
71

A Biophysics and 
Bioengineering 
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What makes 
breast cancer a 
hard problem, 
and where are 
some keys to its 
prevention, 
control, and 
cure?
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What I won’t discuss

• Bioelectricity and biomagnetism in breast cancer
• Microfabricated devices for cancer research

– Cell motility
– Adhesion of rolling cells
– Cell stiffness
– Cell migration after patterning
– Cellular haptotaxis on patterned substrates
– Murine mammary fat pad windows
– Three dimensional microbioreactors
– Hollow fiber bioreactors
– A perfused murine aorta model for angiogenesis
– A microbioreactor for angiogenesis in the chick alantoic

membrane
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Thick Tissue Bioreactor:
Validated with organotypic cultures and testing of drug delivery of 

chemical inhibitors of mammosphere formation

Feeding tube

Input 
manifold

Output 
manifold

Aseptic 
filter

Wast
e bag

Reactor cartridge

Sample 
collection

Lisa McCawley and Dmitry Markov, Vanderbilt
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Planar PCPB (parallel capillary perfused bioreactors) 
coating with various cell adhesion receptors and assaying neutrophil interaction. 

Cell above 
focal plane

Rolling 
cells

Lisa McCawley and Dmitry Markov, Vanderbilt
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Let’s discuss control and the complexity of 
biology, starting with the end of the talk.



© Vanderbilt University 2007

Can we instrument and control cancer?



The future of biology and cancer medicine is distributed 
hybrid multiscale non-linear stochastic control

De Visser, Cancer Immunol Immunother (2008) 57: 1531-1539



The future of biology and cancer medicine is distributed 
hybrid multiscale non-linear stochastic control

De Visser, Cancer Immunol Immunother (2008) 57: 1531-1539



INPUT ACTUATORS
• Chemical
• Electrical
• Genetic
• Mechanical
• Optical
• Thermal
• Scaffolding

OUTPUT SENSORS
• Apoptosis
• Differentiation
• Gene / Protein Expression
• Growth 
• Metabolism 
• Motility
• Signal Transduction

C(s) G(s)

C(s) G(s)Inputs Outputs

LeDuc, Messner,  Wikswo. How do controls approaches 
enter into biology. Submitted, 2010.
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• Multiple, fast                                                 
sensors

• Openers (Mutations,
siRNA, drugs) for the 
internal feedback 
loops

• Intra- and                                       
extracellular                                       
actuators
for controlled
perturbations

• Algorithms that create 
feedback loops to 
automatically probe 
the system and report 
the feedback signal.

Actuator

Actuator

Integration
and Feedback

Integration
and Feedback

Actuator

Integration
and Feedback

Sensor

Sensor

Sensor

Cell

What Do We Need to Understand Cells?

Wikswo et al., IEE Proc Nanobiotechnol. 153: 81-101 (2006)



Machine Learning: A robot that 
can infer a model of “itself”

Hypothesis: Machine 
learning and model 
inference with 
automated 
experimentation can be 
extended from robots to 
bioreactors

11

J. Bongard, V. Zykov, and H. Lipson, Resilient 
Machines Through Continuous Self-Modeling, 
Science, 314, 1118-1121, 2006 
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Microfabricated Multitrap Nanophysimeters
(MTNPs) enable dynamic measurements on 
small populations of cells

Faley,S et al., Lab on a Chip, 8:1700-1712 (2008) & 9(18):2659-2664, 2009.



Outflow
& IM-MS

CONTROLSACTUATORS
(Inputs)

SENSORS
(Outputs)

Morphology
Size, shape, optical density, motility, 
division, organelle configuration

Force
Shear, tension, deformation

Intracellular Signaling (Optical)
GFP/luciferase reporters, [Ca]I, pHi, Vm, 
MMP, GFP FRET

Extracellular Electrolytes (Electrochemical)
[Na]e, [Ca]e, [K]e, [Mg]e, [PO4]e, [Cl]e, [HCO3]e

Neurotransmitters (Electrochemical)
Seratonin, acetocholine, GABA, …

Extracellular Metabolites (Electrochemical) 
[glucose](t), [lactate](t), [pH](t), [O2](t), NO(t), 
H2O2(t) …

Extracellular Metabolites (GC IM-MS)
Amino acids, small metabolites, stable 
isotopic markers

Surface Expression
Specific affinity probes

Soluble Gene Expression (nESI IM-MS)
Cytokines, growth factors
hormones, enzymes

Cytosolic Proteins (MALDI IM-MS)
Lipids (Cell Lysate IM-MS)
Gene expression (mRNA Arrays)
. . .  

Base medium
Amino acids (~15)
Cytokines (N>>1)
Growth factors(N>>1)
Hormones (N>>1)
[Na]e [Ca]e [K]e [Mg]e
[glucose](t)
[lactate](t)
[PO4]e
[pH] (t)
[O2](t)

Optical
Genetic
Thermal
Electrical
Mechanical

Inflow SYSTEM

MODEL
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15

Media 
Component 
Reservoirs

Our Robot Scientist:
VIIBRE Automated Omni-Omics

Electrochemical 
Metabolite 
Sensors

Local 
System Controller

Bidirectional 
Data/Control SQL Server

Inferred Model
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The End
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How hard a problem is cancer?
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Just how hard is a hard problem?
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What is your favorite REALLY 
HARD problem?
• What is the nature of dark energy?
• What is the chemistry of interstellar space?
• What occurred at the origin of life?
• How does the brain work?
• Can we create life de novo?
• Can we save the planet from its human infestation?
• …
• How do describe fully the spatiotemporal multiscale 

complexity of a biological system?
• …
• How do you cure breast cancer?
• How do you control breast cancer?
• How do you prevent breast cancer? 
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If the human brain were so simple
that we could understand it,
we would be so simple 
that we couldn't.

Emerson M. Pugh, 1938

A Really Hard Problem
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The same observation applies to biology:

Human biology is too 
complicated for humans 
to fully comprehend.

John Wikswo

A Really Hard Problem
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So just how hard are biological problems?
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Images by CFDRC and VUMC
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Multiscaling makes biological problems hard

• Spatial extent
– Number of interfaces

• Temporal extent
• Number of molecular species
• Complexity of interactions
• Emergent behavior

Yeast Interactome
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Images by CFDRC and VUMC
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Multiscaling makes cancer a very hard problem



Lymphatic metastasis is a major pathway for tumor 
dissemination

Image taken from: www.nccroncology.ch/scripts/index.aspx?idd=110.
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3D microenvironment provides 
numerous biophysical cues

Image taken from: Griffith L.G. et al., Nature Molecular cell Biology Review, Vol.7 (2006)



Autologous chemotaxis as a mechanism of tumor cell 
homing to lymphatics

Shields, J.D., et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and 
autocrine CCR7 signaling. Cancer Cell, 2007. 11(6): p. 526-538
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Monocytes into M1 or M2 Macrophages

In the presence of
• Interferon (IFN)
• Lipopolysaccharide (LPS) 
• Other microbial products

• High microbicidal activity
• Kill intracellular parasites
• Immuno-stimulatory functions
• Tumor cytotoxicity

In the presence of
• Macrophage colony stimulating factor 

(CSF-1)
• Interleukin (IL)-4, IL-13, IL-10
• Immunocomplexes in association with 

either IL-1R- or TLR-ligands

• High scavenging ability
• Kill and encapsulate parasites
• Promote tissue repair and 

angiogenesis by matrix repair and 
remodeling

• Favor tumor progression.

M1 M2

M

NAKFI Complexity 2008: Amy Bauer, Chen Hou, Wolfgang 
Losert, Roger Narayan, Leor Weinberger, John Wikswo, 

Lani Wu,  Mingjun Zhang, Hadley Leggett
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Pre

A B

time

[A]

time

[B]

The Yogi Berra problem generalized:
Control the A/B population

When a cell comes to a fork in the road, it takes it.
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It is in fact a bit more complicated…

Breast Cancer Research Vol 9 No 4 DeNardo and Coussens

M2M1
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Cell differentiation
Rolling down the epigenetic landscape

M1

Pre
M2
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Cancer 
Cell

Actuator

Actuator

Integration
and Feedback

Sensor

Sensor

Integration
and Feedback

SensorActuator

Target 
Cell
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A Complex problem

• Suppose the disease is an emergent phenomenon…
the collective effect of multiple mutations and extensive 
gene regulatory changes in an ensemble of cells leading to 
a new dynamic (dis)equilibrium state
– Type II diabetes
– Lupus
– Schizophrenia
– Most cancers

• And God said
– Let it be cured by distributed hybrid multiscale 

non-linear stochastic control



The epigenetic landscape reflects complex and dynamic 
genetic control

Nonequilibrium thermodynamics allows 
uphill motions Waddington, 1957 



Shift the Epigenetic Landscape to Control Cell Fate

M2M1

M2M1

Pre



Shift the Epigenetic Landscape to Control Cell Fate

M2M1

M2M1

Pre
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Can reductionist science solve the problem?
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Step 1 in Science:
Reductionist Explanations

Thermodynamics

Statistical 
mechanics

Molecular/atomic 
dynamics

Electrodynamics

Quantum 
chromodynamics

Bulk solids

Devices

Continuum 
models

Microscopic 
models

Atomic physics

Anatomy

Physiology

Organ

Cell

Protein

Genome
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Step 2 in Science:
Post-Reductionist Theory

Thermodynamics

Statistical 
mechanics

Molecular/atomic 
dynamics

Electrodynamics

Quantum 
chromodynamics

Bulk solids

Devices

Continuum 
models

Microscopic 
models

Atomic physics

Behavior

Physiology

Organ

Cell

Protein

Genome

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments

Experiments
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Step 2 in Science:
Post-Reductionism

Thermodynamics

Statistical 
mechanics

Molecular/atomic 
dynamics

Electrodynamics

Quantum 
chromodynamics

Bulk solids

Devices

Continuum 
models

Microscopic 
models

Atomic physics

Behavior

Physiology

Organ

Cell

Protein

Genome

Experiments

Experiments

Experiments

Experiments

Experiments

Systems Biology

Systems biology is 
quantitative, 

postgenomic, 
postproteomic, dynamic, 
multiscale physiology.
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Kinetic Models

A Really Hard Problem:
Metabolic and Signaling Kinetics

in a Multiscale Environment

• Question: 
– How do we describe and interpret biological 

complexity over multiple spatiotemporal 
scales?

• The standard solution: 
– Genomics, proteomics, metabolomics arrays 
– Reductionist analysis of components
– Mathematical modeling….



Courtesy of  S. Sundaram and Jerry Jenkins, CFDRC,
D. Cliffel, Vanderbilt

Algorithmic Framework

T-cell SignalingCentral Carbon Metabolism

The Models
Effective Models



Molecular Interaction Map: DNA Repair

KW Kohn, “Molecular Interaction Map of the Mammalian Cell Cycle Control 
and DNA Repair Systems,” Mol. Biol. of the Cell, 10: 2703-2734 (1999)
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How Many Bits?

• 1 bit = Boolean Logic
• 2 bits = Bialekan Logic
• …
• N bits = Bio Logic

How big is N?
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‘Postgenomic’
Integrative/Systems 
Physiology/Biology

• Specify concentrations and
• Rate constants
• Add gene expression,
• ProteinN interactions, and
• Signaling pathways
• Time dependencies
• Include intracellular spatial 

distributions, diffusion, and 
transport: ODE → PDE(t) 

• … and then you can calculate
how the cell behaves in response 
to a toxin

• Suppose you wanted 
to calculate how the 
cell responds to a 
toxin…



748

The Catch
• Modeling of a single mammalian cell may require 

>100,000 dynamic variables and equations, maybe > 
1,000,000

• Cell-cell interactions are critical to system function
• 109 - 1011 interacting cells in some organs
• Cell signaling involves highly DYNAMIC biochemical 

cascades with positive and negative feedback
• Multiple, overlapping regulatory mechanisms
• Many of the interactions are nonlinear
• Models might have a Leibnitz (1 L = Na) of PDEs
• The data don’t yet exist to drive the models …
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It’s the numbers…. 

Where do we get a mole of numbers?
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The Practical Problems
• Our understanding of biological phenomena is often based 

upon 
– experiments that measure the ensemble averages of populations of

106 – 107 cells, or
– measurements of a single variable while all other variables are, one 

hopes, held constant, or
– recordings of one rapid variable on one cell, or
– averages over minutes to hours, or
– combinations of some of the above, as with a 10 liter bioreactor that 

measures 50 variables after a one-week reactor equilibration to 
steady state.

– costly measurements of the expression of 12,600 genes (Can you 
afford to read mRNA every 30 minutes for 7 days from multiple cell 
cultures?) 

• Even though we suffer from an explosion of qualitative 
genomic expression data, we don’t have an adequate 
quantification of expressed protein concentrations or the 
underlying biochemical reactions they enable.
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New biochemical reactions

Functional annotation is 
not keeping pace with 
gene discovery

Slide courtesy of Jim Spain
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Dennis Bray understands the problem….

• “The past few decades have seen such an 
explosion of knowledge about the contents of living 
cells that we now swim in an ocean of data.”

• “How can we come to terms intellectually with such 
an enormous number of interacting entities?”

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends 
Biochem.Sci. 22 (9):325-326, 1997.
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A possible failure mode

Ontological failure:  The phenomenon you are 
interested in requires elements or laws 
outside of the set you have been given.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends 
Biochem.Sci. 22 (9):325-326, 1997.
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The solution to ontological failure

Get more data…
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The Catch
• Modeling of a single mammalian cell may require 

>100,000 dynamic variables and equations, maybe > 
1,000,000

• Cell-cell interactions are critical to system function
• 109 - 1011 interacting cells in some organs
• Cell signaling involves highly DYNAMIC biochemical 

cascades with positive and negative feedback
• Multiple, overlapping regulatory mechanisms
• Many of the interactions are nonlinear
• Models might have a Leibnitz (1 L = Na) of PDEs
• The data don’t yet exist to drive the models
• Hence we need to experiment…
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Grand Challenge

• Design and build a 
hybrid silicon/biological 
system that proposes 
and generates models 
and conducts 
experiments on itself to 
identify the underlying 
equations that govern 
the biology.

• Extracellular: $3 - 4 
million and 3 - 5 years 

• Intracellular: $15 - 20 
million and 5 – 10 years
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The Robot Scientist

RD King et al. The Automation of Science. Science 324 (5923):85-89, 2009.
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• Multiple, fast                                                 
sensors

• Openers (Mutations,
siRNA, drugs) for the 
internal feedback 
loops

• Intra- and                                       
extracellular                                       
actuators
for controlled
perturbations

• Algorithms that create 
feedback loops to 
automatically probe 
the system  

• …

Actuator

Actuator

Integration
and Feedback

Integration
and Feedback

Actuator

Integration
and Feedback

Sensor

Sensor

Sensor

Cell

Can we build a fast metabolic and signaling robot?
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VIIBRE Automated Omni-Omics
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Cell Culture vs Microfluidics
• A typical 

picoliter cell 
requires a 
nanoliter of 
media per 
day

• A 10 μm 
layer of cells 
is covered by 
a 10,000 μm 
layer of 
media

• 1 fluid 
change/day

• Metabolites, 
autocrine 
and 
paracrine 
factors are 
diluted 1000-
fold

• BioMEMS
• A typical picoliter cell requires a 

nanoliter of media per day
• A 10 μm layer of cells is covered by 

a 2 μm layer of media
• 5000 fluid changes/day
• Metabolites, autocrine and 

paracrine factors are diluted by 1.2x

1.2×10-5 m
10-5 mCells

Media

Plastic

Glass

10-2 mMedia

Plastic

10-5 mCells

Media
1000 ×
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Microfabricated Multitrap Nanophysimeters
(MTNPs) enable dynamic measurements on 
small populations of cells

Faley,S et al., Lab on a Chip, 8:1700-1712 (2008) & 9(18):2659-2664, 2009.
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VIIBRE Automated Omni-Omics

Electrochemical 
Metabolite 
Sensors
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We need lots and lots and lots of numbers.

HPLC mass spectrometry?
An HPLC separation might require an hour!

Ion mobility mass spectrometry!
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IM MS

IM measures two timing 
events at the same time.
• Electrospray is continuous
• Keyhole ion funnel gathers 

continuous flow into timed 
bunches to designate to

nESI
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Conformation Space

E

Keyhole
Ion funnel

Slide courtesy of John McLean
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MALDI/nESI-IM-TOFMS

Slide courtesy of John McLean
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Real-time 2D identification of 
biomolecular signatures:
Integrated omics for dynamic systems biology

L. S. Fenn and J. A. McLean, Anal. Bioanal. Chem. 391, 905-9 (2008). Slide courtesy of John McLean

We will be adding GC for GC-IM-MS to improve detection of low mass metabolites
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VIIBRE Automated Omni-Omics

Electrochemical 
Metabolite 
Sensors
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Time-Lapse Bone Bioreactor Media Analysis
Nutrient consumption and metabolite production

Samples: Andrea Mastro and Erwin Vogler. Analysis: Jeff Enders and John McLean
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OK – you now have enough data.

How do you deal with a Leibnitz of 
non-sparse PDEs involving 

100,000 nonlinear variables? 

Carefully, very carefully
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There is a second possible failure mode

Ontological failure:  The phenomenon you are 
interested in requires elements or laws 
outside of the set you have been given.

Epistemological failure: You have enough 
elements and the laws do apply, but you 
yourself cannot understand the explanation 
that they provide.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends 
Biochem.Sci. 22 (9):325-326, 1997.

A possible failure mode
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Houston, we have a problem.
• The human brain can process only seven pieces of 

data at a time.

“…the seven-point rating scale, the seven 
categories for absolute judgment, the seven 
objects in the span of attention, and the seven 
digits in the span of immediate memory...”

G.A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on our 
Capacity for Processing Information,” Psychological Review, 63, 81-97 (1956).
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The solution to epistemological failure

Get a smarter, bigger brain…
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Machine Learning: A robot that 
can infer a model of “itself”

Hypothesis: Machine 
learning and model 
inference with 
automated 
experimentation can be 
extended from robots to 
bioreactors

74

J. Bongard, V. Zykov, and H. Lipson, Resilient 
Machines Through Continuous Self-Modeling, 
Science, 314, 1118-1121, 2006 
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VIIBRE Automated Omni-Omics

Electrochemical 
Metabolite 
Sensors
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Symbolic Regression
-- Hod Lipson, Cornell --

f(x)=ax2+bx+c

f(x)=aebx+c

• Traditional regression
– Model known, regress coefficients
– Linear, nonlinear

• Symbolic regression
– Model unknown
– Model building blocks given 

• {+,-,*,/,const,sin,cos,exp,log}

f(x)=exsin(|x|)

Eureqa: http://ccsl.mae.cornell.edu/eureqa
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Estimation-Exploration algorithm designs 
experiments to select best symbolic model 

Sym
bolic 

R
egression

Estimation / 
Exploration
Estimation / 
Exploration



779

Estimation-Exploration algorithm designs 
experiments to select best symbolic model 

Sym
bolic 

R
egression

Estimation / 
Exploration
Estimation / 
Exploration
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Into the Black Box: Yeast Glucose 
Oscillations
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Inferring 
Metabolic 

Models

Target model placed in 
black box with 10% noise

Model inferred without 
any a priori information
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Outflow
& IM-MS

CONTROLSACTUATORS
(Inputs)

SENSORS
(Outputs)

Morphology
Size, shape, optical density, motility, 
division, organelle configuration

Force
Shear, tension, deformation

Intracellular Signaling (Optical)
GFP/luciferase reporters, [Ca]I, pHi, Vm, 
MMP, GFP FRET

Extracellular Electrolytes (Electrochemical)
[Na]e, [Ca]e, [K]e, [Mg]e, [PO4]e, [Cl]e, [HCO3]e

Neurotransmitters (Electrochemical)
Seratonin, acetocholine, GABA, …

Extracellular Metabolites (Electrochemical) 
[glucose](t), [lactate](t), [pH](t), [O2](t), NO(t), 
H2O2(t) …

Extracellular Metabolites (GC IM-MS)
Amino acids, small metabolites, stable 
isotopic markers

Surface Expression
Specific affinity probes

Soluble Gene Expression (nESI IM-MS)
Cytokines, growth factors
hormones, enzymes

Cytosolic Proteins (MALDI IM-MS)
Lipids (Cell Lysate IM-MS)
Gene expression (mRNA Arrays)
. . .  

Base medium
Amino acids (~15)
Cytokines (N>>1)
Growth factors(N>>1)
Hormones (N>>1)
[Na]e [Ca]e [K]e [Mg]e
[glucose](t)
[lactate](t)
[PO4]e
[pH] (t)
[O2](t)

Optical
Genetic
Thermal
Electrical
Mechanical

Inflow SYSTEM

MODEL
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Will Matloff’s MicroFormulator

Multiplexer

Loading 
Sections

Mixers

Waste

Output

Fluid Inputs

Control Channels



MicroFabricated Real-Time MicroFormulator

84
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Media 
Component 
Reservoirs

Our Robot Scientist:
VIIBRE Automated Omni-Omics

Electrochemical 
Metabolite 
Sensors

Local 
System Controller

Bidirectional 
Data/Control SQL Server

Inferred Model
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INPUT ACTUATORS
• Chemical
• Electrical
• Genetic
• Mechanical
• Optical
• Thermal
• Scaffolding

OUTPUT SENSORS
• Apoptosis
• Differentiation
• Gene / Protein Expression
• Growth 
• Metabolism 
• Motility
• Signal Transduction

C(s) G(s)

C(s) G(s)Inputs Outputs

LeDuc, Messner,  Wikswo. How do controls approaches 
enter into biology. Submitted, 2010.
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Biophysics/Bioengineering & Cancer? 
• The need for more realistic in vitro experiments

– Massively parallel, cellular microenvironments for the study of cell-cell, cell-
cell-drug, and cell-cell-drug-snp interactions

– Real-time control of biological systems

• The need to control multiple parameters at the same time and measure 
multiple dynamic variables

– Cell-scale sensors and actuators
– Experiments that involve thousands of parameters

• The need to create complex, nonlinear models
– Symbolic regression and exploration-estimation algorithms for machine 

learning in automated microbioreactors
– Models to enable control of cellular responses and biomolecule production

• The need to raise research funds from more diverse sources
• The inability of the human mind (or at least those of the reviewers) to 

understand the complexity of what is being proposed and/or discovered



The future of biology and cancer medicine is distributed 
hybrid multiscale non-linear stochastic control

De Visser, Cancer Immunol Immunother (2008) 57: 1531-1539
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However…

We do not have to fully
understand a 
phenomenon to control 
or eliminate it.

John Wikswo

Really Hard Problems



© Vanderbilt University 2007

Can we instrument and control cancer? With work!
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There is yet one more potential problem…

• We may not be able to understand what the 
computer tells us about biology.

• The next challenge is to create computers that can 
explain their findings to us…. 

• It might be as hopeless as explaining Shakespeare 
to a dog. 

Hod Lipson, 2009
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Rumsfeld’s Analysis of Complex Systems

• Observable?

• Controllable?

• Stabilizable?

• Detectable?

Stengel, Optimal Control and Estimation, Dover, 1994, p.7

Iraq was neither 
observable, 
controllable, 
stabilizable, or 
detectable …

IRAQ


