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Breast Cancer Statistics
In the next 12 months, the American Cancer Society estimates:

>192,000 newly diagnosed cases of breast cancer

>40,000 women will die of breast cancer

One breast cancer death every 13 minutes (on average) in the USA

Jemal, et al., CA Cancer J Clin 59:225-249, 2009
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Antiestrogens (TAM) and Clinical Outcomes 

Intratumoral 17β-Estradiol
12 studies (all women) n=592 1.28 nM
Postmenopausal (n=34) 1.40 nM

Intratumoral Tamoxifen
Estimated RBA Adjusted 320 nM [drug + metabolites]

Clarke, et al., Pharmacol Rev 53: 25-71, 2001

• ~70% of newly diagnosed cases are ERα positive (ER+) and may benefit from TAM

Age (Menopausal Status) Risk Reduction1

Recurrence: <50 years (ER+) 45 ± 8%
Recurrence: 60-69 years (ER+) 54 ± 5%
Recurrence (ER-) 6 ± 11% (not significant)

Death: any cause <50 years (ER+) 33 ± 6% 
Death: any cause 60-69 years (ER+) 32 ± 10%
Death: any cause (ER-) -3 ± 11% (not significant)

• Reduction in risk is seen irrespective of menopausal status/age
• In postmenopausal patients, this benefit is comparable to that seen for cytotoxic

chemotherapy
1Proportional reduction in the 10-year risk of recurrences from the Early Breast Cancer Trialists Group meta analyses
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Endocrine Resistant Phenotypes 

Clarke et al., Oncogene 22: 7316-7339, 2003

Several pharmacological phenotypes

• Pharmacologic phenotypes
− TAM stimulated (<20% of cases)
− estrogen inhibited (~3% of cases)
− antiestrogen unresponsive (>75% of cases)

Two primary estrogen receptor phenotypes

• ERα positive (ER+)
− about 50% of ER+ tumors are de novo resistant (25% if ER+/PgR+)
− most acquired antiestrogen resistant tumors are ER+

• ERα negative (ER-)
− almost all ER- tumors are de novo resistant
− some acquired resistant tumors become ER-
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Hypotheses
To understand why some ER+ breast cancers are (or become) resistant to 
endocrine therapies, we invoke an integrated, multimodal, gene network 
hypothesis 

– network comprises multiple interacting signaling modules
– exhibits both redundancy and degeneracy

In the face of the stresses induced by endocrine therapies, the modules of 
interest are those that regulate the cell’s choice

– to live or die
– if to live, whether or not to proliferate (cell cycling)
– if to die, how to die (apoptosis, autophagy, senescence, necrosis)

Measuring the expression and regulation of key components of this network, and 
using these data to construct predictive network models, will improve our ability 
to predict responsiveness in individual patients and identify new targets for 
therapeutic intervention

A systems biology approach is required to integrate knowledge from cancer 
biology with computational and mathematical modeling



COMPREHENSIVE
CANCER CENTER at GEORGETOWN UNIVERSITY

Lombardi

Robert Clarke, Ph.D., D.Sc.

Systems Biology in Breast Cancer Research

● Systems biology goals
– interactions among the components of a biological system
– how these interactions control system function and behavior
– integrate and analyze complex data from multiple sources using 

interdisciplinary tools
– build in silico models of system (network) function

Study of an organism viewed as an integrated and interacting network
of genes, proteins, and biochemical reactions that give rise to life…*

*Institute for Systems Biology

Systems Biology Research Cycle
Endocrinologist 94: 13, 2010 

Biological cycle

Integration with modeling
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Nodes and Edges Nodes and Directed Edges Nodes and Directed Edges

with Weights

● Network is a graph with nodes/vertices and edges
● Nodes can represent different properties

– gene, protein, transcription factor (TF), TF target

● Edges that connect nodes have directionality and weight
– distance, strength of interaction, frequency of use

Signaling Networks

not
KEGG

not
BIOCARTA
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Network Modeling: Wicked but Tractable Problem
● Module(s) of interest is a subnet within the entire human interactome
● Search space is immense (very high dimensionality)

– about 30,000 genes in the human genome
– perhaps 650,000 protein interactions alone
– many latent variables (sparce data)

● We don’t know all of the genes/proteins involved
– their properties/functions/connectivity
– topology of the subnetwork module(s) is unknown
– effect of cellular context on connectivity and function

● Network will be high dimensional (even with few nodes)
– curse of dimensionality
– confound of multimodality

● Large networks have unique properties
– scale free
– small world
– critical threshold All connections from only 11 seeds

Clarke et al., Nature Rev Cancer 8: 37-49, 2008
Stumpf et al., PNAS 2008  



COMPREHENSIVE
CANCER CENTER at GEORGETOWN UNIVERSITY

Lombardi Random Scale-free

● Scale-free networks (thought to include most biological systems)
– connectivity (probability that a node interacts with k other nodes) follows 

a power-law distribution P(k)=k -γ
– most nodes are connected to a small proportion of other nodes
– small proportion of nodes are highly connected (hubs)
– modular with a hierarchical structure linking modules

● Individual nodes are very stable to disruption
– stay interconnected even with high nodal failure rates (error-tolerant)

● Vulnerable to attacks of the hubs
– may be good candidate biomarkers of network integrity and for drug discovery
– failure to target multiple hubs will lead to poor responses and/or short

response duration with (often rapid) onset of drug resistance

Scale Free Networks and Connectivity
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Addressing Network Modeling Challenges
• Top Down (ease curse of dimensionality)

– reduce dimensionality
– identify knowledge enriched gene pool subsets/modules
– allow more than one module to represent a function (degeneracy)

• Bottom Up (learn local node-edge-hub topology)
– start with small number of select nodes (often from top down approach)
– allow genes to be in more than one module (redundancy and

multimodality)

• Model Properties
– robust, reproducible, valid across closely related conditions
– propose testable hypotheses for validation in wet lab studies
– incorporate knowledge from multiple sources
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● For endocrine resistance, our ultimate goal is to model how ER
regulates molecular signaling and cellular functions to affect
the responsiveness of breast cancer cells to these therapies

● We apply both computational and mathematical modeling tools
– computational models can find local topologies or modules within high

dimensional data using multiple different methods (top down)
– mathematical models can represent local topologies or modules by a series

of differential equations, stochastic reaction networks, etc. (bottom up)
– data from patient specimens, chemically-induced rodent models, xenografts, 

and breast cancer cell lines 

Computational modeling Physical modeling

Approaches to Network Modeling 

Zhang et al., PLoS ONE, 5 (4): e10268, 2010 Zhang et al., Bioinformatics 25: 526-532, 2009
Chen et al., Bioinformatics, 26: 1426-1422, 2010 Chen et al., Int J Data Mining Bioinformatics, 3: 365-381, 2009
Yu et al., J Mach Learn Res, 11;2141-2167, 2010 Zhang et al., BMC Genomics, 10:S15, 2009
Wang et al., BMC Bioinformatics, 11:162, 2010 Zhu et al., BMC Bioinformatics, 9: 383, 2008
Clarke et al., Nature Rev Cancer 8: 37-49, 2008 Wang et al., BMC Bioinformatics, 9: S21, 2008
Wang et al., Bioinformatics, 23: 2024-2027, 2007 Xuan et al., EURASIP J Bioinformat System Biol, 2007
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Two Studies of Cell Fate Signaling

● Time course data in ER+ breast cancer cell lines treated with 
17β-estradiol (E2) and/or Fulvestrant (Lin et al, 2004)

– hypothesis: that time dependent changes in gene expression
identify new topological features of ER-driven signaling

– Affymetrix platform

● Sensitive (LCC1) vs. resistant (LCC9) human breast cancer
variants

– hypothesis: that differences in gene expression patterns will
identify new topological features of hormone resistance signaling

– Affymetrix, 2D-gel, and SAGE data

Computational Modeling of Hormone Resistance
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Differential Dependency Network Analysis
• Represent the local structures of a network by a set of local conditional 

probability distributions – decompose the entire expression profile into
a series of local networks (nodes and their parents)

– local dependency is learned
– local conditional probabilities are estimated from linear regression model
– allow more than one conditional probability distribution per node
– Lasso technique is used to limit overfitting

• Identify motifs and “hot spots” within motifs
– T47D cells ± E2; ±Fulvestrant (data from Lin et al., Genome Biol vol 5, 2004)
– key nodes identified include XBP1, NFκB, BCL2

Wang et al., Bioinformatics, 2009

plasma membrane

cytosol

nucleus

extracellularly exposed

plasma membrane

cytosol

nucleus

extracellularly exposed
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Two Studies of Cell Fate Signaling (#2)

● Time course data in breast cancer cell lines treated with 
17β-estradiol (E2) and/or Fulvestrant (Lin et al, 2004)

– hypothesis: that time dependent changes in gene expression
identify new topological features of ER-driven signaling

– Affymetrix platform

● Sensitive (LCC1) vs. resistant (LCC9) human breast cancer 
variants

– hypothesis: that differences in gene expression patterns will
identify new topological features of hormone resistance signaling

– Affymetrix, 2D-gel, and SAGE data

Computational Modeling of Hormone Resistance
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Gene Name Gene Symbol1 Difference p-value
Genes Up-regulated in LCC9 vs. LCC1

Cathepsin D CTSD 5-fold <0.001

X-box Binding Protein-1 XBP1 4-fold <0.001

Heat Shock Protein 27 HSBP1 2-fold 0.001

Nucleophopsmin (numatrin) NPM1 2-fold 0.01

Vitamin B12 Binding Protein TCN1 2-fold 0.002

NFκB (p65) RELA 2-fold <0.05

Genes Down-regulated in LCC9 vs. LCC1
Death Associated Protein 6 DAXX 6-fold 0.049

Early Growth Response-1 EGR1 3-fold <0.05

Interferon Regulatory Factor-1 IRF1 2-fold <0.05

Tumor Necrosis Factor-α TNF 2-fold <0.05

TNF-Receptor 1 TNFRSF1A 2-fold <0.05

Gu et al., Cancer Res 62: 3428-3437, 2002
Other unpublished data

Data are mean values of the relative level of expression for each gene to the nearest integer; 1Gene Symbols as approved by HUGO

Genes Associated with Endocrine Resistance
LCC1 vs. LCC9: Genes selected from our SAGE, gene microarray, and 2D-gel data sets



COMPREHENSIVE
CANCER CENTER at GEORGETOWN UNIVERSITY

Lombardi

Symbol Gene Name Change p-value # CREs
APBB2 amyloid beta (A4) precursor protein-binding -1.3 0.001 1

BCL2 B-cell CLL/lymphoma-2 3.1 0.029 3

CRK v-crk sarcoma virus CT10 oncogene homolog -2.0 0.003 2

ESR1 estrogen receptor alpha (ERα) 2.8 0.040 0*

IL24 interleukin 24 -9.7 <0.001 1

MYC v-myc myelocytomatosis viral oncogene homolog 1.6 0.04 1

PHLDA2 pleckstrin homology-like domain, family A, member 2 -3.3 0.004 2

S100A6 S100 calcium binding protein A6 (calcyclin) 2.3 0.001 1

XRCC6 X-ray repair complementing defective repair 6 1.6 0.016 1

Genes Regulated by XBP1(s) Overexpression

*several ATF6 sites that may be regulated by ATF6:XBP1 heterodimers

Gomez et al., FASEB J 21:4013-27, 2007
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Gene 
Symbol 

Global 
LCC1:LCC9 

mNCA 
LCC1:LCC9 

DDN 
T47D 

Local 
MCF7/XBP1 

Local 
MCF7/IRF1 

Validated 
LCC1:LCC9 

BCL2   X X X X 
BCL2L2     X  
EGR1 X X     
ERα  X  X  X 
IRF1 X     X 
NFkB X  X   X 
NPM X  X   X 
MYC  X  X   
XBP1 X  X   X 
 

Key Nodes are Found by Different Methods
Different methods and different comparisons find some common genes
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* p<0.001

1μM HA 14-1

Crawford et al., PLoS ONE, 2010

*, p=0.034; RI=1.82;    #, p=0.05; RI=1.48

Inhibiting NFκB Restores ICI Sensitivity

Riggins et al., Mol Cancer Ther 4: 323-412, 2005

XBP1 confers antiestrogen resistance

Gomez et al., FASEB J 21:4013-27, 2007
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Key Nodes are Associated with Clinical Outcome

Gene 
Symbol 

Clinical 
Assoc. 

BCL2 √ 
BCL2L2 ND 
EGR1 ND 
ERα √ 
IRF1 √ 
NFκB √ 
NPM √ 
MYC √ 
XBP1 √ 

 

ND=no data (yet!)Davies et al., Int J Cancer (2008)

XBP1 and TAM recurrence
n=100 cases
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Endoplasmic
Reticulum

Nucleus

Three primary sensors
PERK, ATF6, IRE1α

Unfolded Protein Response (UPR)

XBP1 is a required effector in two arms of 
the transcriptional component of the UPR

Adapted from Szegezdi et al. 2006
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Endogenous XBP1 in Endocrine Responsiveness
• XBP1 estrogenic regulation is lost in LCC9 cells

LCC1 cells are TAM and FAS sensitive
LCC9 cells are TAM and FAS crossresistant

Ctr

20
40
60
80
100
120
140

A
ct

iv
it

y 
(%

 C
on

tr
ol

)
Re

gu
la

ti
on

 o
f 

CR
E 

100 nM FASCtr

20
40
60
80
100
120
140

A
ct

iv
it

y 
(%

 C
on

tr
ol

)
Re

gu
la

ti
on

 o
f 

CR
E 

100 nM FAS

20
40
60
80
100
120
140

A
ct

iv
it

y 
(%

 C
on

tr
ol

)
Re

gu
la

ti
on

 o
f 

CR
E 

20
40
60
80
100
120
140

20
40
60
80
100
120
140

A
ct

iv
it

y 
(%

 C
on

tr
ol

)
Re

gu
la

ti
on

 o
f 

CR
E 

A
ct

iv
it

y 
(%

 C
on

tr
ol

)
Re

gu
la

ti
on

 o
f 

CR
E 

100 nM FAS

XBP1 Western

← XBP-1(S)

FAS = Faslodex; Fulvestrant; ICI 182,780
TAM = Tamoxifen
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• Most XBP1 is present as the spliced form XBP1(S)
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Basal XBP1 (CRE) Activity

• XBP1 transcriptional activity is increased 4-fold in LCC9 vs. LCC1 cells p<0.001
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XBP1(s) Modulates Endocrine Responsiveness

Gomez et al., FASEB J 21:4013-27, 2007

FAS = Faslodex; Fulvestrant; ICI 182,780
TAM = Tamoxifen

Estrogen-independence is phenotypically similar
to aromatase inhibitor resistance

XBP1(s) confers Estrogen Independence

MCF7/XBP1

MCF7/c

MCF7/XBP1

MCF7/c

XBP1(s) confers Antiestrogen Resistance
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MCF-7 and T47D cells transfected with the full length (unspliced) cDNA
primarily generate the spliced variant XBP1(S) 
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XBP1(s) Modulates Endocrine Responsiveness

Gomez et al., FASEB J 21:4013-27, 2007
Shajahan et al., in preparation

XBP1(s) reduces endocrine-induced cell cycle arrest
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XBP1(s) reduces endocrine-induced apoptosis
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BCL2 is up-regulated in LCC9 cells LCC9 cells have lost BCL2 regulation by antiestrogens 

XBP1(s) and BCL2 in Endocrine Resistance

Crawford et al., PLoS ONE, 2010
Nehra et al., FASEB J, 2010

BCL2 is increased in MCF7/XBP1 cells
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Mathematical Modeling of Hormone Resistance
• Goals 

– understand development of ER signaling, estrogen independence
and antiestrogen resistance

– generate new hypotheses of signal regulation and flow
– design informative experiments to test new hypotheses 

(iterative model building)

• Types of models
– based on molecular interactions
– modeled using ordinary differential equations or stochastic

reaction networks

• Modular approach
– build models for individual modules
– cell cycle, apoptosis, autophagy, unfolded protein response, etc.
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Initial “Control Overview” Wiring Diagram

Crawford, et al., PLoS ONE, 2010 Nehra et al., FASEB J, 2010 Ning et al. Mol Cancer Ther, 2010
Cavalli et al. Breast Cancer Res Treat, 2010 Clarke, et al, Nat Rev Cancer, 2008 Riggins et al., Cancer Res, 2008
Shajahan, et al., J Biol Chem, 2007 Gomez et al., FASEB J, 2007 Bouker et al., Cancer Genet Cytogenet, 2007
Wang, et al.,  Cancer Cell, 2006 Zhu, et al., Int J Oncol, 2006 Bouker et al., Carcinogenesis, 2005
Riggins et al., Mol Cancer Ther, 2005 Bouker et al., Cancer Res, 2004 Pratt et al., Mol Cell Biol, 2003
Gu et al., Cancer Res, 2002

caspases
1, 3/7, 8 Apoptosis

cell death

mitochondrial permeability

ESR1

BCL2/3↑

↑

BIK ↑BCLW

NPM1 ↑ IRF1

↑

NEMO ↑

NFkB ↑

XBP1

↓

BECN1

Autophagy
(prosurvival)

Unfolded Protein Response
endoplasmic reticulum

ESR1
CAV1

Signaling among subcellular organelles/compartments to guide mathematical modeling
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● Transitional signaling from sensitive to resistant  
– proliferation signaling dominates early responses
– cell survival signaling dominates stable acquired resistance
– cells coordinate regulation of metabolic and survival signaling

● Short-term responsiveness (selected nodes - time course study)
– AKT, BCL2, BIK, BIRCs1/2, MAPKs (n=6), NFkB, NPM3, XBP1

● Long term acquired resistance (selected nodes – LCC1 vs. LCC9 studies)
– BCL2, BCL2L, BIK, ERα, EGR1, IRF1, MYC, FOXO3a, NFkB, NPM1, XBP1

● Some genes (or closely related gene functions) are common
– BCL2, NFkB, BIK, NPM, XBP1

● Resistance may not require many new nodes but does change
the nature/usage of existing edges among nodes
(it’s mostly the same network of nodes, its just wired differently)

● Consistent with current graph and network theories
– predict that rewiring for resistance is conferred, at least partly, by 

the altered regulation of key nodes (e.g., by ER) with only limited 
linking to new nodes

– in our resistant models IRF1, NFkB, XBP1, BCL2 lose their endocrine
regulation

Conclusions
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