Disclaimer: The views, opinions, findings, and conclusions reflected in this presentation are the responsibility of the authors only and do not represent the official policy or position of the USDOT/OST-R, or any state or other entity.

Landsat Mission Sensors

- Imagery for wildfire mapping operations in the US from Landsat (NASA/USGS)
- Mostly 30x30 meter spatial resolution
- Landsat 1-3, Landsat 4-5 Multispectral Scanner (MSS)
- Landsat 4-5 Thematic Mapper (TM)
- Landsat 7 (launched 1999) Enhanced Thematic Mapper Plus (ETM+) Bands 1-8
- Landsat 8 (launched 2013) Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

Bands 1-11

Landsat Bands

(Source: USGS)

Landsat Band Combinations

	Landsat 7 Landsat 5	Landsat 8
Color Infrared:	4, 3, 2	5,4,3
Natural Color:	3, 2, 1	4,3,2
False Color:	5,4,3	6,5,4
False Color:	7,5,3	7,6,4
False Color:	7,4,2	7,5,3

(Source: USGS)

Soil Burn Severity

Near-infrared (NIR) and short-wave infrared (SWIR) bands

• Normalized Burn Ratio (NBR)

NBR = (NIR - SWIR) / (NIR + SWIR)

• Differenced Normalized Burn Ratio (dNBR) $dBNR = NBR_{pre-fire} - NBR_{post-fire}$

Burn Severity Products:

- Burned Area Reflectance Classification (BARC) USDA Forest Service
- Burn Severity layer NASA RECOVER Platform

Pre-fire Landsat Imagery

Post-fire Landsat Imagery

BARC Map

Field-adjusted BARC Map

The Case for Ground-based Remote Sensing

(Photo credit: NASA)

Operating Wavelengths for Remote Sensing of Soils

Wavelength (mm)

Ground-based RaDAR Interferometry

Gamma-Ray Spectrometry

Topographic Differential Absorption LiDAR (TDiAL)

- Field-deployable device with active and passive sensor capability
- Remote measurement of soil suction (active)
- Reflectance (passive)

DAQ system (TDiAL)

Telescope aperture (TDiAL)

Field box with internal components (TDiAL)

TDiAL (Passive Only)

Development of Topographic Differential Absorption LiDAR (TDiAL)

Development of Topographic Differential Absorption LiDAR (TDiAL)

Acknowledgements

This research was made possible by the United States Department of Transportation (USDOT) Office of the Assistant Secretary for Research and Technology (OST-R) under Phase III of the Commercial Remote Sensing & Spatial Information (CRS&SI) Technologies Program.

