USDOT-Office of the Assistant Secretary for Research and Technology, Commercial Remote Sensing & Spatial Information Technologies – Phase VI

Predicting Post-wildfire Debris Flow Occurrence in Western USA

Priscilla Addison, <u>peaddiso@mtu.edu</u> Thomas Oommen, <u>toommen@mtu.edu</u> Ashley Kern, <u>ankern@mtu.edu</u>

USDOT/OST-R Phase VI

Data

- United States Geological Survey (USGS)
 - Open-File Report 2005-1218

Figure 1. Map showing locations of basins used to develop models for the probability of debris-flow generation (yellow dots), for estimates of debris-flow volume (red dots), or both models (orange dots).

Data

Pre-processing Steps

Different data explorations

□ Southern California (SC)

□ Intermountain (Im)

Southern California

Southern California

10 fold cross validation repeated 10 times

Southern California

Training Metrics

MODEL	ACC.	КАРРА	SENS.	SPEC.
Logistic Regression (GLM)	0.818	0.606	0.787	0.895
Linear Discriminant Analysis (LDA)	0.879	0.722	0.872	0.895
Naïve Bayes (NB)	0.833	0.634	0.809	0.895
Averaged Neural Network (ANN)	0.985	0.962	1.000	0.947

Results

Southern California

Resampled Metrics – 10 fold CV

MODEL	SENS.	SPEC.	
Logistic Regression (GLM)	0.360	0.803	
Linear Discriminant Analysis (LDA)	0.345	0.832	
Naïve Bayes (NB)	0.215	0.881	
Averaged Neural Network (ANN)	0.300	0.864	

Intermountain

Intermountain

Training Metrics

MODEL	ACC.	KAPPA	SENS.	SPEC.
Logistic Regression (GLM)	0.813	0.491	0.894	0.798
Linear Discriminant Analysis (LDA)	0.813	0.465	0.809	0.814
Support Vector Machine (SVM)	0.990	0.963	1.000	0.988
Mixture Discriminant Analysis (MDA)	0.908	0.704	0.936	0.903

Results

Validation Metrics

MODEL	ACC.	KAPPA	SENS.	SPEC.
Logistic Regression (GLM)	0.827	0.452	0.727	0.844
Linear Discriminant Analysis (LDA)	0.800	0.403	0.727	0.813
Support Vector Machine (SVM)	0.840	0.509	0.818	0.844
Mixture Discriminant Analysis (MDA)	0.867	0.591	0.909	0.859

Conclusions and Future Work

- □ Nonlinear models performing better than linear models suggest an underlying nonlinear relationship between predictors and response variable.
- □ California data too scanty to glean a trend from it. Further data collection and model development required to improve predictions.
- □ Intermountain data performs better with a sensitivity of 91% for nonlinear MDA model in comparison with 44% of existing linear model (Cannon et al, 2010).
- □ Future work aims at:
 - ✓ Testing model validity with independent data obtained from Nevada BLM.
 - ✓ Developing linear and nonlinear volumetric models.

