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Abstract
This paper examines the effect of inventory record inaccuracy within the context of a two-
echelon supply chain. The system consists of an external supplier, a distribution centre, and a
retail level. Each location operates under an (R, Q) reorder point reorder quantity inventory
control policy with backordering permitted. The model introduces count-based discrepanégs
into the inventory records and measures the effect on system performance at the Iocar@&r?and
throughout the supply chain. A set of simulation experiments examines Q_{(ﬁ%ndamental
methods to mitigate the effect of inaccurate inventory records: carrying extr@ventory to protect
against the errors and using cycle counting procedures to correct ,Q}e&‘records over time. In
addition, the effect of learning through the use of cycle counti{;@r cedures and error reduction
methods and the effect of non-compliance (not corr%@ﬁ records) within the system are
explored. The results indicate that cycle counting can@ve significant positive effects within the
entire supply chain. In addition, the experime(n)ééhow that the learning effect has benefits both
locally and throughout the supply chain. &@results also show that non-compliance to the cycle
counting procedure by locations w\@%the chain can have significant detrimental effects on

XV
supply chain partners and ov}e{/néi@upply chain performance.

<
&Q}\J
o Q
N
(b:&



1. Introduction

In an era of increasing business-to-business information sharing, inventory record
accuracy is an essential prerequisite to successful supply chain collaboration. An inventory
record typically consists of a stock number, a location identifier, an on-hand quantity, and fields
indicating the condition of the item. If an error exists in any of these fields, the inventory re@d
may be considered inaccurate. For the purposes of this paper, if a discrepancy exists bet«@'eﬂen the
on-hand quantity and an actual physical count then the record is considered m@@% Systems
with on-hand quantity errors, can trigger an order when it is redundant, o{f%)t make the order
when it is necessary (DeHoratius and Raman, 2004). As dlSCUSSGd& Hollinger and Davis
(2001) inventory shrinkage causing record discrepancies are\q@%g firms billions of dollars;
however, methods to mitigate the effect of inaccurate 'tn&@tory records within supply chains
have yet to be fully developed and examined. \
Discrepancy within an inventory rec%cﬁé’%antlty field undermines the operation of
inventory control policies. Most policies%g;}iesigned to utilize the current state of the inventory
(e.g. inventory position = amount\@?hand + amount on order - amount backordered) to
determine when and how muq@ié'&c;rder. If the current information on the state of the inventory
system is inaccurate, th@%ﬁdequate inventory control may result. This may lead to excessive
inventory or poor eQStomer service (e.g. fill rates) due to lack of adequate inventory. Despite
best efforts t "&mtam accurate records, it is very difficult for firms to ensure that all inventory
record%@’%ss the different stock keeping units (SKUs)) will be accurate all of the time. Since
amﬁiividual inventory record is either accurate or not, inventory record accuracy for a firm’s

SKUs is typically defined (see Brooks and Wilson (1995)) as:

% Overal SKU Record Accuracy = Total number of accurate reCordelOO (1)

Number of records checked




To measure accuracy and account for discrepancies, firms must audit their inventory. This
involves the physical counting of the on hand inventory, the comparison to recorded values, and
the correction of records as needed. In many cases, this is still done once a year, especially
because of financial asset reporting requirements. Because there may be errors within the
inventory records between audits, the firm incurs additional risk (in terms of poor custQ@gr
service) due to inaccurate records. Two basic ways to mitigate this risk are to carry aq;hcif)nal
inventory or to correct the inventory records more often. Both of these options @@%additional
cost to the firm: the cost of extra inventory or the cost of maintaining the ac@cy of the records.

Cycle counting has been identified as one of the most eﬁectié@utions for maintaining
high overall SKU record accuracy. Cycle counting is pre{@éd on the periodic physical
verification of the accuracy of the inventory records, ty{@ﬂly through some proven statistical
sampling methodology or scheduled counting proced%} Cycle counting can be very effective if
performed correctly. Meyer (1990) presentsOsQ'egése study at a manufacturing company for
improving inventory record accuracy, V\m;} is defined as the ratio of the number of correct
records to the total records in term{@ﬁocation and the count of the SKUs. In that case study,
inventory record accuracy for@mpany increased from 65% to 95% after implementing cycle
counting. Through a c@s%r‘lalysis, the study concluded that attaining a 95% inventory record
accuracy level wi«t@e cycle counting program saved the company approximately $330,000 per
year as com%fb’é to the cost of performing a yearly wall-to-wall count.

(g@%gsteel (1994) surveyed 410 manufacturing companies and reported that 20% of
thné?firms that used cycle counting achieved an overall SKU inventory record accuracy of 98%
or higher and more than 60% reached accuracies of 90% to 97%. Since this was a survey of
companies, it was not clear how each company defined accuracy. The study also indicated that

“36% of respondents used only cycle counting, 50% of respondents used both wall-to-wall
6



periodic physical counting and cycle counting, with the remaining using only wall-to-wall
periodic physical counting.” With accuracy levels ranging from 90% to 97% for some
respondents, it should be evident that cycle counting does not remove all inaccurate records. In
addition, despite cycle counting’s proven track record, many firms do not use cycle counting
because of the cost of implementing and executing such a program throughout the organiza@.
It is often unclear whether the benefits of more accurate records through cycle counti%ﬁ%out
weigh the cost of the program to the firm. 6%

This paper presents a simulation-based approach for understandin%l-l%e effect of count-
based inventory record discrepancies within a supply chain. In a%@dn, the effect of cycle
counting as well as the frequency of counting on system perfow e is investigated. The effect
of cycle counting within the supply chain is illustrated ir@&v to better understand and quantify
the tradeoffs involved. The model introduces errors @crepancies) into a SKU’s recorded on-
hand quantity at different locations within a tvg)&helon supply chain. The system consists of a
single item type that is stocked at a disﬂi@hion centre and at multiple “retail” locations, with
each location permitting backordet:s\ @ﬁollowing an (R, Q) inventory policy.

We use the term re}t{aféiéf?the more general sense of locations that face immediate
customer demand. Whj&%‘ail stores fall into this category, we are not specifically addressing
classic in-store re@ing (since these systems typically have lost sales); however, our results
should provi&@%sights into systems that permit backordering of demand. For example, some
catalog@’gmpanies permit backordering. In addition, systems that have “captured” customers
thu@]ust procure through the supply system often utilize backordering. Military supply chains
often work in this manner for a wide-variety of end items (e.g. military supply depots and bases).
Hospital systems are another example of this type of system, where a centralized distribution

warehouse may supply a set of hospitals.



Within the simulation experiments, two modelling situations are introduced that have not
been previously studied, namely learning and non-compliance. In the case of learning, we model
the situation in which inventory stocking locations learn the causes of the errors from cycle
counting. In this situation, they may be able to reduce the frequency of the occurrence of errors
in the records over time. In the non-compliance case, there is a stocking location withi&é@e
supply chain that does not cycle count at all, as opposed to the rest of the system. In g@.ﬂ%per,
the effects of these cases on the overall supply chain are analyzed. In additi r@? sensitivity
analysis of the factors related to the structure and operation of the supply ch{ﬁis also explored.

The rest of the paper is organized as follows. Section 2 preseqrz@ brief literature review
to assist the reader in understanding the context of the researc&@ respect to previous studies.
Section 3 describes the simulation modelling issues ar{é&ction 4 presents the experimental
design and issues related to running the simulatimb, odel. Section 5 discusses the main
experimental results and the investigation oé{o’t{éresting cases. Finally, we summarize our

conclusions and future research in Sectioﬁﬁ.

2. Literature Review . Q‘Q
\
In contrast to a simulatie® approach, the early work in modelling the effect of inventory

inaccuracy began with t@a@alytical investigation of classic inventory models. Much of the early
work attempts to ej{@orxindicate how often to cycle count to prevent inaccuracies or how to adjust
the inventor&jﬁ%cy decisions so that inventory service does not suffer excessively. In Iglehart
and M%‘QQIWZ), the authors study the selection of the type and frequency of counts and the
mn@ication of the predetermined stocking policy in order to minimize the total cost per unit
time subject to the probability of a warehouse denial between counts being below a prescribed
level. Their approach is to formulate a cost function for a periodic review inventory situation and

ensure that sufficient buffer stock is available to handle an accumulation of discrepancies over a
8



period of time. Another cost function is formulated in Morey (1986) that can be easily
implemented in a spreadsheet for determining the optimal number of cycle counts and the
required increase in the safety stock. In Morey (1986), the objective was to minimize the total
cost in order to reach an acceptable stock out level during the cycle count interval.

Kumar and Arora (1991) examine the effect of inventory record inaccuracy and Iead»t'{Qe
variability on a single echelon inventory system, utilizing a reorder point, R, andbvco)rder
quantity, Q, policy. Their approach was to substitute an inaccurate inventow(?ion into a
standard (R, Q) inventory model, in order to determine the optimal reoquAQoint policy for a
prescribed service level. The authors derive the system-wide (across éz@ﬂple items) net holding
cost in terms of the relative error of inventory miscount. The sx@ indicates that service levels
are not met due to inaccurate inventory records along witbx@'%haétic lead-time for a service parts
management company. In follow up work, Kumaroand Arora (1992) present a method for
determining the optimal cycle count frequencie@ﬁ\/en the inventory counting costs, penalty for
the magnitude of the error, demand rate N:}we item, economic lot size, and mean error rate of
the records. The study suggests cont\:@‘%rocedures to be used during the inventory process.

Bensoussan et al. (200 )}died the optimal base stock and (s, S) policies by considering
constant and random in@gﬁtion delays due to partial observations. They showed that optimal
order policies can\I@»achieved through the proper “reference inventory positions.” In addition,
they highlig%@ﬂhe importance of investing in information systems such as RFID in order to
decrea;g@geffects of information delays. Camdereli and Swaminathan (2006) examined a two
eo@n supply chain inventory system with misplaced SKUs at the retailer causing inventory
inaccuracy under utilization of RFID. They also examined situations where RFID is worth

applying while considering the fixed and variable costs occurring at retailer and manufacturer

levels.



Atali et al. (2005) also proposed RFID as the tool that provides visibility to the actual
inventory. They defined on-hand inventory record and sales-available on-hand inventory in
their single stage, single item, and periodic review analytical inventory model. The causes of
inventory inaccuracy are classified into 4 categories: paying customer, misplacement, shrinkage,
and transaction error. While paying customer demand affects both recorded and sales avai-l@e
inventory, misplacement only reduces sales-available inventory. Whenever an audit occuy,ctl)1ese
items are returned back. Although shrinkage also affects the physical inventorQ_I/@%, they can
not be returned back. Lastly, transaction errors only affects to inventory{e&ord in a positive

)
and/or negative way with a zero mean. They showed that inventory re@d inaccuracy can cause

)
{J@‘End without utilizing RFID,

both proven to be able to decrease the inventory discrepawf

significant losses. They proposed inventory control policies

In another analytical study Bensoussan et adb}ZOO?) categorized causes of inventory
inaccuracy as transaction errors, misplaced ir&\)@t{wy, spoilage, product quality and yield, and
theft. The paper describes the situation thg:}ccurs at the zero inventory point. That is, none of
these causes can occur at the zer:o\ @AQentory point. A “Zero-balance walk” is the process of
employees checking inventor&/els at this point. They studied a periodic review inventory
problem with partiall&gsg'r‘ved inventory levels considering lost sales where the observation
process is a “bina@alued Markov chain”. Very efficient feedback policies are provided using
finite and in1%th'eg state representations.

(&’Qand Shang (2004) discussed inventory record inaccuracy in a single stage inventory
sy@w with a single item where backlogging is allowed. The aim of the study is to find a joint
inspection and replenishment policy minimizing total cost over a finite horizon. The study shows

that an “inspection adjusted base-stock policy (IABS)” is optimal for a single period whereas,

another cycle counting heuristic “Cycle Count Policy with State Dependent Base-Stock Levels
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(CCABS)” is nearly optimal for a finite horizon. The trade-off between inventory inspection and
its associated costs is discussed. In the cases where the cost of putting into affect the inspection is
high, then carrying more inventory in order to hide the effects of inventory inaccuracy is
suggested.

In simulation based research, Young and Nie (1992) developed a simulation model\((a
single echelon inventory system that includes stock-out cost, cycle count cost, purchagc&%der
cost, inventory holding costs, and annual costs of the items. They studied the e@l@% changes in
cycle counting frequencies on an Economic Order Quantity (EOQ)-based j@%ntory system and
an ABC based reordering system. Various simulation scenarios exa%jg& the trade-off between
cycle counting and non-counting based on the anticipated cost@/cle counting has significant
labour cost, poor inventory accuracy results in stock-outss,‘&\qﬁgch result in excessive shipping and
extra labour cost. They concluded that while makim@policy decisions, these costs should be
taken under consideration in order to choose the&timum cycle counting frequency. Young and
Nie (1992) introduce error by having a &/}chance of subtracting an error amount and a 25%
chance of adding an error amount b{@%n error rates of 5, 12.5, and 17.5% whenever a demand
occurs. For example, if the}r{/@had a balance of 100, then it would be changed to 105 with
75% chance and chan{e@o@% with 25% change using a 5% error rate when a demand occurred.
In this paper, wexdasider a more general error introduction structure as well as a more general
inventory sy%@pa& consisting of two echelons.

(@’Qrecent study, DeHoratius et al. (2006) studied the effect of discrepancy on system
pe@mance. The primary modelling framework of DeHoratius et al. (2006) was based on a
periodic review inventory process with unobserved lost sales caused by unrecorded demand,

which is called, “invisible demand”, in the study. A single SKU, at a single echelon was

simulated to examine the effects of discrepancy under three different replenishment policies:
11



“Full”, involving a newsvendor policy assuming that the retailer knows the actual inventory,
“Bayes” in which a Bayesian updating procedure is used to account for demand uncertainty and
uncertainty within a probabilistic inventory record, and “Naive”, which is essentially the
standard practice of making decisions as if the inventory record is correct. The study
demonstrated that in order to get high service levels, the last two policies require hi@gr
inventory than “Full” which indicates the benefits of higher accuracy levels. QJ&O
Most of the previous simulation-based inventory inaccuracy researcl@z%ntrates on
single-echelon inventory systems as opposed to multi-echelon systems. @ever, Fleisch and
Tellkamp (2005) develop simulation models for a supply chain@;@\%}entiw the impact of
inventory inaccuracy on the system performance and the {@%ignificam reasons for this
problem. They study the effects of various factors that ¢ '&nventory inaccuracy considering a
number of supply chain performance measures within@’,\ynamic system, which can be modelled
using simulation. Using discrete and constant ti{ﬁe{’intervals, two cases are modelled; Base case
and Modified case. Base case is essentia?{):> three echelon supply chain, where information on
end-customer demand is available {@ echelons and inventory inaccuracy is present. In this
case inventory, record inaccur@ not corrected. In the modified case, the base case is changed
so that the physical inv@e@y and information system inventory are aligned in each time period
to eliminate the -i{@b}uracy. This can be conceptualized as cycle counting. By employing
monetary an&‘b%-monetary performance measures, the models analyze the effect of inventory
inaccu(r@’?actors such as theft, unsold items, misplaced items, and incorrect deliveries on the
sup@/ chain. The authors concluded that the impact of the inventory inaccuracies on supply

chain performance varies depending on the factors that cause them. Theft is found to be the

factor having the biggest impact on the performance of a supply chain. In our research, we are
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modelling a two-echelon supply chain that uses the continuous review (R, Q) inventory policy at
all locations as opposed to the periodic review policy used by Fleisch and Tellkamp (2005).

Kang and Gershwin (2005) demonstrate that even a small rate of stock loss undetected by
the information system can lead to inventory inaccuracy that disrupts the replenishment process
and creates severe out-of-stock situations. In that study, the authors categorize the causes o(éue
discrepancies of records into four categories; stock loss, transaction errors, inaqésc;ible
inventory, and incorrect product identification and discuss each category in @ . Inventory
inaccuracy in the (R, Q) policy is modelled by using stochastic and det@inistic simulation
models as well as different compensation methods such as safety %@“and manual inventory
verification. In addition, the effect of implementing automatr{@éa collection technologies on
inventory inaccuracy problem is also discussed. The ;r&@'&rch concludes that even without
sophisticated identification technologies such as radfy\frequency identification, the inventory
inaccuracy problem can be effectively controlled@é’[he behaviour of the stock loss is known.

The modelling framework and\g})eriments examined in this paper extend and
complement the above research in.s\a@'Qal ways. While most of the previous research focused on
the lost sales case, we examinéé': situation where backlogging of demand is permitted. While
the lost sales case may&%ore interesting in an in-store retail environment, we felt that the
added memory ase\oQa}d with backlogging may be significant because it is part of the inventory
position. In gﬁ&ion, backlogging is still applicable to many types of supply chains. We also
analyng"Qe’Qeffect at the wholesale level. Moreover, when properly executed, cycle counting
sm@i reduce the error rate within the inventory records over time as practitioners take remedial
actions when identifying the source of the errors. None of the abovementioned research takes
into account this learning effect of cycle counting on inventory record inaccuracy. Finally,

previous research often assumes that all the stocking locations act the same. In reality, in a multi-
13



echelon supply chain some of the stocking locations may not follow the same procedures as
other locations. This key issue is also taken into consideration by introducing the concept of
“non-compliance”. That is, stocking locations that do not follow a specified procedure (i.e. cycle
counting).

Based on the literature, we can conclude that simulation modelling in this area\@n

@)

provide insights into the underlying dynamics of systems that experience inventoryyrecord
inaccuracy. Thus, simulation models can lay the foundation for future anal;@@ork in the
area and provide a better understanding of how these systems will re@to more realistic
situations, such as learning and non-compliance. In the following&ction, we present the
simulation model that was developed for this research. \QA
3. Simulation Modelling KO‘Q

In this section, we present the structure an@peration of the simulation model used
within this study. In particular, we describe the model’s representation of the supply chain and
inventory control policy, the modelliny:} errors within the inventory records, and the
implementation of cycle counting pr@ures.

&

3.1 Modelling Supply Chairiéé'lnventory Control

For this researxc’b\%e built upon a previously developed Arena™ simulation model
capable of simula{@a multi-echelon inventory and distribution system with levels consisting of
Inventory H%@%g Points (IHP’s). An inventory holding point is a location that may stock and
satisw(gQ’er for IHP’s assigned to it from lower levels in the hierarchy. Because we do not
mnéa the interactions between item types (e.g. waiting to fill truck loads of multiple items,
product substitution, etc.), it is only necessary to consider stocking the same item type at each
IHP. Thus, the supply chain is limited to a single item type. Each IHP may have many IHP’s for

which it acts as a supplier. In this case, the IHP is referred to as the parent for its children
14



(IHP’s). An IHP may have only one IHP serving it from above in the hierarchy. This

arrangement results in a tree structure as illustrated for the two-echelon case in Figure 1.

Q.,

Figure 1 A Simple Multi-echelon Inventory Systemo.(%

In Figure 1, the top level IHP can be considered as an ex%@ﬁ' supplier, intermediate
IHP’s can be considered as distribution centres and finally thel\e@est level can be considered as
the retail level, which experiences end user demand. Paa@*HPs experience demand only from
their children IHPs. There is no lateral supply involééb}

In the model, a reorder point reorder @ty (R, Q) inventory policy is utilized at each
IHP. If the IHP does not have suffici%ﬂ, stock to satisfy the demand, then the order gets
backlogged. The lowest level IHP{@erience customer demand according to a Poisson process.
Poisson arrival processes are Q@s‘?found in these situations and are convenient from a modelling
perspective. The uppe\@)}%l IHPs experience replenishment requests for the order quantities
associated with th@hild IHPs when the child’s inventory position (inventory level + amount
on order — a@(&(mt backlogged) reaches its corresponding reorder point. The time between the
placemﬁ% a replenishment order by a child IHP and the arrival of the replenishment from its
pdﬁe?t IHP is called the lead-time. The lead-time may consist of the waiting time to fill the order
if backlogged plus a transport time to move the order from the parent IHP to the child IHP. The

parent IHP, in-turn, orders for replenishment from its parent IHP until the top level of the

hierarchy is reached. The external supplier can satisfy any order placed on it, with the order
15



being satisfied after a corresponding delay for the lead-time. Conceptually, the external
supplier’s lead-time is the production and transport time for the order.
Since we assume that the IHP’s at each level follow the same basic type of inventory

policy, the same inventory control activities can be applied for each IHP. The flowchart in Figure

2 illustrates the main inventory control activities at an IHP. \Q
@)
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Figure@owchart of an IHP’s Control Activities

As seen in Figu%ﬁ%vhen a demand (customer order) occurs, the amount of the demand
is determined, and\@n the system checks for the availability of stock. If the inventory on-hand
is enough f@fb'%he order, the demand is filled and the inventory on-hand is decreased.
Immeo‘l%}a@g the (R, Q) inventory policy is checked to see if the inventory position goes below
tha@/el R, then an order of Q is placed with the parent IHP. On the other hand, if the inventory
on-hand is not enough to fill the order, the entire order is backordered. The backorders are
accumulated in a queue and they will be filled on a first-come-first-serve basis after the arrival of

replenishment order. When a replenishment order arrives, the back order queue is processed.
16



Each waiting order is released (the dashed signal to release line in Figure 2) to attempt to be
filled by the newly arriving replenishment order. If a backordered demand can be filled, it
proceeds as a filled demand and the stock level is updated; otherwise, it is returned to the back
order queue. Since this process can change the backordered amount or the amount on hand, the
inventory position must again be checked. This basic model with multiple levels and mu&:@e
IHPs at each level has been extensively verified and validated in references Tee andc@&ocs)setti
(2001), Rossetti and Tee (2002), and Al-Rifai” and Rossetti (2007). The q_{e@%:ation and
validation process included the comparison with known analytical results. (%
3.2 Modelling Discrepancies within the Inventory Record @.Q\‘O
Under the assumption of a (R, Q) inventory c&r)gﬁ system, a corresponding
computerized inventory control system must track the 05&@'&1 inventory, the amount on order,
and the amount backordered over time. For our purposgra key variable that can experience error

is the amount of recorded on hand inventog&i’et I%(t) be the actual physical amount of

inventory on hand for the item type and&;ﬁ’(t) be the recorded amount of inventory on hand

for time t. The discrepancy for%@cord at time t is defined as the true amount minus the
recorded amount, D(t) = 'a(I{%&(t)- If there are no causes for discrepancy within the system,
then D(t) =0 for all t'{@’?however, we know that this ideal case is rare. If |D(t)|>0 then the
inventory record 'i&onsidered to be inaccurate at time t. Let the amount on order and the
amount bacl@(géred attime t be 1O(t) and B(t), respectively. Because the inventory position is
based fg'gthe recorded inventory, we have that IP(t)=1"(t)+10(T)-B(t). Thus, when

o)
|D?f)| >0, incorrect ordering may be triggered when comparing 1P(t) to the reorder point. When

simulating such a system, we must therefore keep track of both 1%(t) and I"(t). We need 1°(t)

17



when correcting the record and when actually filling an order. We need I"(t) when determining
the reordering.

In the situation of multiple SKUs, the count of the number of inventory records that are
inaccurate relative to the total counted at a particular instance in time, defines the overall SKU
record accuracy, as per equation (1). Since we only have one item type, we concentrate on 'eqor

O

processes that introduce discrepancies such that |D(t)|>0 will be true at various iné@q es in

time. Two types of error causing processes were modelled: (1) stock loss errorQ_@éd as loss of
inventory due to shrinkage, destruction, perishing, etc., which is not corr{ﬂy recorded in the
system as a loss and (2) transaction error which is introduced at rec@transactions only; when
an IHP receives a shipment from its supplier. Stock loss is \ilﬁﬂar to the “invisible” demand
concept as presented in DeHoratius et al. (2006); how@&we only allow losses to occur. It
reduces 1?(t) without a corresponding change in | @Dﬁnd creates a discrepancy in the inventory
records. Kang and Gershwin (2005) dlscugia?}y error causes and indicate that the unknown
stock loss errors have a major effect on t of the SKUs of a store. In addition in Fleisch and
Tellkamp (2005), they mentioneq'&t.@possibility of having less error in the upper level IHPs as
batch sizes increase. Thus, {Qour model, we introduce stock loss only at the “retail” level
(closest to customer @d) Transaction error affects the recording of the quantity received
when a prewously@ered replenishment arrives.

Stocl@%ss is modelled as a compound renewal process with the time between
occurrea'&s of stock loss events governed by an exponential distribution with a mean time
be’fwoeen arrivals of TBA. In other words, the counting process associated with the occurrence of
stock loss events is a Poisson process. The reciprocal of TBA is the (annual) frequency or rate of

stock loss occurrence. When a stock loss event occurs, the amount of the loss is determined using

a distribution with a mean quantity defined as the mean stock loss quantity (MSLQ). However,
18



in determining the actual amount of stock loss at the stock loss event, there is always a limitation
based on the actual on-hand inventory. At each stock loss occurrence, if the recorded on-hand
inventory for the IHP is less than the amount generated for the stock loss quantity, then the stock
loss amount is taken as the recorded on-hand inventory, i.e. we cannot lose more than we have
on hand. This process can be formulated as follows. Let X(t) represent a stochastic coug{qg
process denoting the total amount of stock loss up to and including time t, let N(t) réqésent a

Poisson process governing the number of stock loss events, and let Y, be the am r@cgf’ stock loss

at the i" stock loss event where Y =min(1%(t),Y), with Y ~F(y) aos@}y amount of loss

o N(t) <
distribution, E[Y]=MSLQ. Then, we have that X(t) :Eizl Y, &/@ﬁ would be a compound

Poisson process if Y, and N(t) were independent. &\0
O
To determine a reasonable distribution for Y we examined over one million observations
D
of discrepancies for a major company involving iple items at multiple locations. The data

was collected as part of the company’s norrﬁg@early wall-to-wall inventory audit procedures for
the locations. Thus, we are buildingQ@(Q'mount of loss distribution for an arbitrary or generic
item type. The discrepancies w%’l‘@\broken down into both positive and negative discrepancies.
Table 1 presents the ba)s\/@%ummary statistics over the discrepancy (D) observations. As
indicated in the table,«ﬂ;g\overall discrepancy distribution’s central tendency is slightly negative;
however the meyc%n and mode of the distribution are positioned at zero. For negative
discrepano@e,)the sample average is -4.875; however, because of the large negative skew the
me(@m‘s -2. Similarly for the positive discrepancies, the sample average is 5.855 with a median

X
of 2.
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Table 1 Summary Statistics on Industry Discrepancy Values

Statistic D D<0 D>0
Number of observations 1056383 389441 176475
Sample Average -0.819  -4.875 5.855
Sample Std. Dev. 15.003 19.957 19.642
Minimum -999 -999 1
1% Quartile -1 -4 1
Median 0 -2 2 60
3" Quartile 0 -1 5 fﬁ»&
Maximum 997 -1 997 @f‘o@
Mode 0 -1 1 Q,
Count for mode 490467 189440 74920 A
Skewness -11.34  -21.98 20.99
&V

Figures A-1 and A-2 in the appendix illustrate the frequer)i)@'%ulation for the top 95%
of the values for the discrepancies. Let D™ and D" be the ?N&tive and positive discrepancy
random variables, respectively. Recall that Y is defipe the amount of the loss. Since this
quantity is defined as a loss, we can model it witbt@' distribution of the absolute value of D".

This assumes that the distribution of negac's\@ discrepancy is representative of the loss for a

particular item. In the absence of ot ays to model this quantity, we felt that this was a
. ‘O
reasonable assumption. ‘D'\

Based on the shap% the histograms and observed statistics, we feel that it is also
reasonable to assume&'é;\? geometric distribution is a good model for the values associated with
the discrepancigé'@e did not perform a goodness of fit test of this assumption because clearly
with over Q@illion observations the test statistic would reject the hypothesis. The purpose of
this ar@'ygis is to formulate a reasonable model of the discrepancies to be included within the
simulation. From the data, we must estimate the parameter of the geometric distribution. From
the histogram, we estimate that E[Y]=MSLQ=1/p=1/0.49=2.05. This seems reasonable

given the other measures of central tendency presented in Table 1.
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Transaction error is modelled through a series of probabilistic processes. When an IHP
receives a replenishment order, there is a probability that a transaction error may occur. For
example, a person recording the transaction may incorrectly record the amount of the
replenishment (e.g. because of miscounting, miss scanned barcode, etc.) or something may»t@;e
happened during order filling or shipping that caused the received quantity to be diff&n@ﬁcf)rom
the ordered quantity. In some sense, this is as if 10(t) has error, but we onl@@% the error
when changing 1" (t) upon replenishment. Once we determine whether or transaction error
occurs, we then randomly determine the direction of the error. We alqb&?e probability of error
to vary by level within the hierarchy. For example, there can biéﬁ/o chance of transaction error
occurring between the supplier and the warehouse, a@* 8% chance of transaction error
occurring between the warehouse level and the retail Igyél.

For simplicity, we assume that if a tragob'(ﬁ’on error occurs there can be an unintentional
gain in the record inventory level or apb‘\mmtentional loss with a 50% chance of occurrence.
Other studies see for example Mo\rg@ﬁb%), also assume that a loss or a gain is equally likely
(e.g. the error amount is no@ distributed about zero). Although there is a slightly higher
chance of having negati iscrepancies based on the data in Table 1, we know that there are
multiple error prog@ses in effect. With the explicit modelling of stock loss (a purely negative
discrepancy)@be see no reason to hypothesize that transaction error will favour negative error
introdq@@% Besides, we feel that the explicit modelling of stock loss and a balanced transaction
erk)pprobability will result in a slightly negative overall discrepancy distribution (as supported
by Table 1). Because we do not have explicit data on transaction errors, we will check the

sensitivity of this assumption in the experiments.
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Based on the data from Table 1 and Figures A-1 and A-2, the amount of transaction error

(gain or loss) was again modelled using a geometric distribution. Let p, be the chance that a

transaction error occurs and V be 1 if it will occur and O if not. Let p, be the chance that a gain

will occur and G =+1 if there should be a gain and G =-1 if there should be a loss. Finally, let
Z represent the amount of the loss or gain, where Z is distributed according to a geor@@ic
distribution with mean E[Z]. Based on the data in Table 1, we assume that E[Z]é@. The
median of both the positive and negative discrepancy distributions was 2, so thQagﬁ?ars to be a
reasonable compromise given that we don’t have actual transaction error da&é}'hus, the potential
amount of transaction error will be the random variable defined bé;;@xGxZ; however, two
additional conditions are necessary to determine the actual ams\u@fof the transaction error. That
is, we assume that the transaction error cannot be larger @ the size of the replenishment order
and that if the transaction error is negative, it cann%% more than the recorded on hand for the
item. Let W be the error associated W|th/x sactlon let Q be the replenishment quantity

associated with the transaction and let\]¥(t) be the recorded inventory associated with the

replenishment order. Thus, we ha&g@at:

,(Q(b V4 V=1G=1
W =dmax(-1"(t),-min(Q,2)) V =1G=-1 (2)

$ 0 V=0
3.3 Modelling(gy::{r?Counting Procedures
@screpancies are introduced into the inventory record, D(t) =1%(t) - 1"(t), will grow
(o)r& @I‘(I%k) over time. Because IP(t) depends on the recorded inventory level, the ordering of
replenishments may not occur when required by the control policy. Because of this, it is
important to correct 1'(t) by setting it to 1%(t) periodically; otherwise, the control system can

become unstable (i.e. always ordering and increasing the inventory level or not ordering and
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allowing the inventory level to steadily decrease). The periodic correction of 1'(t) by using
12(t) is conceptually the same as performing a physical count (i.e. cycle counting). Because of
financial reporting requirements, we assume that the maximum time between cycle counts
(TBCC) is one year. By reducing the TBCC, we can increase the frequency of cycle counting
and thus increase the likelihood that D(t)is near zero over time. c\ﬁ\

Correcting the records is not the only goal of a correctly implemented cycl%@%nting
program. In fact, just changing the records without identifying the underly@gﬁroblem that
caused the discrepancy can potentially cause more harm than good. ,Céy identifying the
underlying cause of the discrepancy and preventing the future occ%@)}ée of those causes, the
over all rate of discrepancy should diminish over time. In&@er to model this situation, we
postulate a learning curve effect that reduces the rate o;f&@&k loss after each cycle count. A
learning equation model of the learning effect as a be’&étion in the annual rate of the stock loss

errors was placed in the simulation model. L%@(N be the annual arrival rate of the errors at the

Nth cycle count, R, be the annual arriva’@}ﬂe of errors at the first cycle count, b be the slope of

the learning curve (LC) which e‘%n:@@ (log(learning rate)/(log2), and N be the current number of

cycle counts. Thus, the a%g@rate of the errors at the Nth cycle count is given by R, =RN".
X

Therefore, as we incr‘b@ the number of cycle counts, the annual rate of the stock loss errors

decreases. This {a% Is then converted to TBA by taking the reciprocal and converting the time

>

units appr%@tely.

“Un'a real system, the correction of inventory records occurs not only when a cycle count is
pe?formed but also when other opportunities occur. These are so called “opportunity” counts. As
an example, consider the following two cases. The first case happens when demand occurs while

there is actual inventory on the shelf but the recorded inventory is showing a zero balance. This
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situation presents an opportunity to correct the record, because the items can actually be seen on
the shelf when the attempt to fill the demand occurs; however, there are many realistic situations
(phone ordering via clerk, internet ordering, etc) in which there is only access to the recorded
inventory level when the attempt to fill the demand occurs. In this situation, the actual value
cannot be known without physically checking all the locations where the inventory mag@e
stored. Because of this, we assume that only the inventory record is visible when the atéﬁ’ncgt to
&

fill the demand occurs. Therefore, in our model we do not use this opportunj correct the

record. Even though this opportunity is missed, the records will be c ted via the next
xO
scheduled cycle count. @Q
The second case involves the situation in which a den;a\@,%rrives and there is no actual

inventory on the shelf but the recorded inventory recorg&'@ghowing a positive balance. In this
case, it is impossible to fill the customer demand be@a se there is no stock available. In other
words, a demand was accepted based on the &é’v{ﬁve balance, but when the attempt to fill the
demand occurs there are actually no iteh;}vailable to fill the demand. In this situation, the
demand is backordered. This presen\@‘% opportunity to correct the record. In our model, we use
this opportunity to correct the{&rd but assume that the correction is instantaneous. In general,
an opportunity count mﬁolve the passage of time when searching for the item and verifying
that the true balangers really zero.
3.4 Modelli%&ltputs and Performance Measures

&%rimary performance measures chosen for analysis are based on: fill rate, on hand
in@ory, and number of backorders. All the selected performance measures are computed for
the overall system as well as for the lowest echelon (retailer level) and the highest echelon

(warehouse level) and they are analyzed annually. Thus, the system performance measures

include the average system fill rate (the percentage of demands from customer to retail level or
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from retail level to warehouse level, which are not backordered), the average true system
inventory (the time average total amount of actual inventory in the system), the average recorded
system inventory (the time average total amount of inventory that is recorded in the system), and
the average number of back orders in the system (the time average total number of back orders
throughout the entire system). Similar measures were collected for the lowest echelon (%ajl
level only), and for the highest echelon (warehouse level only). 6@'&0

Since we are using only one item, the amount of inventory on-han c@%serve as a
surrogate for cost. The fill-rate measures provide an analysis on the effect@customer service.
In addition to the above performance measures, we report the@qe\‘age fill rate, average
inventory, and average number of backorders by individual I@] (i.e. different retailers and
the warehouse), when scenarios involve the analysis or c@ison by location.

4. Experimental Design &

In this section, we discuss the issues m&gto setting up, running, and analyzing the
experiments associated with the simulatibq}odel. The simulation experimentation was carried
out in two phases. The first phase\@ined models with and without the inventory accuracy
errors in order to analyze war;q@ﬁ periods and collect base line performance measures. Generic
information about the s@% chain behaviour was gathered by varying experimental factors. In
the second phase\:@e examined specific novel scenarios (e.g. non-compliance) in order to
develop an u&%prgstanding of these cases.

4.1 Sy%'@%verview and Simulation Execution Issues
&O The basic structure of the model consists of a supplier, a warehouse, and 2 retailers (two-
echelon inventory system). The system’s operation is based on the demand arrival process,

system operation parameters (policies), and system operating rules. The followings summarize

the basic modelling assumptions:
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* The demand process at each retailer follows a Poisson process.

*  Only vertical shipments between the parent IHP and the child IHP’s are allowed, i.e. no
lateral transhipments.

» The top-level IHP experiences just a delay for replenishment and it is assumed to be
replenished by a supplier with unlimited stock. There is negligible setup cost assooi@ed

@)
with orders. ‘D'S

%6

« All IHPs follow the basic (R, Q) continuous review policy for inventory replériishments.
* No partial fulfilment of orders is allowed, and all unsatisfied demanggé}'e backordered.
An important aspect of this model is the non-stationary b%@our that is introduced
because of the inventory record error processes. For some &a@éof the experimental design
space, this can cause the actual inventory level to conti@&@sly rise or fall in a non-stationary
manner. This sort of behaviour will persist until thec"vNentory records are corrected (via cycle
counting). We assume that at the end of each y n inventory audit is performed (a cycle count
occurs at the end of a year). This allows ﬂ@/}ecords to match at least once until the errors begin
to propagate within the network. Be\@‘%e the system is “reset” at the end of each year, any non-
stationary (or out of control) aviour is confined to a yearly interval. This is similar to the
steady state cyclical &@g&er simulation concept described in Law and Kelton (2006). In
executing the sim;{@ﬁon, we still have a warm up period to initialize the inventory and orders
through the %&m. In our simulations, we do not turn on the error generation processes until
after tbg@lagm up period. Based on an analysis of the warm up period using standard techniques
(e@ee Law and Kelton (2006)), we determined that a warm up period of 1 year was sufficient.
After the simulation has been warmed up, the model is run for an additional year (to collect

performance on a yearly basis). Within the experiments, each case is then replicated 50 times,

resulting in 50 years of observation.
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4.2 Base Case Analysis

In the first phase, a detailed understanding of the system behaviour was observed by
varying the inventory policy and operating parameters of the model such as mean TBA of stock
loss error, TBCC, mean time between demands, order quantity, and reorder points for the
retailers and warehouse. We call the baseline case, without any error processes turned or»,Qbe
ideal case. In other words, the performance that is achieved by this situation is the best'@'éat can
be expected. Once the error processes are turned on (with or without cy%{@%’nting), the
performance of the system should deteriorate as compared to the ideal case& ince the ideal case
does not have any error processes, cycle counting and learning effecé}(re not applicable. The

system parameters for the ideal case including inventory po@rameters error and varying

model parameters are given in Table 2. KO

Table 2 System Parameters he ldeal Case
System Parameters Y
Retailer Reorder Point (R R,@y 10 units
Retailer Reorder Quantity (@, Retailer ) 339 units
Warehouse Reorder, Poifit (R \arehouse ) 191 units
Warehouse Reor antity (Q warehouse ) 2556 units
Retailer Time een Demands (days) Exp (0.1)
Retailer Repfénishment Delay (days) 3
Warehﬂy@Replenishment Delay (days) 14

Yy
We use%t?&ptimization tool, OptQuest for Arena, for setting the (R, Q) inventory

policy par@(gs for each location in the system. The OptQuest engine combines Tabu search,
scattel‘&grch, integer programming, and neural networks into a single, composite search
aI}orithm. For more details about OptQuest, we refer the reader to Laguna and Marti (2003).
The algorithm sets (R, Q) for item at each level of the system in order to achieve a minimum

90% fill rate at both warehouse and retailer levels while keeping a maximum order frequency per
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year of 24 for each retailer and 4 for the warehouse. In order to visualize the effect of varying
TBA of stock loss errors and TBCC on retailer fill rate a surface chart was developed. System
error parameters for surface charts are given in Table A-1 in the appendix along with varying
system parameters, which were used for performance measures.

The average results of 30 replications can be conceptualized as surface charts, seﬁégr
example Figure A-3 in the appendix. In the figure, the retailer fill rate begins to@ %off
substantially as TBA of stock loss errors decreases while TBCC increases. For @:@%f' stock loss
errors of more than one week, the effect of the time between cycle counti@xpn the retailer fill
rate decreases (performance is nearly maintained). This is reflected i@(e large flat area at the
top of the graph. In addition to this analysis, surface charts fo&@epancy and retailer backlog
as a function of TBA of stock loss errors and TBCC we@o developed. Those surface charts
reflected similar effects on the performance measub’e\. There were substantial decreases in
discrepancy as TBCC increases when TBA ofssteck loss errors is less than a week. A similar
effect was observed for the number of ba'sgbgs. There were significant decreases in backlog as
TBCC increases when TBA of sto@%s errors is less than a week. The charts reflected less
sensitivity in performance me@ for TBA of stock loss errors is more than one week. These
results indicate that the @gﬂ‘ation model is working as expected in terms of the key performance
measures of intere{t@

Afteréiéerving the effect of varying TBA of stock loss errors and TBCC, we then
extend‘eﬂgexperiments to assess the effect of varying demand and error parameters in addition
to@ying cycle counting frequency. For these experiments we developed different scenarios
with different system parameters. In addition to the ideal case (medium demand with the retailer
time between demand Exponential (0.1)), we developed more cases to illustrate high and low

demand in the system. In these cases, the retailer times between demands were determined as
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Exponential (0.01) and Exponential (1) for high demand and low demand respectively. We also
introduced high error and low error cases to demonstrate different levels of errors in the system.
In the high error cases, probabilities of observing receipt transition error for retailer and
warehouse are 8% and 4% respectively whereas in the low error cases these values are assumed
to be 4% and 2%. TBA of stock loss error values are also changed based on the demand rateseln
addition, in order to observe the effect of the frequency of the cycle counts, for some c@§ecs) the
cycle counting frequency was varied as more frequent and less frequent. W'Q_{@%se varying
demand rates, and error levels, we developed 9 scenarios. These scenarios a@

. . . O

» S1: No error, without cycle counting, @Q
» S2: High error, without cycle counting, inventory polic&pe@neters re-optimized,
» S3: Low error, without cycle counting, inventory wy parameters re-optimized,
» S4: High error, without cycle counting, q}

S

» S5: Low error, without cycle counting,OQ«
S6: High error, with cycle countir(%:x

» S7: Low error, with cycle om@%g,

&
» S8: High error, with m requent cycle counting, and
* S9: Low error, w"&&%ss frequent cycle counting,
The cases-wzer to re-optimized inventory parameter settings represent the fact that in

a real invent%j)f;s&/stem, a company would not permit the poor customer service that results when
inventggqgords have inaccuracies. We assume that if they are aware of the problems with the
in&é?tory records that they would take either of two actions: 1) increase inventory levels as a
protection against the errors, or 2) perform cycle counting. We use the re-optimized cases to

determine what the new inventory policy parameters need to be in order to meet fill rate settings

under conditions of error. The same optimization method used previously was utilized in this
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situation for setting the (R, Q) inventory policy parameters for S1, S2, and S3. For high, medium
and low demand rates, optimized (R, Q) values are determined in S1 without turning on the error
processes. Since there were no errors in the system, no cycle counting (thus no opportunity
counting and learning curve effect) was considered. In S2 and S3, inventory policy parameters
were re-optimized considering high and low system error parameters. In this process, thes@w
optimized (R, Q) inventory policy parameters, which result in minimum 90% fill rat@ﬁg,'cv)vere
determined and used, . Scenario S2 refers to factor settings that result in mc@@%k loss and
transaction errors whereas S3 refers to factor settings that result in less stoc@ss and transaction
errors. In scenarios S4-S9, the (R, Q) inventory policy parameters 2&1 were used. The time
between cycle counts is varied from every 28 days (monthly) %@ days (half a year), which is
consistent with what was found in Raman et al. (ZOQ{Q&The system parameters for the 9
scenarios, including inventory policy parameters and@or parameters are given in Table A-2 of

the appendix. Results of the scenarios are give&i&rable 3.
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Table 3 Results for Scenarios 1-9

xS

Averagefill rate Averagetrue Averagetrue
Average system fill atthe lowest Averagefill rate at Averagetrue inventoryatthe inventoryatthe
rate echelon the highestechelon system inventory lowestechelon highestechelon
HD 0921  (0001) 0921  (0001) 0939  (0003) 7304112  (16730) 1826463 (5926) 5477650  (16.880)
S1 MD 0979  (0002) 0979  (0002) 0930  (0013) 1361982  (11130) 322860 (1956) 1039122 (9591)
LD 0911  (0.006) 0912  (0.006) 0902  (0011) 45964 (0591) 11532 (0138) 34431 (0558)
HD 0892  (0004) 0892  (0.004) 1000 (0000) 8679622  (45440) 2739131  (15770) 5940492  (45420)
S2  MD 1000  (0.000) 1000  (0.000) 0983  (0008) 2860972  (36730) 910946 (8361) 1950026  (35280)
LD 0951  (0010) 0952  (0011) 0913  (0023) 96473 (2549) 50109 (2039) 46364 (1312)
HD 0891  (0003) 0891  (0003) 08%  (0009) 5611576  (40080) 890008 (6.799) 4721568  (38350)
S3  MD 0954 (0002 0954 (0002 1000  (0000) 2723702  (21.780) 625674 (4726) 2098028  (25.370)
LD 0884  (0016) 0882  (0016) 0923  (0016) 66668 (1.166) 17001 (0616) 49578 (0.864)(
HD 0456  (0003) 0456  (0.003) 0937  (0000) 5997213  (16800) 520072 (4656) 5477141 (17 h
S4  MD 0623  (0008) 0623  (0.008) 0928  (0013) 1177300 (10920 132878 (3122) 1044421 (1o
LD 0369 (0022 0325  (0024) 0893  (0010) 36902 0717) 2652  (0250) 34.259,%066
HD 0851  (0002) 0851  (0002) 0937  (0000) 7018995  (17460) 1541542 (7506) (17.150)
S5 MD 0934  (0004) 0934  (0004) 0932  (0013) 1338028 (11340 293231 (2567) (9894)
LD 0794  (0024) 0785 (0025) 0905  (0012) 43050 (0986) 9157 (0521) 4 893 (0.714)
HD 0614  (0004) 0614  (0004) 0904  (0007) 5962934  (17.070) 883071 6.7, 79863  (21.240)
S6 MD 0740  (0009) 0740  (0009) 0832  (0019) 1158624  (15850) 185901 972722 (14880)
LD 0521 (0019) 0488  (0021) 0839  (0013) 38556 (0.703) 4527 & 5) 34029 (0628)
HD 0914  (0001) 0914  (0001) 0939  (0000) 7174011  (18460) 1777.365&\ (6033) 5396647  (18320)
S7 MD 0973 (0002 0974  (0002) 0925  (0014) 1345604  (11.260) 3 @ (2322) 1027127 (9693)
LD 0898  (0007) 0898  (0.007) 0900  (0012) 45149 (0816) &1268 (0154) 33881 (0722)
HD 0831  (0003) 0831 (0003) 089  (0003) 6757821 (14 )&&27217 (8778) 5230604  (12520)
S8  MD 0911  (0.004) 0911  (0004) 0810  (0019) 1367105 (16& 285680 (2324) 1081424  (15.160)
LD 0797  (0010) 0789 (0011) 0830  (0011) 41828 _ANQ632) 9200 (0192 32627 (0612)
HD 0886  (0.001) 088  (0.001) 0938  (0000) T wﬁﬁw) 1670591 (5673) 5414694  (17.120)
S9 MD 0954  (0003) 0954  (0003) 0932  (0013) 133662 (11.250) 305466 (2295) 1031157 (9.724)
LD 0846  (0016) 0841  (0017) 0908  (0010) %75 (0928) 10142 (0.320) 34132 (0.757)
A
Average N
recorded Average reco@ Average number Average number Average number
Average recorded inventoryatthe inven ofbackordersin of backorders at of backorders at
system inventory lowestechelon highe! on thesystem the lowestechelon the highestechelon
HD 7304112  (16730) 1826463  (5926) sz 650 @ (16880) 10448 (0670) 208% (1.340) 58610 (4994)
S1 ™MD 1361982  (11130) 322860  (1956) (9591) 0251  (0.066) 0502  (0132) 5596  (1277)
LD 45964 (0591) 11532 (0. 1:BM\ 431 (0558) 0117  (0018) 0234  (0036) 0614  (0074)
HD 12284768  (45940) 6344316 _ (2955), »'5940453  (45430) 40157 (1482) 80315 (2963) 0000  (0.000)
S2 ™MD 3235199  (35440) 1285174 @ 1950025  (35280) 0000  (0.000) 0000  (0.000) 1386  (0629)
LD 134313 (1454) 879%] 46404 (1.306) 0205  (0061) 0410  (0122) 0629  (0205)
HD 5950152  (40220) 667 (3 245 4721566 (38330) 26427 (0642) 52854 (1283) 120034 (3224)
S3  MD 275909 (22 120) ﬁ@ (3728) 2098028  (25370) 0770  (0071) 1540  (0141) 0000  (0.000)
LD 69529 (0239) 49564 (0873) 0256  (0071) 0511  (0142) 0526  (0136)
HD 8028757 (17 %&, 2551591 (7658) 5477166  (17.040) 373648 (3292) 74729 (6585) 61264 (4872)
sS4  MD 1431980 @ 387559  (3054) 1044421  (10.160) 31544 (1212) 63083 (2425) 5621  (1319)
LD 51820 ) 17656  (0478) 34164 (0660) 3238 (0234) 6476 (0468) 0836  (0109)
HD 734104, Y(17120) 1866639  (5543) 5477466 (17150 303% (0936) 60.791 (1873) 59575 (4737)
S5 MD 70%99 (11.380) 326848  (1912) 1044742 (9908) 1104  (0120) 2209  (0241) 5798  (1272)
LD 4 \46171 (0.787) 12287  (0287) 33834 (0.715) 0504  (0120) 1007 (0240) 0640  (0113)
HD- (J7256415 (18130) 2176544 (5846) 5079871  (21240) 202056 (3269) 404111 (6537) 11777 (8.364)
S6 1306505  (16.110) 333783  (223) 972722 (14880) 16153 (0741) 32306 (1481) 15263 (2168)
= 48839 (0.783) 14861  (0377) 34027 (0619) 1916  (0150) 3832 (0300) 0849  (0110)
’&;D’ 7200366 ~ (18510) 1803720  (6136) 5396647  (18320) 11915 (0638) 23830 (1276) 59875 (4809)
(b' D 1348443  (11230) 321315  (2272) 1027128 (9693) 0386  (0076) 0772 (0151) 7854 (1449)
45381 (0816) 11500  (0143) 33881 0722 0149  (0019) 0298  (0037) 0682  (0100)
HD 7000649  (14710) 1770033  (9165) 5230616  (12520) 35097 (1586) 70195 (3172 104508 (8334)
S8 MD 1393075  (16.100) 311654  (2364) 1081421  (15160) 2120  (0.188) 4240  (0377) 21626 (1991)
LD 43930 (0639) 11310 (0142) 32621 (0613) 0401  (0033) 0801  (0067) 0867  (0.105)
HD 7252415  (16880) 1837721  (5487) 5414694  (17.120) 19738 (0.782) 39476 (1563) 59575 (4737)
S9 ™MD 1353737  (11.360) 3225%  (2173) 1031142 9:727) 0673 (0090) 1346 (0181) 629 (1272
LD 45973 (0821) 11825  (0174) 34149 (0.746) 0304  (0066) 0609  (0131) 0650  (0.089)

>
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The first scenario in Table 3 gives the results for different demand levels when there is no
error introduced to the system. The second and the third scenarios represent the situations where
there is high error and low error respectively, with (R, Q) values re-optimized to achieve 0.90 fill
rate for IHPs in the system. As seen in the table, although the fill rates are maintained as
targeted, the system carries an excessive amount of inventory to mask the errors introdn@i.
Especially when there is high error in the system and high demand for the item, syék&clfevel
inventory may increase dramatically. The change is more visible in average @@%ed system
inventory since there is no cycle counting occurring in the system. The effeet-gf error is not only
on the inventory levels but also on average backorders. Regardless @he error level for high
item demands, the average number of backorders increases (@) increase in high error case
and ~130% increase in low error case). Considering ?é&ﬂd ’85 where (R, Q) values from
scenario 1 (thus not re-optimized values) are used, w&@n clearly see the effect of the error in the
system. When we compare scenarios S4 and SSW'{Th S2 and S3, we can observe a noticeable fill
rate decrease (~50% decrease) in S4 wheﬁ@:hgh error rates are used. However in S5 where low
error rates are applied, the changei@‘ofill rates are not that severe. Since fill rates are lower,
especially in S4, system, boti}&g&? and recorded inventory levels are also low. This means that
the system performs po@agand since there is no chance to correct the records, IHPs don’t carry
the necessary invg@ery with original (R, Q) values. Average backorders increase in both
scenarios. H@b&er, in S4 this increase is from ~10 to ~370 items at the system level.

(gﬁaring S6 and S7 with S4 and S5 shows that the system benefits from cycle counting
in@ns of higher fill rates, less on hand inventory, and less backorders. Although this recovery
is well received in S7, in S6 the average system fill rate is still ~50% to ~75% depending on the

demand rate. An interesting result from this experiment is that although the inventory levels

decrease some, this change is not that substantial for the fill rate increase. This shows that cycle
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counting helps increase fill rates in the system while keeping the inventory levels the same or
decreasing them a little. Average number of backorders decrease in S6 and S7 because of the
effect of cycle counts. Changing the frequency of cycle counting in S8 and S9 reveals that even
though there is low error in the system, more frequent cycle counting provides better
performance values. Overall all of the performance measures are improved in S8 where thenee;e
high error rates in the system and cycle counting frequency is 28 days. In S9, where there&&?low
error rates and the frequency is 128 days, the performance measure values are Q"O%? than in S6
(the same error settings but frequency is 28 days). (%

As seen in the table, demand rates may have strong effects on@ IQngerformance measures.
In every scenario, average inventory levels as well as the a{a{ag number of backorders are
substantially higher in high demand cases than medium i@ow demand cases. There are some
cases in which low demand cases outperform mediu@, emand cases in terms of fill rates, and
number of backorders; however, these cases are limited and the differences are very small.

The next set of scenarios was d'e\»/}oped to observe the effect of the probability of
positive transaction error in the sy.st\@Qn order to demonstrate the sensitivity of this parameter
in the system, we modelled ?:enarios, S10 and S11. In both scenarios, we used medium
demand and optimized @gﬁtory policy parameters (from S1); however, we varied the positive
transaction error p@a}ﬁty (25%, 50%, and 75%) in the system for high and low error settings.
Scenario Sl%@&strates the system with high error settings whereas S11 models the system with

low erg@grameters. System parameters for these scenarios are given in Table 4. Results of the

sc’&[@rios are given in Table 5.
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Table 4 System Parameters for Scenarios 10 and 11

S10 S11
Inventory Policy Parameters
Retailer Reorder Point (R regiter ) 10 units 10 units
Retailer Reorder Quantity (Q  pesiter ) 339 units 339 units
Warehouse Reorder Point (R warehouse ) 191 units 191 units
Warehouse Reorder Quantity (Q  waehouse ) 2556 units 2556 units
Retailer Time Between Demands (days) Exp (0.1) Exp (0.1)

Retailer Replenishment Delay (days) 3 3
Warehouse Replenishment Delay (days) 14 14

System Error Parameters

Retailer Receipt Transaction Error Probability
Warehouse Receipt Transaction Error Probability 4%
Probability of Positive Transaction Error 25% 50%
Retailer Mean TBA of Stock Loss Error (days) 2
TBCC (days) 182

>
(550
<o
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8% 4%
2%
50%
20

28

75% 25% 75%

Table 5 Results for Scenarios 10 and 11

Average fill rate Q rage true Average true

Average system at the lowest Average fill rate at Average true IAventory at the inventory at the

fill rate echelon the highest echelon system inven lowest echelon highest echelon
25% 0.740 (0.009)  0.740 (0.009) 0.885 (0.018) 11589 /@900) 186.067 (2.765) 972.880 (14.960)
S10  50% 0.740 (0.009)  0.740 (0.009) 0.882 (0.019) 1158 3&15.850) 185901 (2.806) 972.722 (14.880)
75% 0.739 (0.009)  0.739 (0.009) 0.882 (0.019) ;;ﬁ@l (15.810) 185.847 (2.817) 972.873 (14.830)
25% 0973 (0.002)  0.974 (0.002) 0925 (0.014) SS 604 (11.260) 318478 (2.322) 1027.127 (9.693)
S11  50% 0973 (0.002)  0.974 (0.002) 0925 (0.01 1345.604 (11.260) 318478 (2.322) 1027.127 (9.693)
75% 0973 (0.002) 0.974 (0.002) 0.925 (0.0J% 1345.604 (11.260) 318478 (2.322) 1027.127 (9.693)

N7 Average
Average 0 number of

recorded A\S ecorded Average number backorders at Average number

Average recorded  inventory at the inventory at the of backorders in the lowest of backorders at

system inventory lowest echelon  ~, “highest echelon the system echelon the highest echelon
25% 1306.667 (16.190) 333787 (2.245)% 972880 (14.960) 16.130 (0.735) 32.260 (1.470) 15.143 (2.140)
S10  50% 1306.505 (16.110) 333.783 ) 972.722 (14.880) 16.153 (0.741) 32.306 (1.481) 15263 (2.168)
75% 1306.693 (16.080) 235) 972.874 (14.830) 16.158 (0.733) 32.316 (1.465) 15175 (2.131)
25% 1348.438 (11.230) (2271) 1027.128 (9.693) 0386 (0.076) 0.772 (0.151) 7854  (1.449)
S11  50% 1348.443 (11.230) 5 (2272) 1027.128 (9.693) 0386 (0.076) 0.772 (0.151) 7854  (1.449)
75% 1348482 (11.24 1354 (2.272) 1027128 (9.693) 0386 (0.076) 0.772 (0.151) 7854 (1.449)

\,V

As seen in Ta , there is very little difference when changing the positive transaction

error probabilit)Q;E”Ven in S10 with high error system settings where there is more transaction
error, the Qgﬁ(ges in performance measure values are negligible. Thus, we conclude that our
asag&“% concerning a 50% probability of a gain or a loss is very reasonable.

4.§Analysis of Novel Scenarios

In the second phase of the analysis two novel scenarios are introduced: (1) learning and

(2) non-compliance. The prevention and reduction of inventory record errors over time is a
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known key benefit of cycle counting. When the cycle count learning effect is present, we
hypothesize that the retailers learn from their cycle counting process and take remedial action to
reduce the frequency of stock loss. We used a base learning rate of 85% in the simulation. Thus,
as the frequency of cycle counting occurrence increases, the stock loss rate reduces. In the non-
compliance scenario, we developed cases where one or more retailers do not perform &Ge
counting and measured the overall effect on system performance. In addition to the@.&novel
scenarios, the effect of opportunity counts in the overall performance of <%{eﬁjgstem was
analyzed. (%

For the scenario with learning effect introduced, a combmat@co)f high and low error
system parameters was used. System parameters for the Ie&,@% effect scenarios including
inventory policy parameters and error parameters are {I@*{ in Table 6. A special case was
developed for benchmarking in which none of the re@!rs in the system has the learning effect.
Thus, there is no change on the rate of stock Ios@ﬁﬁ the system for that case. In this special case
TBCC was determined as 56 days (or}%}/}/ery two months). In this scenario, the effect of
learning was analyzed by varying.tt\@'%mber of retailers that perform cycle counts and learn in
every cycle count (1 or 2) a'n&;t@' varying the TBCC (frequency of cycle counts = 7 days [one
week], 14 days [two we@% 28 days [one months], and 56 days [two months]). The performance
measure results of@enarios are given in Table 7.

S
o

S

xO
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Table 6 System Parameters for the Learning Effect Scenario

Inventory Policy Parameters

Retailer Reorder Point (R gegiter ) 10 units
Retailer Reorder Quantity (Q gretiter ) 339 units
Warehouse Reorder Point (R \arenouse ) 191 units
Warehouse Reorder Quantity (Q warehouse ) 2556 units
Retailer Time Between Demands (days) Exp (0.1)
Retailer Replenishment Delay (days) 3
Warehouse Replenishment Delay (days) 14

20
System Error Parameters »&O
Retailer Receipt Transaction Error Probability 8% (b
Warehouse Receipt Transaction Error Probability 4% %QJ
Prob-ability of Positive Transaction Error 50% @
Retailer Mean TBA of Stock Loss Error (days) 7 Q,

TBCC (days) 28
S

Table 7 Results for the Learning Effect ScenariKO

©

Average fill rate Average true Average true

Average system at the lowest Average fill rate at Averﬂ@ inventory at the inventory at the

TBCC Retailer fill rate echelon the highest echelon syste inventory lowest echelon highest echelon
56 N/A 0.949 (0.004)  0.949 (0.004) 0893 (0.016) A& )46 (13.270) 299.156 (2.819) 1003.090 (11.610)
7 1 0970 (0.003)  0.970 (0.003) 0901 (0.014 678 (11.660) 314.174 (2.381) 1013503 (10.110)
2 0975 (0.002)  0.976 (0.002) 0913 (0.014)\, 1339.242 (12.220) 318.278 (2.376) 1020.964 (10.530)
14 1 0969 (0.003)  0.969 (0.003) 0.901 W 1326.619 (12.580) 311.880 (2.524) 1014.738 (11.150)
2 0.974 (0.002)  0.974 (0.002) 0.912 014)  1331.456 (10.860) 316.025 (2.208) 1015431 (9.309)
28 1 0963 (0.003)  0.964 (0.003) 0.90 015) 1321461 (12.480) 309.121 (2.148) 1012.340 (11.450)
2 0966 (0.003) 0966 (0.003) 0809 ~(0.015) 1322701 (11.670) 310.823 (2.356) 1011.878 (10.160)
56 1 0951 (0.003)  0.951 (0.003) ‘%8% (0.015) 1306.696 (12.970) 301.076 (2.607) 1005.620 (11.500)
2 0.953 (0.004)  0.953 (0.004)‘\ 0.904 (0.012) 1306.731 (13.130) 302.001 (2.760) 1004.730 (11.250)

L)

N
b4 Average

Avi number of
d Average recorded Average number backorders at Average number
Average recorded i %Py atthe inventory at the of backorders in the lowest of backorders at

TBCC Retailer system inventory " lowest echelon highest echelon the system echelon the highest echelon
56 N/A 1316.985 (133@‘313.910 (2.668) 1003.075 (11.610) 0977 (0.148) 1954 (0.297) 12.733  (2.046)
7 1 1329.205 .650) 315702 (2.360) 1013502 (10.110) 0565 (0.108) 1.130 (0.217) 11246 (1.867)

2 1340.28N 210) 319.319 (2.366) 1020.964 (10.530) 0413 (0.090) 0.826 (0.180) 8974 (1.678)

14 1 1329764 (12550) 315024 (2.479) 1014740 (11.150) 0597 (0.106) 1194 (0.212) 12202 (1.911)
2 1333, (10.830) 318427 (2.205) 1015432 (9.309) 0435 (0.092) 0.869 (0.183) 9.223 (1.631)

28 1 328302 (12.440) 315962 (2.104) 1012.340 (11.450) 0642 (0.099) 1284 (0.198) 11101 (1.623)
2 ()N1828.489 (11.650) 316.611 (2.315) 1011.877 (10.160) 0.593 (0.104)  1.186 (0.208) 11073 (1.719)

56 @'1320.275 (13.000) 314.669 (2.573) 1005.605 (11.510) 0930 (0.129) 1.861 (0.258) 12111 (1.895)
P 1319.288 (12.960) 314573 (2.549) 1004.715 (11.250) 0849 (0.130) 1.698 (0.260) 11679 (1.956)

S

\,O As seen in Table 7, in overall learning cases (Retailer = 1 or 2) for different TBCC values

the results indicate better performance measure values than the non-learning case (special case).

This is especially the situation for average system fill rate values, which represent a measure for

customer satisfaction, which improve significantly. In addition, the average true system
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inventory results indicate that the inventory levels in the system change dramatically when there
is learning. As the frequency of cycle counts increase (smaller TBCC), the learning effect
becomes more visible within the performance measures. More specifically, the difference
between average true inventory levels and average recorded inventory levels become more
noticeable. In most of the cases the system performs better in the cases of both retailers Ieaﬂq'qg
from cycle counting (Retailer = 2) when compared to the cases of only one retailer learrip cgs it
counts (Retailer = 1). One interesting observation is that as the TBCC incre@ e effect of

learning decreases between the cases with one retails learns and two {e}?ilers learn. This

behaviour is more visible for inventory levels. There is more diﬁere@'ﬁn the inventory levels
<
Q

For the scenario with non-compliance introduc%d*e same system parameters in the

between the TBCC = 7 case and the TBCC = 56 case.

scenario with learning, given in Table 6, were use fixed 85% learning curve effect was
applied to the cycle counts. TBCC was determci)n@{’g% days (one month) for all cycle counts in
the system. A special case in this scenarkhs also developed here for benchmarking in which
both retailers as well as the wareho\@?cycle count monthly. In this scenario, the effect of non-
compliance was analyzed by ?g the number of IHPs in the system that do not cycle count at
all. The performance mg&?e results of the scenarios are given in Table 8.

- 0> Table 8 Results for the Non-Compliance Scenario

N
(b? Average true Average true
Average system fill Average fill rate at Average fill rate at Average true inventory at the inventory at the
rate the lowest echelon the highest echelon system inventory lowest echelon highest echelon
Fully Compliant 0.966  (0.003) 0.966 (0.003) 0.909  (0.015)  1322.701 (11.670) 310.823  (2.356) 1011.878 (10.160)
Only 1 Retai Counts 0.908  (0.004) 0.908  (0.004) 0919  (0.012)  1302.811 (12.980) 274991  (2.947) 1027.820 (11.720)
Only 2 Retal ycle Count 0.966  (0.003) 0.966 (0.003) 0.909  (0.015)  1322.701 (11.670) 310.823  (2.356) 1011.878 (10.160)
Only ouse Cycle Counts 0.854  (0.005) 0.853 (0.005) 0.929  (0.014)  1282.847 (11.730) 241577  (3.195) 1041.270 (10.210)
NO&]IBHOE 0.854  (0.005) 0.853 (0.005) 0.929  (0.014) 1282.847 (11.730) 241577  (3.195) 1041.270 (10.210)
Average recorded Average recorded Average number of ~ Average number of  Average number of

Average recorded inventory at the inventory at the backorders in the backorders at the backorders at the

system inventory lowest echelon highest echelon system lowest echelon highest echelon
Fully Compliant 1328.489  (11.650) 316.611 (2.315) 1011.877  (10.160) 0.593  (0.104) 1186  (0.208) 11.073 (1.719)
Only 1 Retailer Cycle Counts 1352.636  (13.180)  324.816 (2.262) 1027.820  (11.720) 2971 (0.280) 5942  (0.561) 8.582 (1.514)
Only 2 Retailers Cycle Count 1328.476  (11.650) 316.611 (2.315) 1011.865 (10.160) 0.593  (0.104) 1186  (0.208) 11.073 (1.719)
Only Warehouse Cycle Counts 1374.620 (12.000)  333.350 (2.405) 1041.271 (10.210) 5.051 (0.343) 10.102 (0.686) 6.410 (1.470)
Non-Compliance 1374.648  (11.990)  333.350 (2.405) 1041.298  (10.200) 5.051  (0.343) 10.102  (0.686) 6.410  (1.470)
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The results in Table 8 indicate that there is a constant improvement in the system if IHPs
cycle count. This improvement is more observable when retailers participate in the cycle
counting. There is virtually no difference in performance between the non-compliance (no IHP
cycle counts) case and the case where only the warehouse cycle counts in the system. Similarly,
there is virtually no difference between the full-compliance (all IHPs cycle count) case andébe
case with both retailers cycle counting. Insignificant performance changes are only at th&?s)tem
level due to the performance changes of the warehouse. Thus, we can concludt@/@%’e effect of
warehouse cycle counts is minimal in overall system performance. This is q{&é)attributable to the
fact that we do not model stock loss at the warehouse level. Hog)@r, there are substantial
differences in cases when one retailer cycle counts and both K{@E\s cycle count. Based on the
results of surface charts in the base case analysis and thes(&@ﬁs derived from these experiments,
we would expect that the fill rates will increase as @TBCC increases (up to one year). This
change is more significant if the TBA of stockée@ﬁs less than 7 days. Similarly, average number
of backorders in the system should increésg)s the TBCC increases. In summary, cycle counting
at the retailer level affects system&@%mance considerably; the more retailers that cycle count
the better the overall perform )::hieved.

Next, we analyz@&é effect of opportunity counting on the system by utilizing irregular
and situation-trigg@d counts. For this analysis, we considered cases with opportunity count and
cycle countsg@’é’portunity counts were triggered when there was a demand for an item with
positiv&;@’%rded inventory and a zero actual inventory level. We assumed that the records were
co@ted by a triggered opportunity count and the items are backordered. In the cycle count
cases, TBCC was used as 28 days. We also assumed that in every case the 85% learning effect

applies regardless of the count type. The inventory policy parameters and system error
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parameters given in Table 5 were used in this scenario. The performance measure results of the
scenarios are given in Table 9.

Table 9 Results for the Opportunity Count Scenario

Average true Average true
Average system fill Average fill rate at Average fill rate at Average true inventory at the inventory at the
rate the lowest echelon the highest echelon system inventory lowest echelon highest echelon
With OC and CC 0.967  (0.003) 0.967 (0.003) 0.909  (0.014)  1325.817 (12.350) 311.797  (2.200) 1014.020 (11.080)
With OC Without CC 0.949  (0.002) 0.949 (0.002) 0.908  (0.014)  1307.649 (11.550) 298.439  (2.285) 1009.210 @9}
Without OC With CC 0.966  (0.003) 0.966 (0.003) 0.909  (0.015)  1322.701 (11.670) 310.823  (2.356) 1011.878, ((10.160)
Without OC and CC 0.854  (0.005) 0.853 (0.005) 0.929  (0.014)  1282.847 (11.730) 241577  (3.195) 1041.;10& 0.210)
é [0
Average recorded Average recorded Average number of  Average number of %rage number of
Average recorded inventory at the inventory at the backorders in the backorders a backorders at the
system inventory lowest echelon highest echelon system lowest ed'ﬁ@/ highest echelon
With OC and CC 1330.485 (12.410) 316.465 (2.252) 1014.020  (11.080) 0.546  (0.098) 1.092( (0197) 9.923 1.707)
With OC Without CC 1321.110 (11.590)  311.900 (2.308) 1009.210  (10.030) 0.880  (0.119) 17 0.239) 10.840  (1.785)
Without OC With CC 1328.489  (11.650)  316.611 (2.315) 1011.877 (10.160) 0.593  (0.104) (0.208) 11.073 1.719)
Without OC and CC 1374.648  (11.990)  333.350 (2.405) 1041.298  (10.200) 5.051  (0.343) y @02 (0.686) 6.410  (1.470)

As seen in Table 9, there are substantial differences in Qg(em performance measure
values when any type of counting is introduced to the systen)&hr&r:ducing only cycle counting in
the system has more impact on system performance thw&?roducing only opportunity counting.
Introducing both counting methods provide sligh (Zg;ter results than only the scheduled cycle
counting case. Therefore, employing bothl\gges may not be necessary if there are regular
monthly cycle counts in the system. Q.Q‘b'

5. Conclusions and Future Res‘eg%h

Benchmarking re has shown that those companies that perform cycle counting
achieve best-in-class}@ormance in inventory record accuracy. Best-in-class performance of
99% and aboveftgv\entory record accuracy (based on the general definition of accuracy involving
multiple 'rQ%’) was achieved by those companies that dedicated appropriate resources to cycle
co.{@'n , that had advanced computer system support, and that emphasized finding and
eliminating common process errors. In this paper, we have shown that not only does cycle

counting payoff in terms of inventory record accuracy, but that cycle counting has major benefits

throughout a supply chain.
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Companies that have poor inventory record accuracy (especially the ones with high
shrinkage and transaction error) experience poor customer service (between ~36% and ~62% in
our settings depending on item demand) and increased inventory costs. One method of hiding the
inventory record accuracy problem is to carry more inventory, in order to still provide adequate
customer service. However, this often results in excessive inventory levels (between ~18%@d
~112% in our settings depending on item demand). Moreover, the number of backordexé’?t)ems
increase dramatically (sometimes around 300%). In this paper, we examin @? impact of
carrying this additional inventory within a supply chain. The results inq{eése that significant
additional inventory must be maintained so that the supply chain é@étill maintain adequate
customer performance in the face of inventory record accura%@mpanies that have very low
historical record accuracy should take this as an import@’%stification for implementing cycle
counting. (Z>

Moreover, companies with high shrink«&oand transaction errors need to carry more
inventory than the companies with Iow\qkrs for the items with medium and low demands
(~18% or more in our settings). O\@%teresting result from the experimentation showed that
although a company with hii@rs doesn’t carry more inventory for high demand items than
the company with low @o s, the fill rates for these items are substantially (sometimes ~50%)
lower than the fill @exm the company with low errors. Regardless of the error and item demand
level, cycle %&ing (overall) helps achieving better performance measure values. Frequency of
the cy%@%nting also affects the performance of the system. Within the same system settings,
mn@frequent cycle counts result in better performance measure values (~2% difference in fill
rate, ~3% difference in inventory levels, and ~50% difference in fill rates comparing weekly

cycle counts with bimonthly cycle counts).
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We have also shown that within a supply chain it is imperative that all the supply chain
partners guarantee and comply with adequate inventory recording keeping. Supply chain partners
who do not have control over their inventory records cause increased costs for themselves and
throughout the supply chain. In our settings, one retailer not cycle counting may cause ~6%
decrease in fill rate, ~2% increase in inventory, and ~400% increase in backorders. One o(ébe
basic tenets (see Brooks and Wilson (1995)) of properly implementing a cycle countin&c@'c(ocg)ram
is to tie the performance evaluation system of the inventory managers to prope@/@%ory record
accuracy. From our research on the non-compliance case, we can recomm@that supply chain
managers consider adopting performance clauses between compani%s&clain a supply chain so
that partners are assured that desired levels of inventory record{@‘%acy are maintained.

Finally, our work shows that another of the %@&tenets of cycle counting, that of
prevention and reduction of errors, is critical in in@enting a good cycle counting program.
The results from the simulation model show that the learning effect has benefits both locally and
throughout the supply chain. In our setﬁq/g} system level improvements may go up to ~3%
increase in fill rate, ~600% incre{@% inventory visibility (average true system inventory-
average recorded system inve@, and ~100% decrease in backorders if there is 85% learning
effect. Our results conf@y%any of the benefits of cycle counting and point the way towards
how cycle count@zn be evaluated within a supply chain. Future work includes the
investigatior}gb't%e optimal timing and sample size for cycle counting programs within a supply
chain i&@r to minimize cycle counting cost and inventory costs while still maintaining overall
sup,@/ chain inventory record accuracy and customer service objectives. In addition, future
research can also explore how to optimally design cycle counting procedures, and supplier

contracts, etc. for mitigating error effects within the supply chain.
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Table A-1 Surface Chart System Parameters

System Error Parameters

Retailer Receipt Transaction Error Probability 8%
Warehouse Receipt Transaction Error Probability 4%
Probability of Positive Transaction Error 50%

Varying System Parameters

TBA of Stock Loss Error (days) 0 to 364 in increments of 7 days 60
TBCC 0 to 48 days in increments of 1 day (7;&
&
&
xO
460
¥
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Table A-2 System Parameters for Scenarios 1-9

S1 S2 S3
Inventory Policy Parameters HD MD LD HD MD LD HD MD LD
Retailer Reorder Point (R Rresier ) 1 units 10 units 1 units 2474 units 549 units  33units 302 units 5 units 1 units
Retailer Reorder Quantity (Q  gesier ) 2168units  339units  12units 1627 units 217 units 24 units 994 units 680 units 20 units
Warehouse Reorder Point (R wuehouse ) 1395 units 191 units 1 units 3759 units 227 units  4units 45 units 82 units 15 units
Warehouse Reorder Quantity (Q  warchouse ) 10887 units 2556 units 84 units 9870 units 8556 units B units 11770 units 4126 units 89 units
Retailer Time Between Demands (days) Exp(0.01) Exp(01) Exp(l) Exp(0.01) Exp(0.1) Exp(l) Exp(0.01) Exp(0.1)
Retailer Replenishment Delay (days) 3 3 3 3 3 3 3 3
Warehouse Replenishment Delay (days) 14 14 14 14 14 14 14 14 /\'&14
oV
System Error Parameters Q}J
Retailer Receipt Transaction Error Probability N/A 8% @Vzl%
Warehouse Receipt Transaction Error Probability N/A 4% 2%
Probability of Positive Transaction Error N/A 50% 50%
Retailer Mean TBA of Stock Loss Error (days) N/A 0.2 2 20 AZ 20 200
TBCC (days) NA NIA A NIA
f\\‘
S4 S5 &N S6
Inventory Policy Parameters HD MD LD HD MD 4 /LD HD MD LD
Retailer Reorder Point (R gegir ) 1 units 10units  lunits  1units 10 g lunits 1 units 10units 1 units
Retailer Reorder Quantity (Q  Renier ) 2168 units  339units  12units 2168 units & i 12units  2168units 339 units 12 units
Warehouse Reorder Point (R warenouse ) 1395 units 191 units 1 units 1395 uni 19T units 1 units 1395 units 191 units 1 units
Warehouse Reorder Quantity (Q  wadouse ) 10887 units 2556 units 84 units 10 @ 2556 units 84 units 10887 units 2556 units 84 units
Retailer Time Between Demands (days) Exp(0.01) Exp(0.1) Exp(l) ABExp(®01) Exp(01) Exp(l) Exp(001) Exp(0.1) Exp(l)
Retailer Replenishment Delay (days) 3 3 3 x 3 3 3 3 3
Warehouse Replenishment Delay (days) 14 14 14 ,\(bﬂ 14 14 14 14 14
0N
System Error Parameters AY
Retailer Receipt Transaction Error Probability 8% OV % 8%
Warehouse Receipt Transaction Error Probability 2% 1%
Probability of Positive Transaction Error 509 50% 50%
Retailer Mean TBA of Stock Loss Error (days) 0.2 2 20 2 20 200 0.2 2 20
TBCC (days) Ab N/A N/A 182
—\Y
AN o7 S8 s9
Inventory Policy Parameters L~ \HD MD LD HD MD LD HD MD LD
Retailer Reorder Point (R regilr ) "wnits 10 units 1 units 1 units 10 units 1 units 1 units 10 units 1 units
Retailer Reorder Quantity (Q gresier ) & 2168units  339units  12units  2168units  339units  12units  2168units 339 units 12 units
Warehouse Reorder Point (R waeouse ) @ 1395 units 191 units 1 units 1395 units 191 units 1 units 1395 units 191 units 1 units
Warehouse Reorder Quantity (Q  war us@ 10887 units 2556 units 84 units 10887 units 2556 units 84 units 10887 units 2556 units 84 units
Retailer Time Between Demands (days Exp(001) Exp(0.1) Exp(l) Exp(001) Exp(01) Exp(l) Exp(001) Exp(0.1) Exp(l)
Retailer Replenishment Delay (da) 3 3 3 3 3 3 3 3 3
Warehouse Replenishment Delaya(days) 14 14 14 14 14 14 14 14 14
b4
System Error Parametefs,.>
Retailer Receipt Tran@bﬁ Error Probability 4% 8% 4%
Warehouse Recej| nsaction Error Probability 2% 4% 2%
Probability of iVe, Transaction Error 50% 50% 50%
Retailer M of Stock Loss Error (days) 2 20 200 0.2 2 20 2 20 200
28 28 128

O
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