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Abstract

This research extends a static threshold based control strategy used to control headway

variation to a dynamic threshold based control strategy.  In the static strategy, buses are

controlled by setting a threshold value that holds buses at a control point for a certain

amount of time before allowing the bus to continue along the route.  The threshold

remains constant each time the bus stops at the control point.  The dynamic strategy

involves the same principle of holding buses at a bus stop; however, a different threshold

value is chosen each time the bus holds at a control point.  The results indicate that in

cases where the static threshold is set equal to the scheduled headway, very low headway

variation and passenger system times result; however, passengers on board the bus are

penalized by extra delay on the bus while waiting at the control point.  The dynamic

strategy reduces the penalty to passengers delayed on-board the bus at a control point at

the expense of a slight increase in overall passenger system time.   The results indicate that

in most cases, the tradeoff of the slight increase in waiting time for the significant decrease

in on-board delay penalty makes the dynamic strategy an acceptable choice.

Keywords:  Dynamic Route Control, Headway Variation, Transit Simulation
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INTRODUCTION

Headway is defined as the time or distance, from a fixed point, between the departure of

one vehicle and the arrival of the next vehicle.  In effect, the scheduled headway along a

route indicates to a passenger how often a bus arrives at a stop (i.e. every 10 minutes).

Variations in observed headway along a route generally cause buses servicing the route to

“bunch” which can decrease system performance.  Headway variation contributes to

increases in overall passenger waiting times; therefore, reductions in headway variation

decrease passenger waiting and transit times.  In order to reduce headway variation along

a route, methods such as a threshold based control strategy can be used.  A threshold-

based strategy involves identifying a certain value (x0), known as the threshold value, at a

particular control point along the route.  If the observed headway between an incoming

bus and the previous bus is less than (x0), then the incoming bus is held up to the threshold

value.  If the observed headway is greater than the threshold value then the bus is not held

(Abkowitz and Tozzi, 1986).

In order to implement this strategy, an optimal control point and optimal threshold value

must be identified.  The optimal control point is usually found to be located at stops along

the route immediately before stops where a large number of passengers board the vehicle

(Abkowitz and Tozzi, 1986; Abkowitz and Lepofsky, 1990).  This is due to the fact that

stopping at the control point reduces headway variation; hence, more passengers are able

to appreciate the reduction in headway variation.  Choosing the optimal threshold value

involves a tradeoff between delaying passengers at a control point and delaying passengers

at stops downstream of the control point.  As the threshold value approaches the
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scheduled headway, the delay to passengers downstream of the control point decreases

while the delay to passengers at the control point increases.

Previous research efforts have examined threshold-based strategies and the tradeoff

between minimizing passenger waiting time and minimizing passenger delay.  A common

method is to place a weighting factor on passenger wait versus on-board passenger delay.

This weighting generally affects the value of the optimal threshold.  The research

presented in this paper attempts to combine placing importance on reducing waiting time

and on-board delay due to control by dynamically allocating threshold values.  This

dynamic strategy involves choosing different threshold values each time the control point

is approached so as to minimize passenger on-board delay due to controlled holding.  We

believe that the dynamic strategy can minimize overall passenger delay while reducing the

headway variation so that passenger system time is not significantly different when

compared to the static threshold strategy.

We begin with an overview of static threshold strategies and then cover the development

of the dynamic threshold strategy.  We then present a simulation model used to compare

the threshold strategies and the major results of the comparison as well as some special

cases that indicate the tradeoffs between the two strategies.  Finally, we summarize the

contributions of the work.
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STATIC THRESHOLD CONTROL STRATEGIES

Theoretical and empirical approaches to threshold-based holding strategies have been

employed over the past few decades.  The primary objective of previous research in these

areas has involved developing models that are simplistic and do not require extensive

amounts of data from the routes (Abkowitz and Engelstein, 1984).  The following

methodology was developed as a result of their research:

(a) Determination of mean running time

(b) Determination of running-time variation

(c) Determination of headway variation

(d) Determination of passenger wait time

(e) Determination of optimal control strategy

For our research, we assume that the optimal control strategy in step number five has been

chosen to be a threshold based control strategy.  Abkowitz and Engelstein’s methodology

critically depends on modeling passenger wait times, mean running times, running time

variation, and headway variation using mainly regression equations.  The output of steps

(a)-(d) serve as inputs into step (e).

Assumptions concerning the passenger arrival patterns are important to the use of these

models.  Some researchers (Barnett, 1974) have assumed purely random passenger

arrivals, while others (Turnquist, 1978) considered random and non-random passenger

arrivals.  Other studies (Abkowitz and Engelstein, 1984) have indicated that the passenger

random arrival assumption is valid only for those routes with short headway, around ten

minutes or less.  Research assuming random passenger arrivals has yielded the following
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equation for the expected waiting time for a passenger until a bus arrives to a stop

(Abkowitz, Eiger, and Engelstein, 1986):

E W
E H V H

E H
= +

2 2
(1)

where E[W] is the expected wait time, V[H] is the headway variation, and E[H] is the

expected headway.

From this equation, one can see that minimizing the headway variation will cause a

reduction in passenger waiting time.  Using this model as a basis (Abkowitz and Tozzi,

1986) determined an the optimal control point and threshold by solving the following

objective function:
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where TW = the expected total wait time on the route, j  is the control stop, ni  is the

number of passengers boarding at stop i , wi  is the average wait time at stop i , b j  is the

number of passengers on board the bus at stop i , d xjbg is the expected delay at the control

stop for the threshold value of x , x  is the threshold value, and N  is the total number of

stops on the route.  In (Abkowitz, Eiger, and Engelstein, 1986), equation (2) was

modified to incorporate a weighting constant to indicate the relative importance between

delaying passengers on-board the bus and passengers down stream of the control point.

Let γ represent a real number between zero and one, then equation (2) can be written as:
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Varying the assigned weight can cause changes in both the optimal control point and

optimal threshold value.

In their methodology, (Abkowitz, et al., 1986) set the values for the variance of the

headway downstream of the control point and the expected delay at a control stop for a

given threshold value based on the solution of regression equations that were formulated

from empirical or simulated data.  Their results indicated that the control point tends to be

located immediately prior to a group of stops where many passengers board.  In addition,

the threshold value was sensitive to the number of passengers on-board the bus.  As the

number of passengers on-board the bus increases, the threshold value gets smaller

(Abkowitz and Engelstein, 1984).  Other studies have shown that the relative difference

between the number of passengers on-board the bus and the number of passengers

downstream of the control stop must be large enough to outweigh the disadvantages of

delaying at the control stop (Abkowitz and Tozzi, 1986).

Other methods in determining optimal control points and threshold values for threshold

strategies have involved formulating dynamic programming models.  Osuna and Newell

(1972) used a dynamic programming model to find that the optimal threshold value at a

control point involved holding a vehicle until the spacing between successive vehicles was

nearly equal, within a small range.  In addition, more recent studies have added economic

considerations to a dynamic programming model to find the optimal threshold value and

control point (Wirasinghe and Liu, 1995).
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Research has also determined route characteristics that warrant threshold-based holding

strategies.  Routes that have sufficiently short headway, less than 10 minutes, have shown

performance improvements from threshold based holding strategies (Abkowitz and

Lepofsky, 1990), whereas (Turnquist, 1981) showed routes that had sufficiently large

headway benefited more from other holding strategies such as schedule based holding

strategies.  Passenger profiles are also relevant in determining which routes may benefit

from threshold based holding strategies.  Routes that have either passengers boarding

along the middle of the route and alighting at the end or boarding and alighting uniformly

along the route have shown the most significant reductions in headway variation and

passenger waiting times (Abkowitz and Tozzi, 1986).  Based on these findings, we limited

our investigation to routes with similar characteristics.

DYNAMIC STRATEGY DEVELOPMENT

The dynamic threshold strategy combines the objectives of minimizing passenger waiting

time and delay on-board the bus by dynamically allocating a threshold value.  Each time a

bus approaches the control point a threshold value is chosen from a range of possible

values.  The selection from a range of threshold values will lessen the reduction in

headway variation that would have been achieved via the static strategy; however, we

postulate that it is possible to achieve the same reduction in passenger system times

without over controlling the headway variation.  In doing so, we believe that on-board

delays to the passengers can be reduced in comparison to the static threshold strategy.
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In the static control case, a fixed threshold value is used each time the bus visits the

control stop.  Let x f  be the fixed static threshold value at the control point and let H o  be

the observed headway.  The static rule states that if H xo f<  the bus should be held for

x Hf o−  time units; otherwise the bus should not be held.  In the dynamic case, a new

threshold value is selected each time the bus visits the control point.  The ability of the

dynamic control strategy to affect the headway variation and the passenger waiting times

depends on the width of the range of possible threshold values.  The range of possible

values for the dynamic threshold value should contain the scheduled headway.  We specify

that the range should be from two minutes less than the scheduled headway to one minute

more than the scheduled headway.  Let H s  be the scheduled headway for the route and let

the range of possible dynamic threshold values be specified as x x xlow
d d

high
d≤ ≤ , where

x Hlow
d s= − 2, x Hhigh

d s= + 1, and xd is the dynamic threshold value.  Setting xlow
d  lower

than the scheduled headway reduces the delay to passengers on board the bus.  Setting

xhigh
d  above the scheduled headway allows for additional control of headway variability.

Research into the precision of threshold values indicates that allowing non-integer values

for thresholds does not significantly influence system performance (Wirasinghe and Liu,

1995).

The dynamic strategy’s heuristic procedure for setting xd  is as follows:

(a) If H xo
low
d< , then set x xd

low
d=

(b) If x H xlow
d o

high
d≤ ≤ , then set x Hd o= + 1

(c) If H xo
high
d≥ , then do not hold the bus
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In order to test the dynamic threshold strategy and compare it to the static threshold

strategy, a simulation model was developed.  Using the simulation, the two strategies were

compared using headway variation, passenger system time, and on-board delay as

performance measures.  The simulation model is discussed in the next section.

SIMULATION MODEL

The basic structure of the simulation model involves a fixed number of buses traveling

along a circular twenty-one stop route, with one of these stops designated as a control

point.  When a bus reaches the end of the route, the bus loops back to the beginning of the

route and continues traveling along the route.  Previous simulation based studies, Koffman

(1984), ignored routes with a looping structure to ease simulation model development.

By incorporating the looping structure, we account for the actual structure of our system

and present results for a realistic bus route.  In addition, because of the looping nature of

the route, route control is even more important since bunching and schedule deviations

can propagate from the end of the route, back to the beginning of the route.

The simulation involves generating random variables from known probability distributions

for random variables such as running times, and passenger arrival rates.  The random

number generator that was used was obtained from Law and Kelton (1992).  The running

time to any particular stop, which is measured as the time of departure from stop i-1 to the

arrival time at stop i, is assumed to be a random variable with a know mean µi , and

standard deviation σi .  Given this definition, the probability distribution function that
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generates random numbers for the running times must be a closed form distribution that is

skewed to the right of zero to account for a non-zero time to travel from one stop to the

next.  Previous research, Koffman (1984), has indicated that a shifted lognormal

distribution, φ µ σ+ LN ( , ) , models this process sufficiently and details a method for the

setting of the shift parameter φ and the calculation of µ.  Using this research as a basis, the

parameters for the shifted lognormal for each stop along the route were set at (φ = 30

seconds, µ = 70 seconds, σ= 14 seconds).  Variation in the running time can be attributed

to varying distance between stops or because of traffic conditions.

Passenger arrivals to the system were assumed to be distributed according to a Poisson

random variable with know mean λ.  The mean time between passengers arrivals used in

the simulation were values of 4, 8, and 12 seconds.  This assumes that passengers arrive

randomly to the bus system and not according to some schedule.  The headway values

used in the simulation (10, 8, and 4 minutes) were sufficiently small enough to validate this

assumption.  The number of passengers boarding and alighting at any particular stop is

governed by a cumulative boarding and alighting probability assigned to each stop.  As a

passenger enters the system, the passenger’s origin stop is generated according to a

discrete probability distribution assigned across the stops.  The passenger is then sent to

that particular stop.  When the passenger arrives at the origin, the destination stop is then

generated according to another discrete distribution.  The destination distribution assumes

that the passenger will definitely alight at a stop before looping back to the origin stop.

Example origin/destination distributions are shown in Figure 1.  The origin and destination

distributions result in boarding/alighting patterns that cause an average number on-board
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the bus as indicated in Figure 2.  The stops at the middle of the route have higher

probabilities of passenger boarding while the stops at the end of the route have higher

probabilities of passenger alighting.  Previous research has indicated that this

boarding/alighting pattern can benefit from implementing a static threshold strategy

(Abkowitz and Tozzi, 1986).

Origin/Destination Probabilities
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Figure 1 Example Origin/Destination Distributions
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Figure 2 Average Number of Passengers on Bus vs. Bus Stop

Previous research has shown that headway variation is influenced by boarding and

alighting processes.  The boarding and alighting processes determine the bus dwell time at

the stops.  The dwell time is defined as the total time a bus spends at a stop.  Time spent

decelerating into the stop or accelerating out of the stop is incorporated into the travel

time between stops and is not considered part of the dwell time.  Research by (Levinson,

1991) modeled the dwell time, T, as a deterministic function of the number of

interchanging passenger using the following equation (in seconds):

T = 2.75n + 5

where n is the number of interchanging passengers.  Setting n = 1 gives an individual

boarding or alighting delay of 7.75 seconds.  Another method to modeling the dwell time

is to model the delays associated with the boarding and alighting processes.  For each

passenger boarding or alighting, a time is drawn from an appropriate distribution to

represent the boarding or alighting delay.  In our situation, the bus has one door dedicated
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to boarding passengers and one door dedicated to alighting passengers.  The bus remains

at the stop until all passengers have boarded or alighted or until the bus capacity is

reached.  The capacity for a bus, including seated and standing passengers, was assumed

to be 70 people (Haefner, 1986).  This implies that the bus dwell time is the larger of the

total passenger boarding delay or the total passenger alighting delay and is therefore a

function of the number of passengers boarding or alighting.  Koffman (1984) suggests a

mean boarding time of 4.3 seconds and a mean alighting time of 2 seconds, no variance

was given.  Adamski (1992) suggests a Gamma distribution (3, .7) for boarding and an

Erlang distribution (3, .75) for alighting passengers.  Given this previous work, we

modeled the boarding and alighting delays according to a gamma distribution with

parameters α , β  and a mean of αβ  and variance of αβ 2 .  The parameters for the boarding

distribution were α = 6 and β  = 0.75, (mean = 4.5, variance = 3.375) with units in

seconds.  The parameters for the alighting distribution were α = 4 and β  = 0.75, (mean =

3.0, variance = 2.25) with units in seconds.

Data from our route was collected and indicated that passengers arrived to any stop at a

rate of approximately 300 per hour.  Other simulations of major urban routes used arrival

rates of 900 passengers per hour at the route origin and 100-300 passengers per hour at

other bus stops (Victor and Santhakumar, 1986).  Another transit simulation study used

uniform arrival rates of between 1-200 people per hour at each stop along a particular

route (Jordan and Turnquist, 1982).  Given the arrival rates used in previous simulations,

we varied the rate of total passenger arrivals between 300 and 900 with appropriate

adjustments to the number of buses to maintain realistic headway values.  For the purpose
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of comparing the static and dynamic threshold strategies, a combination of headway and

arrival rate settings was used.  The settings for the headway and the arrival rate, along

with the number of buses is given in Table 1.

Table 1 Headway and Arrival Process Settings

Case Headway

(min.)

Arrival Process

(#/hour)

Number of

Buses

1 10 300 4

2 10 450 4

3 8 300 5

4 8 450 5

5 4 900 9

Results in (Abkowitz and Tozzi, 1986) indicate that the choice of control stop is highly

dependent on the boarding profile.  The most effective control stop tends to be before the

stop with the largest number of boarding passengers.  The optimal threshold value tends to

be in a range from one-half of the scheduled headway up to the scheduled headway.  We

used simulation to test various combinations of the control stop setting and the static

threshold values.  These results were analyzed to identify near optimal threshold and

control stop settings for the specific headway and arrival process combinations.  Other

tests were done to investigate the effects on each of the strategies of raising the variance in

the running times.  We refer the interested reader to Turitto (1996) for the analysis of

these tests.  The following section will discuss the design of the experiments and the

statistical methods used to analyze the results of the simulation experiments.
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DESIGN OF EXPERIMENTS

The design of the experiments involved simulating three different strategies over a number

of replications: two static threshold strategies with different threshold values and one

dynamic threshold strategy.  The length of each simulation replication was 480 minutes in

order to simulate an actual business day for the transit system.  The number of replications

was 256.

PERFORMANCE MEASURES

The performance measures chosen were average headway variation, average total system

time for a passenger, and average on-board bus delay.  Headway variation is defined as the

variation in times between the departure of one bus and the arrival of the next bus at a bus

stop.  The average headway variation is the average headway variation over the 21 bus

stops given by the following equation:

S H

n

i
i

n
2

1

( )
=
∑

where S Hi
2 ( )  is an estimate of the headway variation at each of the n stops:

S H
H E H
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j
j

m

i

i

2

2

1

1
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d i
=

−

−
=
∑ [ ]

and mi  is the number of observations of headway for a particular stop i.  Average headway

variation will be useful in comparing whether or not the control procedures work as

intended.
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The average total system time is the average amount of time a passenger spends in the

system.  This time includes time spent waiting at a bus stop, time spent on-board the bus,

and time spent on the bus due to being delayed at a control point.  The average system

time is different from the waiting time described by the objective function of Equation (2).

The waiting time of the objective function is a measure that incorporates all passengers in

the system without including time spent traveling on the bus.  The average system time

reported from the simulation is a measure for each passenger and does include the time

spent on the bus.  The average on-board delay penalty is a measure of the penalty

associated with holding passengers at a control stop and is equal to the number of people

on-board the bus multiplied by how long the bus was held at the control point.

STATISTICAL METHODOLOGY

Tests were conducted for three systems:  two static systems with different threshold

values and the dynamic system.  In order to compare the different systems, 95%

confidence intervals were developed for each of the performance measures.  The validity

of confidence intervals depends on two conditions.  The first condition is that the

performance measures are normally distributed.  The method of batch means was used to

approximate this condition (Banks and Carson 1984).  The size and number of the batches

depends on the number of replications of the simulations.  Since each replication produces

a single observation of each performance measure, 256 independent observations of each

performance measure were collected.  This allows for 32 batches of 8 observations of each
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performance measure.  Each batch will produce a batch mean,Υ r  where r = 1 32, ,K .  The

batch means should tend to be normally distributed according to the Central Limit

Theorem.  Hypothesis tests for a subset of the combinations of headway and arrival rate

settings were performed, see Turitto (1996).  The hypothesis tests for normality were not

rejected for any of the three performance measures for any of the sub-cases examined.  We

assume that these conditions will hold over all the different settings for all headway and

arrival rate combinations.  The other condition that must hold for valid confidence

intervals is that the performance measures be independent and identically distributed.

Since common random numbers were used in the simulations, the performance measures

were not independent across the different strategies.  In other words, the batch means for

each of the three systems being compared, Υ r1,Υ r 2 ,Υ r 3, are correlated for each strategy j

= 1,2,3.  Table 2 describes each strategy.

Table 2 Simulated Strategies

Strategy Number Strategy Description

j = 1 Static, x f  = H s

j = 2 Dynamic

j = 3 Static, x f  = H s- 1

In order to compare the three strategies, common random numbers in conjunction with the

Bonferroni Method was used (Banks and Carson, 1984).  This method allows for

comparisons by taking the difference between the performance measures for each strategy

as shown below:
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D Y Y rr r r12 1 2 1 32= − =, , ,K

D Y Yr r r13 1 3= −

D Y Yr r r23 2 3= −

These differences are independent, identically, distributed random variables.  From these

differences, the 95% confidence intervals were computed for each performance measure

so that the approximate overall error in any one of the three intervals is less than or equal

to 15%.  From each confidence interval, one can then decide which strategy performed the

best according to each performance measure.  The following section shows the results of

the confidence interval comparisons.  For a more detailed analysis and an examination of

the sensitivity of the effect of changing the running time variation and on the effects of

changing the range of threshold values, we refer the interested reader to Turitto (1996).



20

ANALYSIS OF RESULTS

The following three tables indicate the confidence interval half-widths computed for Case

2 of Table 1.  These confidence intervals were computed over the differences, Dr12, Dr13,

Dr23 where r = 1 32, ,K .  Table 3 shows the confidence interval half-widths created over

the differences Dr12 for each performance measure while Table 4 shows the confidence

interval half-widths created for the differences Dr13 and Table 5 shows the confidence

interval half-widths created for the differences Dr23.  Headway variation in Table 3 shows

that the mean difference between the two strategies for that performance measure is

negative.  This indicates that batch means for the average headway variation are less for

strategy one than for strategy two.  This mean difference is considered significant because

the confidence interval for the mean does not contain the value zero.  We can thus

conclude that the average headway variation based on strategy one is less than the average

headway variation based on strategy two.  The headway variation column in Table 4

indicates that strategy one is better that strategy 3.  The headway variation column in

Table 5 indicates that strategy 3 is better that strategy 2.  Thus, based on the Bonferroni

inequality, we can be 85% confident that strategy 1 is the best strategy for reducing

headway variation for Case 2.  The same argument can be made to show that strategy 1 is

the winner in terms of total system time.
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Table 3 Results for Case 2 Static x f = 10 vs. Dynamic

Headway

Variation

Waiting Time Delay Penalty

Mean -11.786 -1.0261 12.020619

Standard Error 0.304816 0.0360964 0.4507424

Half Width ± 0.621678 ± 0.0736191 ± 0.9192957

For the performance measure of delay penalty, Tables 3 and 4 show that the mean

difference is positive.  Table 3 indicates that the batch mean for the delay penalty average

is less for strategy two than for strategy one.  Table 4 indicates that the batch mean is less

for strategy three than for strategy one.  In Table 5 the mean difference is negative, which

shows that the batch mean for penalty average is less for strategy two than for strategy

three.  Based on these results, we can conclude that the delay penalty associated with

implementing strategy two was significantly less than the delay penalty associated with

implementing strategy one or strategy three.

Table 4 Results for Case 2 Static x f = 10 vs. Static x f = 9

Headway

Variation

Waiting

Time

Delay

Penalty

Mean -5.24234 -0.416327 1.5408536

Standard Error 0.201189 0.0349158 0.4900807

Half Width ± 0.410327 ± 0.0712112 ± 0.9995268
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Table 5 Results for Case 2 Dynamic vs. Static x f = 9

Headway

Variation

System

Time

Delay

Penalty

Mean 6.543611 0.6097728 -10.479766

Standard Error 0.340646 0.0435039 0.4206967

Half Width ± 0.694753 ± 0.0887268 ± 0.858017

This same analysis was repeated for all of the cases given in Table 1 and the strategies

given in Table 2 to yield the results indicated in Table 6.  For each combination, the

strategy that minimized each performance measure is displayed.  The results show that

setting the threshold value equal to the scheduled headway for the static strategy

outperforms the other strategies in minimizing headway variation for each of the

parameter settings.  In addition, the dynamic strategy was the winner in terms of delay

penalty.
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Table 6 Summary of Winning Strategies

Case Headway

Variation

Waiting

Time

Delay

Penalty

1 Static, x f  = H s Static, x f  = H s Dynamic

2 Static, x f  = H s Static, x f  = H s Dynamic

3 Static, x f  = H s Static, x f  = H s Dynamic

4 Static, x f  = H s Static, x f  = H s Dynamic

5 Static, x f  = H s Static, x f  = H s Dynamic

Figure 3 shows the basic relationship between headway variation, waiting time, and delay

penalty for Case 2 of Table 3.  The static x f  = H sstrategy (H s=10), has the lowest

headway variation but has the highest delay penalty.  The dynamic case has the largest

headway variation but the lowest delay penalty.  The change in delay penalty is larger than

the change in headway variation across the strategies.  This indicates that if on-board delay

is more important then the dynamic strategy may be worth pursuing.  This pattern of

tradeoff between headway variation and delay penalty was also found in the other cases

examined.
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Figure 4 shows how each strategy performs in terms of average headway variation by stop

for Case 2 of Table 3.  The largest amount of passenger boarding occurs at bus stop eight.

The control point was placed at bus stop seven.  From this graph, the benefits of placing

the control stop immediately before the bus stop with the largest amount of passenger

boarding can be seen.  Bus stop eight clearly experiences the lowest headway variation

thereby allowing a large proportion of passengers to benefit from the added control.
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Figure 4 Average Headway Variation for Case 2

The static threshold set at the headway also performs better than the other strategies in

minimizing total passenger system time.  Some researchers have found that setting

thresholds equal to the scheduled headway may actually increase the passenger system

times because passengers would be held longer at the control point.  The results seem to

indicate that this may not always be the case.  This can be attributed to the minimization of

headway variation.  Setting the threshold equal to the scheduled headway does such a

good job of minimizing the headway variation that the observed headway at the control

point is generally closer to the scheduled headway, which results in the bus not being held

that long at the control stop.  Setting the threshold value lower allows for a larger amount

of headway variation which results in the observed headway generally being farther away
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from the threshold value and therefore causing the bus to be held longer at the control

stop.

In terms of an objective of minimizing headway variation and minimizing system time, the

strategy of setting the threshold equal to the scheduled headway is virtually unbeatable for

these particular headway and arrival process settings.  Using a threshold of anything lower

than this allows for too much headway variation that results in higher system times.  This

explains why the dynamic case is not able to sustain comparable system time averages.

The dynamic strategy allows for too much variation as a result of the lower threshold

value in the range, which will cause the observed headway at the control point to generally

be much smaller.  The number of times the dynamic strategy holds for one minute when

the observed headway is large does not provide sufficient control to offset the variation

caused by the lower threshold setting.  Given these results, the original hypothesis that the

dynamic strategy could perform as well or better in terms of average system time is not

indicated; however, further analysis, to be explained below indicates the circumstances for

which the dynamic strategy is competitive.

PLACING MORE IMPORTANCE ON-BOARD THE BUS

The dynamic strategy places more importance on the passengers on-board the bus than the

other two static strategies.  The comparisons described above were made against static

strategies with thresholds that placed more importance on passengers downstream of the

control point.  In effect, the static strategies imply a preference by the transit manager to

place more importance on passengers downstream of the control point instead of
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preferring passengers on-board the bus.  In order to compare a dynamic strategy and static

strategy with regard to placing more importance on passengers on-board the bus, a lower

static threshold value of 8 was chosen for Case 2 of Table 3.  This was done in order to

demonstrate how the dynamic strategy performs compared to the setting of a threshold for

the static strategy that places more importance on passengers on-board the bus.  Figure 5

below shows the results of this test.
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Figure 5 Placing Importance on Passengers On-Board the Bus
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Table 7 Results for Case 2 Dynamic vs. Static x f = 8

Headway

Variation

System

Time

Delay

Penalty

Mean -3.33879 -0.242277 -7.8517713

Standard Error 0.363802 0.0482817 0.4041324

Half Width ±0.741979 ±0.0984711 ±0.824234

Table 7 presents the mean differences for the performance measure as well as the

confidence interval half-width.  The results indicate that the dynamic strategy has lower

headway variation, system time, and delay penalty average when compared to the static

strategy for a threshold value of eight.  The dynamic strategy can perform better than a

static strategy when passengers on-board the buses are considered more important than

downstream passengers.  The range of dynamic threshold values provides additional

control.  Since the lower range of the dynamic case is equivalent to the threshold value of

the static strategy, the strategies tend to allow for the same amount of headway variation.

In this particular case, holding the bus for one minute whenever the observed headway

falls within the range of threshold values for the dynamic case provides enough control to

reduce the headway variation more than the static strategy.  This added control reduces

the headway variation enough to cause a statistically significant reduction in system time

while still minimizing the delay penalty when compared to the static strategy.  This also

suggests that anytime the static threshold value is set to something other than the
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scheduled headway, using a dynamic strategy with a lower bound set to that static

threshold might be a feasible option.

In order to determine the tradeoffs each strategy achieves in the performance measures of

system time and delay penalty, each of the strategies for the cases given in Table 3 were

graphed using the values for delay penalty and system time.  Each strategy represents a

point on the graph.  A sample graph for Case 1 is given in Figure 6.
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y = -3.2291x + 100.86
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System Time

Strategy 1
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Figure 6 Sample Trade-off Graph

In order to determine which particular strategy should be implemented for a specific case,

the relative importance between system time and delay penalty must be determined.  The

graph shown above can be used to show which strategy to implement given a certain

amount of weighting placed upon a performance measure.  A line can be drawn on the

graph with a negative slope.  The absolute value of the slope indicates the weight assigned
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to the performance measure.  As the line is pushed from the lower left corner of the graph

to the upper right corner of the graph, the first strategy (point) that the line hits is the

strategy that should be chosen for that particular weighting.  As the slope of the line gets

closer to a value of 0, this causes the line to become more horizontal and indicates placing

more weight on delay penalty.  As the slope of the line gets larger, this causes the slope to

become more vertical and indicates placing more weight on system time.  The slope of the

line between any two strategies indicates the weighting at which indifference occurs.  In

this case either strategy can be used.  A positive slope between two strategies indicates

that one particular strategy dominates the other strategy.  In these cases, the dominant

strategy should always be chosen.

TRADE-OFF ANALYSIS

For each case below, a decision strategy is given that indicates which threshold strategy to

choose based on a weighting, ϕ , assigned to the system time as a performance measure.

While the results of this trade-off analysis are specific to the cases examined, the

methodology is applicable to deciding which strategy to use under a variety of weighting

preferences.  In addition, the results indicate that the dynamic strategy can be a preferred

option under certain circumstances.  For example, the results for Case #1 indicate that if

system time is less than 3.2 times more important than delay penalty, then the dynamic

strategy should be implemented.  If system time is greater than 11.2 times more important

than delay penalty then the static strategy with the threshold = 10 should be implemented,

etc.  In situations where ϕ  is equal to the bounded slope value, either strategy could be

implemented.  A bounded slope value of 1 indicates equal weighting between delay

penalty and system time.
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Case #1:

If ϕ  < 3.2 implement Dynamic Strategy

If 3.2 <  ϕ   < 11.2 implement Static Strategy with threshold  = 9

If  ϕ  > 11.2 implement Static Strategy with threshold = 10

Case #2:

If  ϕ  < 17.2 implement Dynamic Strategy

If  ϕ  > 17.2 implement Static Strategy with threshold = 10

Case #3:

If ϕ  < 1.2 implement Dynamic Strategy

If 1.2 < ϕ  < 30.1 implement Static Strategy with threshold = 7

If ϕ  > 30.1 implement Static Strategy with threshold = 8

Case #4:

If  ϕ  < 4.4 implement Dynamic Strategy

If  ϕ  > 4.4 implement Static Strategy with threshold = 8

Case #5:

If  ϕ  < 15.3 implement Dynamic Strategy

If  ϕ  > 15.3 implement Static Strategy with threshold = 10

For Case #1, any of the three strategies can be chosen depending on the importance of

system time; however, it seems unlikely that enough importance would be placed upon

system time to ever choose the strategy of setting the threshold equal to the scheduled
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headway.  For Case #2, the possibility of only choosing between two strategies exists.

This is because a line drawn with any negative slope on a trade-off graph will always cross

either the dynamic strategy or the static strategy with X = 10 before crossing the other

static strategy.  In this situation, the combination of both these strategies dominates the

third strategy.  The rest of the cases were developed based on the results given in Table 8.

In Table 8, the slope column indicates the slope associated with the line fitted to the

performance measures, system time (x-axis) and delay penalty (y-axis), for the strategies

indicated.  For example, the slope of (–3.229) is the slope between strategy 1 (S1) and

strategy 2 (S2).

These results indicate that unless a significant amount of importance is placed upon system

time as a performance measure, choosing a static strategy with the threshold equal to the

scheduled headway is not a likely choice.  In fact, these results indicate that in most cases

the tradeoff of the slight increase in system time for the significant decrease in delay

penalty makes the dynamic strategy an acceptable choice.
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Table 8  Trade-off Slopes

Case Strategy System

Time

Delay

Penalty

Slope

1 1 22.977 26.665 -3.229 (S1-S2)

2 23.981 23.423 -2.207 (S2-S3)

3 23.091 25.387 -11.211 (S3-S1)

2 1 24.804 40.503 -11.716 (S1-S2)

2 25.83 28.482 -17.180 (S2-S3)

3 25.22 38.962 -3.704 (S3-S1)

3 1 21.725 23.71 -4.003 (S1-S2)

2 23.021 18.522 -1.217 (S2-S3)

3 21.85 19.947 -30.104 (S3-S1)

4 1 22.81 35.192 -4.442 (S1-S2)

2 24.541 27.503 -8.345 (S2-S3)

3 23.57 35.606 0.545 (S3-S1)

5 1 23.648 35.164 -7.127 (S1-S2)

2 26.775 12.877 -15.324 (S2-S3)

3 26.188 21.872 -5.233 (S3-S1)

CONCLUSIONS

The results of this research reveal both the strength and weakness of the static threshold

strategy.  The strength of the static case is its ability to minimize headway variation
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whenever the threshold is set to or very near to the scheduled headway.  This minimization

of headway variation propagates down to reducing passenger system times.  The

weakness of the static strategy is the potential for holding for long periods of time at the

control point and thus penalizing passengers on-board the bus.  The main objective of the

dynamic strategy is to reduce this penalty to passengers on-board the bus while still

providing enough control to cause no significant difference in passenger system time when

compared to the static case.  The research reveals that in most cases the dynamic strategy

does in fact reduce the penalty to on-board passengers when compared to the static

strategy but with the tradeoff of increasing passenger system time slightly.  This increase

in passenger system time is a result of the dynamic strategy being unable to cause enough

of a reduction in headway variation; however, our analysis indicates that the reduction in

delay penalty is worth the increase in passenger system time.

Cases where the dynamic strategy is an overall better choice than the static strategy seem

to occur in situations where the static threshold is set somewhat less than the scheduled

headway.  Three possible reasons exist for setting a lower static threshold:  1) either

placing a significant amount of importance on passengers on-board the bus, 2) when the

coefficient of variation along the route is fairly high, see Turitto (1996), or 3) when the

number of passengers along the route is fairly low.  For the situation of high coefficient of

variation, the additional delays at the control stop increase the average passenger system

time.  The static strategy holds longer because of the higher headway variation along the

route.  The higher headway variation is a direct result of the high running time variation.

This high headway variation causes excessive bunching of buses.  Bunching causes smaller
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than normal observed headway at the control point.  In order to reduce excessive holding

at the control point, the threshold value would have to be lowered from the scheduled

headway.  In either of these cases, preliminary results from our research indicate that the

dynamic strategy is a feasible alternative to the static strategy in that it reduces delay to

passengers on-board the bus without causing any change in passenger system times.

Further, the research suggests that setting the lowest value in the range of dynamic

threshold values to the reduced static threshold value would produce better results in

terms of passenger system time and delay penalty.
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