral of its right-hand side with
respect to x, p be zero. Using Eqs. (A3) and after some alge-
bra, this yields:

∂ρ̃

∂t
= ν

2∑
i=1

∂

∂qi

{
〈μi(ui )〉x

[
∂ρ̃

∂qi
− 〈μi(ui )ui〉x

〈μi(ui )〉x
ρ̃

]}
, (A5a)

〈g(x)〉x =
∫

g(x) exp
[− U (x) − q2(x+λ)−�(v)x

2λ�(v)

]
dx∫

exp
[− U (x) − q2(x+λ)−�(v)x

2λ�(v)

]
dx

. (A5b)

The Ito SDEs corresponding to the averaged FPE (A5a) are

dqi =
[
∂〈μi(ui )〉x

∂qi
+ 〈μi(ui )ui〉x

]
d (νt )

+
√

2〈μi(ui )〉x dwqi (νt ), (A6a)

ui = −
[

q1 + q2

�(v)

(
1 + x

λ

)
+ νqi + v

]
. (A6b)

Equation (A6) are circuit equations in which the mobili-
ties and currents are replaced by their stochastic averages
for the local equilibrium of the graphene variables given by
Eq. (A5b). These equations agree with the stochastic averag-
ing theorem [21,22] and the numerical observation that the
graphene is in local equilibrium with the instantaneous values
of the charges in the circuit. In the limit l � d , λ → ∞
and the averages 〈μi(ui )〉 and 〈μi(ui )ui〉 coincide with μi(ui )
and μi(ui )ui, respectively. Thus in this limit, we can replace
C(x) ≈ C0 in the FPE (A1a).

APPENDIX B: ONE DIODE IN THE LIMIT AS kBT � Cu2
0:

PROPAGATION OF EQUILIBRIUM FRONT

The substitution

ρ(q, t ) = g(q, t )e−q2/(2C0kBT ), (B1)

transforms Eq. (6) into

∂g

∂t
+ q

C0
μ0

∂g

∂q
− kBT

∂

∂q

(
μ0

∂g

∂q

)
= 0. (B2)

Provided kBT � C0u2
0 in Eqs. (B1), the last term on the right-

hand side of this equation can be ignored and we obtain the
solution

g ∝ �(Q(t ) − q), where (B3a)

Q̇ = Q

C0
μ0 = 1

RC0

Q

1 + eQ/(C0u0 )
. (B3b)

The velocity of characteristics is exponentially small as Q →
∞, so the front slows down dramatically as it advances. The
time it takes the front to advance from q = Q to q = Q + δQ,
0 < δQ � Q, is approximated by

δt ∼ RC
1 + eQ/(C0u0 )

Q
δQ. (B3c)

This time becomes exponentially large as Q → ∞. The de-
cay of the ensemble-averaged charge slows down due to the
slowing of the front. If we approximate

ρ = �[Q(t ) − q]∫ Q
−∞ e−q2/(2C0kBT )dq

e−q2/(2C0kBT ), (B4)

then the uniform value of g behind the front is not exactly time
independent, consistent with the advection equation Eq. (B2).
This is an error associated with the step function approxima-
tion to g. The error in normalization is exponentially small
for Q � √

C0kBT and has negligible effect on the estimate of
ensemble-averaged charge, which is now

〈q〉=
∫ Q
−∞q e− q2

2C0kBT dq√
2πC0kBT

=−
√

C0kBT

2π
e− Q2

2C0kBT . (B5)

The relative increase of average charge over the time in which
the front advances from q = Q to q = Q + δQ is

δ〈q〉
〈q〉 ∼ Q δQ

C0kBT
. (B6a)

From Eqs. (B3c) and (B6), the time required for a given
relative increase of charge, a = δ〈q〉/〈q〉, is

δt ∼ RC2
0 kBT

1 + eQ/(C0u0 )

Q2
a. (B6b)

This time becomes exponentially large as Q → ∞.
The diffusion in Eq. (B2) smooths out the front at

q = Q(t ). To see how this works, we examine the equation for
the gradient of g near the front, r = ∂g/∂q. Equation (B2)
becomes

∂r

∂t
+ ∂

∂q

[
qμ0r − kBT

∂ (μ0r)

∂q

]
= 0. (B7)

This is a diffusion-convection equation (different from the
FPE) and therefore r is locally conserved. Hence, the total
change in g across the front is conserved. We represent r in
“traveling wave” form,

r = R(ζ , t ), ζ = q − Q(t )√
C0kBT

. (B8)

R satisfies

∂R
∂t

+ 1√
C0kBT

∂

∂ζ

⎧⎨
⎩
[

Q + √
C0kBT ζ

C
μ

(
−Q + √

C0kBT ζ

C0

)
− Q̇

]
R −

√
kBT

C0

∂

∂ζ

[
μ

(
−Q + √

C0kBT ζ

C0

)
R
]⎫⎬
⎭= 0,
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or, evoking Eq. (B3b) for Q̇,

∂R
∂t

+ ∂

∂ζ

⎧⎪⎨
⎪⎩
⎡
⎢⎣ Q+√

C0kBT ζ

C0
μ
(
−Q+√

C0kBT ζ

C0

)
− Q

C0
μ
(
− Q

C0

)
√

C0kBT

⎤
⎥⎦R − ∂

∂ζ

[
μ

(
−Q + √

C0kBT ζ

C0

)
R
C0

]⎫⎪⎬
⎪⎭ = 0. (B9)

In the limit as C0kBT → 0,

C0
∂R
∂t

− ∂

∂ζ

{
(uμ)′(u)ζR + ∂

∂ζ
[μ(u)R]

}
= 0, (B10)

where u = −Q/C0 and μ(u) is given by Eq. (6). This
equation has a Gaussian as solution,

R = 1√
2πσ

e−ζ 2/(2σ ), (B11)

whose variance satisfies

C0σ̇ − 2(uμ)′(u) σ = 2μ(u). (B12)

From Eq. (B3b), this equation becomes

dσ

dQ
− 2(Qμ)′(Q)

Qμ(Q)
σ = 2

Q
. (B13)

Suppose the front has advanced far enough so Q � C0u0, in
which case μ(Q) ∼ e−Q/(C0u0 ), and Eq. (B13) reduces to

dσ

dQ
+
(

2

C0u0
− 2

Q

)
σ = 2

Q
. (B14)

As Q → ∞, there is an asymptotic solution

σ ∼ C0u0

Q
+ 3C2

0 u2
0

2Q2
+ 3C3

0 u3
0

Q3
+ . . . , (B15)

and the front thickness narrows as it propagates further to the
right.

APPENDIX C: SCALINGS FOR THE INITIAL TIME STAGE
AND FOR LONGER TIMES

We now change variables to scaled charge sums and differ-
ences in Eq. (5) for the complete circuit in Fig. 1 according to
the definitions:

χ = q1 − q2

C0V0
, η = q1 + q2

C0V0
(1 + ε), s = t

RC0
, (C1a)

ε = C0

2C
, V0 =

√
kBT

C0
. (C1b)

This scaling is appropriate for an initial time stage or layer
provided ε � 1. Equation (5) becomes

∂ρ

∂s
= L0ρ + εN1ρ + ε2N2ρ, (C2a)

L0 = ∂

∂η

[
(μ1+μ2)

(
∂

∂η
+ η

)
+ (μ1−μ2)

∂

∂χ

]
+ ∂

∂χ

[
(μ1−μ2)

(
∂

∂η
+ η

)
+ (μ1+μ2)

∂

∂χ

]
, (C2b)

N1 = ∂

∂η

[
(μ1−μ2)

(
∂

∂χ
+χ

)
+ (μ1+μ2)

(
2

∂

∂η
+ η

)]
+ ∂

∂χ

[
(μ1−μ2)

(
2

∂

∂η
+η

)
+ (μ1+μ2)

∂

∂χ

]
, (C2c)

N2 = ∂

∂η

[
(μ1 + μ2)

∂

∂η
+ (μ1 − μ2)χ

]
, (C2d)

μi = μ(−η + (−1)iεχ ). (C2e)

For longer times, after the initial time stage, we have to change χ and the time s to

ξ = εχ = q1 − q2

2CV0
, t̃ = εs = t

2RC
. (C3)

Then Eq. (5) becomes

ε
∂ρ

∂t
= Lρ + ε(2L + M1)ρ + ε2(L + M2)ρ, (C4a)

L = ∂

∂η

[
(μ1 + μ2)

(
∂

∂η
+ η

)
+ (μ1 − μ2)ξ

]
(C4b)

M1 = ∂

∂η

[
(μ1 − μ2)

(
∂

∂ξ
− ξ

)
− (μ1 + μ2)η

]
+ ∂

∂ξ

[
(μ1 − μ2)

(
∂

∂η
+ η

)
+ (μ1 + μ2)ξ

]
, (C4c)
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M2 = ∂

∂η

[
(μ1 − μ2)

(
∂

∂ξ
− ξ

)
− (μ1 + μ2)η

]
+ ∂

∂ξ

[
(μ1 + μ2)

∂

∂ξ
+ (μ1 − μ2)

∂

∂η

]
, (C4d)

μ(u) = 1

1 + e−u/w
, w = u0

V0
,

u j

V0
= (−1) jξ − η, j = 1, 2, (C4e)

H
kBT

= η2

2(1 + ε)
+ ξ 2

2ε
, ρeq(η, ξ ) = 1

2π
√

ε(1 + ε)
exp

[
−
(

η2

2(1 + ε)
+ ξ 2

2ε

)]
. (C4f)

in which we have dropped the tilde in t̃ . It is straightforward
to check that ρeq in Eq. (C4f) is a stationary solution of
Eq. (C4a). However, as ε → 0 and for diodes conducting in
opposite directions, we shall find in Appendix E an approxi-
mate stationary solution that is different from equilibrium to
the order in ε we consider.

APPENDIX D: INITIAL LAYER

For diodes conducting in opposite directions, the argu-
ments of the mobility functions in Eq. (C2e) are ±η − εχ ,

μ1 + μ2 = 1 + O(ε), μ1 − μ2 = − tanh
η

2w
+ O(ε). (D1)

Then the leading order of Eq. (C2a) is

∂ρ (0)

∂s
= ∂

∂η

[(
∂

∂η
+ η

)
− tanh

η

2w

∂

∂χ

]
ρ (0)

− ∂

∂χ

[
tanh

η

2w

(
∂

∂η
+ η

)
− ∂

∂χ

]
ρ (0). (D2a)

We now substitute ρ (0) = e−η2/2R(0)(χ, η, s) in this equa-
tion and integrate the result with respect to η to obtain an
equation for the χ -dependent reduced probability density. We
find ∫ ∞

−∞
e− η2

2
∂R(0)

∂s

dη√
2π

=
∫ ∞

−∞

{
∂

∂η

[
e− η2

2

(
∂R(0)

∂η
− tanh

η

2w

∂R(0)

∂χ

)]

+e− η2

2
∂

∂χ

[
− tanh

η

2w

(
∂R(0)

∂η
− tanh

η

2w

∂R(0)

∂χ

)

+ sech2 η

2w

∂R(0)

∂χ

]}
dη√
2π

. (D2b)

Assuming that R(0) is a function of s and of the new variable
σ = χ + 2w ln cosh η

2w
, all terms on the right-hand side of

Eq. (D2b) cancel except for the last one. Then we obtain the
heat equation:

∂R(0)

∂s
= a

∂2R(0)

∂σ 2
, (D3a)

σ = χ + 2w ln cosh
η

2w
, (D3b)

a = 1√
2π

∫ ∞

−∞
e− η2

2 sech2 η

2w
dη. (D3c)

For a delta-function initial condition corresponding to the
initial zero charge in the circuit, the Gaussian kernel solves
this equation and produces the normalized solution,

ρ (0)(χ, η, s) = e− η2

2

2π
√

2as
exp

[
−
(
χ+2w ln cosh η

2w

)2

4as

]
. (D4)

This probability density yields the averages:

〈η〉 = 0, 〈σ 2〉 = 2as, (D5a)

〈χ〉 = − 2w√
2π

∫ ∞

−∞
e− η2

2 ln cosh
η

2w
dη ∼︸︷︷︸

w→0

−
√

2

π
. (D5b)

According to Eq. (D5a), the average charge at the capacitor
C0 is zero, capacitor 1 has negative average charge, and ca-
pacitor 2 has positive average charge of the same magnitude
(the opposite signs to charges due to a battery if we ignore
thermal fluctuations). This is a surprising result: The sys-
tem does not evolve to the equilibrium e−η2/2/

√
2π . Instead,

this initial layer builds up opposite charges at the capaci-
tors and the variance of the state (D5a) increases linearly
with time. Note that, in dimensional units, the charge (D5b)
yields 〈q1〉 ∼ −(1/2)

√
2kBTC0/π , which is half the charge

for the case of a single perfectly conducting diode (with
piecewise linear current-voltage curve), except that the capac-
itor in series with the diode has been replaced by the small
capacitance C0.

We can calculate the average energy rate and the entropy
production from Eqs. (D2a) and (D4) using integration by
parts. The results are as follows:

d

ds
〈H〉 = O(ε),

dS

ds
= − d

ds

∫
ρ ln ρ dη dχ = 1

as
+ O(ε). (D6)

The production of entropy declines as time elapses. Thus,
the entropy increases to a large value after t = 0 and then
it increases logarithmically as s → ∞ at the end of the
initial stage. Direct numerical simulations of the stochastic
equations show an initial buildup of entropy followed by
stabilization in Fig. 4(d).
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In the long-time scaling (C3) with the variables ξ and t ,
Eq. (D4) becomes

ρ (0)(ξ, η, t ) = e− η2

2

2π
√

2aεt
exp

[
−
(
ξ + 2wε ln cosh η

2w

)2

4aεt

]

∼ 1√
2π

e− η2

2 δ(ξ ), (D7a)

as ε → 0 and t = O(1). Equations (D5) become

〈η〉 = 0, 〈ξ 〉 = − 2εw√
2π

∫ ∞

−∞
e− η2

2 ln cosh
η

2w
dη, (D7b)

〈(ξ − 〈ξ 〉)2〉 = 2εt√
2π

∫ ∞

−∞
e− η2

2 sech2 η

2w
dη

+ 4ε2w2

√
2π

[∫ ∞

−∞
e− η2

2

(
ln cosh

η

2w

)2
dη

− 1√
2π

(∫ ∞

−∞
e− η2

2 ln cosh
η

2w
dη

)2
]
.

(D7c)

APPENDIX E: LONG-TIME SCALING AND
QUASISTATIONARY PROBABILITY DENSITY

After the initial layer described in Appendix D, and for
appropriate small values of ε and w, the numerical solution of
the FPE indicates that the probability density produces a very
flat maximum of the average capacitor charge before decreas-
ing to zero (thermal equilibrium); see Fig. 2. For sufficiently
small values of ε and w, the flat maximum corresponds to a
quasistationary solution of the FPE, which we derive in this
section.

If the diodes are conducting in opposite directions, then
we use the scaling (C3) producing Eqs. (C4). The stationary
solution of Lρ = 0 is

E (ξ, η)= e− η2

2 exp

[
−ξ

∫ η

0

μ(−s − ξ ) − μ(s − ξ )

μ(−s − ξ ) + μ(s − ξ )
ds

]

= e− η2

2

(
e− ξ

w + cosh η

w

1 + e− ξ

w

)ξw

, (E1)

which is integrable in the variable η. Moreover, the solution of
the leading univariate FPE in fast timescale t/ε, ∂ρ/∂ (t/ε) =
Lρ, tends to a normalized version of (E1) as t/ε → ∞:

ρ (0) = Ê (ξ, η) P(ξ, t ; ε) = E (ξ, η)P(ξ, t ; ε)∫∞
−∞ E (ξ, η)dη

, (E2a)

∫ ∞

−∞
P(ξ, t ; ε) dξ = 1. (E2b)

Clearly, the average of η using Eq. (E2a) is zero because
E (ξ, η) is even in η. So the charge at the capacitor C0 is zero.

1. Reduced FPE by the Chapman-Enskog method

To find the reduced equation for the slowly varying proba-
bility density P(ξ ; ε), we use the Chapman-Enskog method:

ρ = ρ (0)(ξ, η; P) +
2∑

j=1

ε jρ ( j)(η; P) + O(ε3), (E3a)

∂P

∂t
= F (0) + εF (1) + O(ε2), (E3b)∫ ∞

−∞
ρ ( j)(η; P) dη = 0, (E3c)

where the F ( j) are functionals of P selected so that the hier-
archy of linear equations for the ρ ( j) have bounded solutions.
The result is

∂P

∂t
= ∂

∂ξ

[
M(ξ ; ε) P + εD(ξ )

∂P

∂ξ

]
, (E4a)∫ ∞

−∞
P(ξ, t ; ε) dξ = 1.

The stationary solution of Eq. (E4a) is

Ps(ξ ; ε) = 1

Z
exp

[
−
∫

M(ξ ; ε)

ε D(ξ )
dξ

]
. (E4b)

This probability density is a globally stable solution of the
reduced equation (E4a) because the following relative entropy
is a Lyapunov functional:

F[P]=
∫ ∞

−∞

∫ ∞

−∞
ÊP ln

(
ÊP

ÊPs

)
dη dξ

=
∫ ∞

−∞
P(ξ, t ; ε) ln

[
P(ξ, t ; ε)

Ps(ξ ; ε)

]
dξ . (E4c)

Thus, the reduced probability density evolves towards
Ps(ξ ; ε) from the initial condition Ps(0; ε) = δ(ξ ), which is
compatible with the initial layer of Eq. (D7a).

The drift and diffusion coefficients in the reduced FPE
(E4a) are

M(ξ ; ε) = 4ξ

∫ ∞

−∞

μ1μ2Ê

μ1 + μ2
dη + ε

∫ ∞

−∞

Ê

μ1 + μ2

{
4(μ1 − μ2)

�

Ê
+ 4μ1μ2

∂ ln Ê

∂ξ

+(μ2
1 − μ2

2

)
η + (μ1 − μ2)2ξ − (μ1 + μ2)

∂ (μ1 − μ2)

∂η
+ 4ξμ1μ2

×
⎡
⎣η2

2
−
∫ ∞

−∞

η2

2
Êdη +

∫ η

0

4�

Ê
+ (μ1 − μ2)

(
ξ − ∂ ln Ê

∂ξ

)
μ1 + μ2

dη′ −
∫ ∞

−∞
dη Ê

∫ η

0

4�

Ê
+ (μ1 − μ2)

(
ξ − ∂ ln Ê

∂ξ

)
μ1 + μ2

⎤
⎦
⎫⎬
⎭dη,

(E5a)
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�(ξ, η) = ∂

∂ξ

(
ξ

∫ ∞

η

μ1μ2Êdη′

μ1 + μ2

)
−
(∫ ∞

η

Êdη′
)

∂

∂ξ

(
ξ

∫ ∞

−∞

μ1μ2Êdη′

μ1 + μ2

)
, (E5b)

D(ξ ) =
∫ ∞

−∞

4μ1μ2Ê

μ1 + μ2

{
1 + ξ

(
1

μ2
− 1

μ1

)
� + 4ξ 2

[∫ η

0

�dη′

(μ1 + μ2)Ê
−
∫ ∞

−∞
Ê
∫ η

0

�dη′

(μ1 + μ2)Ê

]

−ξ

(∫ η

0

μ1 − μ2

μ1 + μ2
dη′ −

∫ ∞

−∞
dηÊ

∫ η

0

μ1 − μ2

μ1 + μ2
dη′
)}

dη, (E5c)

�(ξ, η) =
∫ ∞

η

μ1μ2Êdη′

μ1 + μ2
−
(∫ ∞

−∞

μ1μ2Êdη′

μ1 + μ2

)∫ ∞

η

Êdη, �(ξ,−∞) = 0. (E5d)

If we have only one diode, say, μ2 = 0, then M = D = 0 as
the scaling (C3) does not make sense. Note that (μ′

1 − μ′
2) is

large and therefore the dominant terms in the drift coefficient
(E5a) are

M(ξ ; ε) ≈ 4ξ

∫ ∞

−∞

μ1μ2Ê

μ1 + μ2
dη − ε

∫ ∞

−∞

∂ (μ1 − μ2)

∂η
Ê dη. (E5e)

The reduced stationary probability density has to be cal-
culated numerically because it cannot be approximated by a
Gaussian function with a large second derivative about its
maximum. Then the integrals entering the stationary aver-
ages over ξ cannot be approximated by the usual expansion
about the maximum of the integrand. Figure 5 depicts the
reduced stationary probability density Ps(ξ ) of Eq. (E4b) for
two different values of w. Lowering w shifts the maximum
of Ps(ξ ) to the left, which yields a negative average charge
〈q1〉 = −C

√
T/c |〈ξ 〉| at the first capacitor and a positive

charge 〈q2〉 = C
√

T/c |〈ξ 〉| at the second capacitor. Notice
that the signs of these charges coincide with those provided
by the initial layer of Appendix D and are contrary to those of
the charges produced by a noiseless circuit with a battery as
in Fig. 1(a).

FIG. 5. Reduced stationary probability density Ps(ξ ) for two dif-
ferent values of w. Lowering w shifts the maximum of Ps(ξ ) thereby
yielding nonzero average charge 〈ξ〉.

2. Calculation of the coefficient functions in the reduced FPE

How do we find the coefficients in Eq. (E4a)? Inserting
Eqs. (E3a) and (E3b) into (C4a), we obtain Eq. (E2a) and the
hierarchy

Lρ (1) = F (0)Ê − (2L + M1)ρ (0), (E6a)

Lρ (2) = F (1)Ê + δρ (1)

δP
F (0)− (2L + M1)ρ (1)

− (L + M2)ρ (0), (E6b)

etc. The solvability condition for Eq. (E6a) is that the
integral of its right-hand side over η ∈ R vanish. This
yields

F (0) = 4
∂

∂ξ

⎡
⎣ξP

(
μ1μ2Ê

μ1 + μ2

)⎤⎦, (E7a)

f (η) =
∫ ∞

−∞
f (η) dη. (E7b)

FIG. 6. (a) Measured histogram of the numerically simulated
velocity distribution for graphene. (b) Measured voltage versus time
plot for a chip comprising a single diode-capacitor circuit (as control,
same plot for a resistor).
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The solution of Eq. (E6a) that satisfies (E3c) is

ρ (1) = Ê (R − ÊR), (E8a)

where

∂R

∂η
= 4ξ �

Ê
− μ1 + μ2

μ1 + μ2

∂P

∂ξ
+
⎡
⎣η +

4 �

Ê
+ (μ1 − μ2)

(
ξ − ∂ ln Ê

∂ξ

)
μ1 + μ2

⎤
⎦P, (E8b)

ρ (1) =
⎛
⎝∫ η

0

4ξ �

Ê
− μ1 + μ2

μ1 + μ2
− Ê

∫ η

0

4ξ �

Ê
− μ1 + μ2

μ1 + μ2

⎞
⎠Ê

∂P

∂ξ

+
⎡
⎣η2

2
− η2Ê

2
+
∫ η

0

4 �

Ê
+ (μ1 − μ2)

(
ξ − ∂ ln Ê

∂ξ

)
μ1 + μ2

− Ê
∫ η

0

4 �

Ê
+ (μ1 − μ2)

(
ξ − ∂ ln Ê

∂ξ

)
μ1 + μ2

⎤
⎦ÊP. (E8c)

After integration by parts, the solvability condition for Eq. (E6b) yields

F (1) = ∂

∂ξ

{
(μ1 + μ2)Ê

∂P

∂ξ
+
[

(μ1 + μ2)
∂Ê

∂ξ
− (μ′

1 − μ′
2)Ê

]
P + 4μ1μ2ξ

μ1 + μ2
ρ (1) + (μ1 − μ2)Ê

∂R

∂η

}
. (E9)

We now insert Eqs. (E7a) and (E9) in (E3b) and use Eqs. (E8), thereby obtaining the drift and diffusion coefficients of Eqs. (E5)
after some algebra.

APPENDIX F: DATA FROM STOCHASTIC SIMULATIONS AND FROM EXPERIMENTS

Figure 6(a) shows the simulated velocity distribution of graphene after a short time (1% of the total simulation time). It is a
Gaussian corresponding to local equilibrium as explained in Appendix A.

Figure 6(b) depicts the time evolution of the voltage across the capacitor (proportional to stored charge) measured using the
single diode-capacitor circuit. We observe that it follows the theoretical curve for the inset of Fig. 1(a).
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