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We develop an analytically tractable Phillips curve based on state-
dependent pricing. We consider a local approximation around a zero
inflation steady state and introduce infrequent idiosyncratic shocks.
The resulting Phillips curve is a simple variant of the conventional
time-dependent Calvo formulation with important differences. First,
the model is able to match the micro evidence on the magnitude and
timing of price adjustments. Second, our state-dependent model ex-
hibits greater flexibility in the aggregate price level than the time-
dependent model. With real rigidities present, however, our model
can exhibit nominal stickiness similar to a conventional time-depen-
dent model.

I. Introduction

In recent years there has been considerable progress in developing
structural models of inflation and output dynamics. A common aspect
of this approach is to begin with the individual firm’s price-setting prob-
lem, obtain optimal decision rules, and then aggregate behavior. The
net result is a simple relation for inflation that is much in the spirit of
a traditional Phillips curve: Inflation depends on a measure of real
activity, as well as expectations of future inflation. This relationship
differs from the traditional Phillips curve in its forward-looking nature
and in that all the coefficients are explicit functions of the primitives
of the model.
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To date, these new Phillips curves (often grouped under the heading
of “New Keynesian”) reflect a pragmatic compromise between theo-
retical rigor and the need for empirical tractability." While they evolve
from optimization at the firm level, they typically restrict pricing be-
havior to time-dependent strategies in which the frequency of adjust-
ment is given exogenously. A leading alternative, of course, is state-
dependent pricing, where the firm is free to adjust whenever it would
like, subject to a fixed adjustment cost. This latter approach, however,
leads to “Ss” pricing policies that are, in general, difficult to aggregate.”
For this reason, the time-dependent approach has proved to be the
most popular, despite the unattractiveness of arbitrarily fixing the de-
gree of price rigidity.

Besides tractability considerations, however, there have been two ad-
ditional justifications for the time-dependent approach. First, Klenow
and Kryvtsov (2005) have shown that during the recent low-inflation
period in the United States, the fraction of firms that adjust their prices
in any given quarter has been reasonably stable, which is certainly con-
sistent with time-dependent pricing. Second, in this spirit, it is often
conjectured that time-dependent models are the natural reduced forms
of a state-dependent framework for economies with relatively stable in-
flation. Indeed Klenow and Kryvtsov provide support for these notions
by showing that a conventional state-dependent pricing model (Dotsey
et al. 1999) and a conventional time-dependent model (Calvo 1983)
yield very similar dynamics when calibrated to recent U.S. data.

An interesting recent paper by Golosov and Lucas (2007) challenges
this rationalization. The authors first note that to reconcile the evidence
on the large size of individual firm price adjustments in the Klenow-
Kryvtsov data with the low U.S. inflation rate, it is necessary to intro-
duce idiosyncratic shocks that create sufficient dispersion in price ad-
justments. They then observe that in this environment, even if price
adjustment frequencies are stable (because of moderate inflation vari-
ability), there remains an important difference between state depen-
dence and time dependence: Under state-dependent pricing, the firms
that find themselves farthest away from their target price adjust, whereas
under time dependence there is no such relation. The authors then go
on to show numerically that an exogenous shock to the money supply
has a much stronger effect on the price level and a much weaker effect
on real outputin a state-dependent model with idiosyncratic productivity

! Examples include Gali and Gerter (1999), Gali, Gertler, and Lopez-Salido (2001),
Sbordone (2002), and Eichenbaum and Fisher (2004).

*See Caplin and Spulber (1987), Benabou (1988), Caballero and Engel (1991), and
Caplin and Leahy (1991, 1997) for early analyses of dynamic Ss economies. Dotsey, King,
and Wolman (1999) place Ss policies within a standard dynamic stochastic general equi-
librium model.
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shocks than it does in a standard time-dependent model calibrated to
have a similar degree of price stickiness at the firm level. In particular,
they find that the “selection effect” associated with state-dependent pric-
ing may lead to quantitatively important differences with time-depen-
dent pricing models. Overall, their numerical exercise is reminiscent of
the theoretical example in Caplin and Spulber (1987), where state de-
pendence can turn the nonneutrality of money resulting from time
dependence on its head.

Because pricing behavior in their model is very complex, Golosov and
Lucas restrict attention to numerical solutions, as is typical in the Ss
literature. In addition, they keep the other model features as simple as
possible. Perhaps most significant, they abstract from interactions
among firms that can lead to strategic complementarities in price set-
ting. These complementarities—known in the literature as “real rigid-
ities”"—work to enhance the overall nominal inertia that a model of
infrequent nominal price adjustment can deliver.” It is now well known
that to obtain an empirically reasonable degree of nominal stickiness
within a time-dependent pricing framework, it is critical to introduce
real rigidities. Accordingly, abstracting from real rigidities makes it dif-
ficult to judge in general whether state dependence undoes the results
of the conventional literature.

Our paper addresses this controversy by developing a simple state-
dependent pricing model that allows for both idiosyncractic shocks and
real rigidities. We differ from the existing Ss literature by making as-
sumptions that deliver a model that is as tractable as the typical time-
dependent framework. As with the standard time-dependent frameworks
and the Dotsey et al. state-dependent framework, we focus on a local
approximation around the steady state. We differ from Dotsey et al. by
introducing idiosyncratic shocks, as in Golosov and Lucas’s paper. We
differ from Golosov and Lucas, in turn, by introducing several restric-
tions and technical assumptions that permit an approximate analytical
solution. The end result is a Phillips curve built up explicitly from state-
dependent pricing at the micro level that is comparable in simplicity
and tractability to the standard New Keynesian Phillips curve that arises
from the time-dependent pricing.

Because we restrict attention to a local approximation around a zero
inflation steady state, our analysis is limited to economies with low and
stable inflation. We thus cannot use our Ss framework to analyze the
effect of large regime changes (which of course is also a limitation of
the time-dependent approach). However, our framework does capture
the “selection effect” of state-dependent pricing: those farthest away

*Ball and Romer (1990) first noted that for sticky price models to generate sufficient
nominal inertia, real rigidities are critical. See Woodford (2003) for a recent discussion.
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from the target tend to adjust more frequently, a feature that does not
arise in time-dependent pricing. We can thus use our model to assess
quantitatively how much extra price flexibility state dependence adds
relative to time dependence, after allowing for the kinds of real rigidities
thought to be important in the time-dependent literature.

In Section II we lay out the basic features of the model: a simple New
Keynesian framework, but with state-dependent as opposed to time-
dependent pricing. Firms face idiosyncratic productivity shocks. Bor-
rowing some insights from Danziger (1999), we restrict the distribution
of these shocks in a way that facilitates aggregation.

In Section III we discuss our approximation strategy, and in Section
IV we characterize the firm’s optimal pricing policy. We make assump-
tions on the size of the adjustment costs that make it reasonable to
restrict attention to a second-order approximation of the firm’s objective
function. Given a quadratic firm objective and the restrictions on the
idiosyncratic shock distribution, we are then able to derive the key the-
oretical result of the paper: a “simplification theorem” that makes the
state-dependent pricing problem as easy to solve as the conventional
time-dependent pricing problem, up to a second order.

In Section V we characterize the complete model and present a log-
linear approximation about the steady state. In Section VI we discuss
some of the properties of the model. Among other things, we derive a
Phillips curve relation that is very similar in form to the New Keynesian
Phillips curve, except of course that it is based on state-dependent pric-
ing. The slope coefficient on the real activity measure in the Phillips
curve reflects this distinction. The slope coefficient in our state-depen-
dent Phillips curve is larger than under time dependence. In this re-
spect, our state-dependent framework exhibits greater price flexibility
than the corresponding time-dependent framework. As in Golosov and
Lucas’s paper, the selection effect is at work. How much extra price
flexibility state dependence induces depends on the model calibration
and whether real rigidities are present.

In Section VII we calibrate the model to match the Klenow-Kryvtsov
evidence on the frequency and absolute magnitude of price adjustments
and also evidence on the costs of price adjustment. We then show that
the model can deliver the kind of aggregate price-level stickiness em-
phasized in the time-dependent literature and yet remain consistent
with the microeconomic evidence on price adjustment. Key to this result,
as we show, is allowing for real rigidities. Concluding remarks are in
Section VIII. Finally, we present some numerical simulations in the ap-
pendices to demonstrate that our approximate analytical solution pro-
vides a reasonably accurate description of local model dynamics.
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II. The Model

We begin with a conventional New Keynesian model (see, e.g., Woodford
2003). The basic features of the standard model include monopolistic
competition, money, and nominal price stickiness. Also, for conve-
nience, there are only consumption goods. We add three features to
this familiar baseline framework: real rigidities, idiosyncratic productiv-
ity shocks, and state-dependent pricing. It is of course incorporating
this latter feature that poses the biggest challenge.

In particular, state-dependent pricing raises two difficult modeling
issues. The first we alluded to in the introduction: In the most general
state-dependent pricing model, the entire distribution of prices is a state
variable. This gives rise to an intractable fixed-point problem. Inevitably,
there is a need for some kind of simplifying assumptions or shortcuts.
As we noted, our strategy is to make restrictions on the distribution of
idiosyncratic shocks to simplify the distributional dynamics.* Specifically,
we use a formulation in the spirit of Danziger (1999), who by assuming
a uniform distribution of shocks was able to solve a carefully parame-
terized Ss economy in closed form. As we show, however, the effects of
money on output are small (i.e., second-order and above) for the case
he was able to solve. We thus alter Danziger’s formulation by allowing
for a more flexible parameterization of the idiosyncratic shock process,
one that makes possible significant nominal inertia and hence a signif-
icant first-order effect of money on output. Specifically, each period a
firm receives a uniformly distributed idiosyncratic productivity shock
with probability 1 — « and no shock with probability «. Though we
cannot solve for an exact solution with this more flexible process, we
can obtain an approximate analytical solution by considering a local
expansion of the model around a zero inflation steady state (as is done
in the time-dependent literature; see, e.g., Woodford 2003). Aside from
having these very convenient features, the resulting unconditional dis-
tribution of the productivity shock has a simple fat-tailed form of the
type that Midrigan (2006) argues is broadly consistent with the evi-
dence.’

The second modeling issue arises from the discontinuities and non-
differentiabilities associated with Ss adjustment. This issue potentially

* Caplin and Spulber (1987), Benabou (1988), and Caplin and Leahy (1991, 1997) also
make distributional assumptions that reduce the state space. Dotsey et al. (1999) make
assumptions that limit the number of prices observed in the economy to a finite number.
Willis (2002) and Midrigan (2006) follow Krusell and Smith (1998) and approximate the
distribution by a finite number of moments. Golosov and Lucas (2007) avoid the fixed-
point problem by setting variables (except for the wage, which they take to be exogenous)
at their steady-state values when computing firm decision rules.

® Given that the idiosyncratic shock does not arrive with probability «, the unconditional
distribution of productivity shocks the firm faces has a single peak at zero and then is
uniformly distributed about zero.
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complicates finding a log-linear approximation of the model since Tay-
lor’s theorem does not apply to functions that are not differentiable.
Fortunately, this technical problem is applicable to only a small per-
centage of firms that happen to lie near the Ss bands. In particular, for
a firm near either of the Ss boundaries that does not receive an idio-
syncratic shock in the current period, an aggregate shock in one di-
rection may cause it to adjust, whereas a shock in the other direction
will take it deeper into the inaction region. In this instance there is a
kink in the firm’s response to the aggregate state. We address the issue
by assuming that in addition to the fixed cost of adjusting the price,
there is a small “decision cost” to contemplating a price adjustment
prior to the decision whether to adjust. If aggregate shocks are suffi-
ciently small relative to idiosyncratic shocks, there will be a range of
decision costs for which the firm considers adjusting only when an id-
iosyncratic shock hits. We assume that the decision costs are in this
range. This assumption leads to smooth behavior of firms as they ap-
proach the Ssbands, eliminating any complication to log-linearizing our
model. In Appendix C we confirm that the decision cost is not of quan-
titative importance for the local dynamics of the model.

In the remainder of this section we lay out the basic ingredients of
the model. There are three types of agents: households, final goods
firms, and intermediates goods firms. We describe each in turn.

A.  Households

Households consume, supply labor, hold money, and hold bonds. The
latter are zero in net supply. We assume a segmented labor market in
order to generate strategic complementarities in price setting as in
Woodford (2003). In particular, we assume a continuum of “islands” of
mass unity. On each island, there is a continuum of households of mass
unity. Households can supply labor only on the island they live on. There
is perfect consumption insurance across islands, and any firm profits
are redistributed lump-sum to households.

Time is discrete and is indexed by ¢. Let C, be consumption; M, end-
of-period nominal money balances; F, the nominal price index; N, ,labor
supply on island z; W,, the nominal wage on island z; I, lump-sum
transfers (including insurance, dividends, and net taxes); B, one-period
nominal discount bonds; and R; the nominal interest rate from ¢ to
t+ 1. Then the objective for a representative household on island z is
given by

M)
¢ (52) ] - —N;;f) M

maxE,E Bi(log 7 T

i=0 i
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subject to the budget constraint
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We index labor supply and the nominal wage by z because the island z
labor market is segmented. Since there is perfect consumption insur-
ance, there is no need to similarly index the other variables, except for
lump-sum transfers, which may be island specific.

The first-order necessary conditions for labor supply, consumption/
saving, and money demand are given by

W, NZ,
2z, — 2z, , 3
ARV ®)
C P
Et(B—tR;l_t} =1, (4)
Civ  Bn
and
M R}
— =C —. 5
= )

B.  Final Goods Firms

Production occurs in two stages. Monopolistically competitive inter-
mediate goods firms employ labor to produce input for final goods.
There is a continuum of mass unity of these intermediate goods firms
on each island. Final goods firms package together all the differentiated
intermediate inputs to produce output. These firms are competitive and
operate across all islands.

Let Y, be output of the representative final good firm, Y/, be input
from intermediate goods producer j on island z, and Q/, be the asso-
ciated nominal price. The production function for final goods is the
following constant elasticity of substitution (CES) aggregate of inter-
mediate goods:

Lol o/ (e=1)
Y, = U J (K{,)“”/dedz] ; (6)
0 0

where € > 1 is the price elasticity of demand for each intermediate good.
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From cost minimization, the demand for each intermediate good is

given by

J\—¢&
- (), ;
. P (7)
and the price index is the following CES aggregate of intermediate
goods prices:

1/(1-e)

k= U f (Qi,,)”dde] : (8)

C. Intermediate Goods Firms

Each intermediate goods firm produces output that is a linear function
of labor input:

Y/, = XI,- N, )

Here X/, is an idiosyncratic productivity factor for producer j on island
z. (For simplicity we abstract from aggregate productivity shocks, though
we can easily add them.)

Islands are occasionally subject to turbulence in the form of produc-
tivity shocks. These shocks follow a compound Poisson process. Each
period a shock hits an island with probability 1 — «. These shocks are
independent across islands.

When a shock hits an island, two things happen. First, a random
fraction 1 — 7 of firms die and are replaced with an equal number of
new entrants. New entrants are born with X/, = 1 and set price optimally
within the period in which they enter. Second, the remaining 7 firms
are hit with multiplicative independent and identically distributed pro-
ductivity shocks. Let £/, denote the shock to firm j on island z at date
{. We assume that £/, is distributed uniformly with mean zero and a
density 1/¢. The evolution of productivity is therefore

X, if no productivity shock occurs
X/, =1{X, ¢ if a productivity shock occurs (10)
and the firm survives.

The only purpose of the death probability is to make the distribution
of productivity in the economy stationary.® It will drop out of the ag-
gregate equations.

Each producer faces a fixed cost of adjusting its price. We assume

® Random walk shocks are convenient since it is possible to make the Ss bands homo-
geneous in the shock. The cost is that they are nonstationary.
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that the firm incurs a cost equal to 5(X7,)*"" if and only if it chooses to
alter its nominal price. The adjustment cost 6> 0 will lead to Ssstyle
price adjustment policies. There will be a range of inaction in which
firms keep their price fixed. Firms with prices outside of this range will
adjust to a new optimum. We scale the adjustment cost by the factor
(X7 )" to keep the firm’s decision problem homogeneous as it size
varies. This adjustment cost is in units of the final consumption good.

As we discussed in the introduction of this section, we introduce a
cost to gathering and processing information to address a potential
problem of nondifferentiability, which we refer to as a “decision cost.”
We assume the following: Firms know when idiosyncratic turbulence hits
their island, but to gather information about the precise value of the
shock £ they receive, and also to organize this information and infor-
mation regarding the aggregate economy, they must pay a decision cost,
d- (X.)"". If a firm elects to pay the decision cost, it can then decide
whether to adjust its price. If it chooses to adjust, then it also incurs
the fixed cost b(XZ )"

D.  Money Supply

We close the model by characterizing monetary policy. In particular, we
assume that the nominal money stock M, obeys a simple exogenous first-
order Markov process. It is straightforward to extend the model to allow
for a richer characterization of monetary policy (see, e.g., Clarida, Gali,
and Gertler 2000). However, we stick with this simple process because
it provides the best way to illustrate the implications of our state-
dependent framework for nominal stickiness.

We consider “small” monetary shocks in the approximation below.
We introduce a set of relationships that will allow us to be explicit about
what we mean by small. As we have just discussed, our approximation
method will rely on the aggregate shock not having “too large” an effect
on the firm’s desired price in between periods in which an idiosyncratic
shock hits. What this requires is that the money growth rate be bounded
over a horizon long enough to have the fraction of firms that survive
the interval without receiving an idiosyncratic shock be small. A simple
condition that will ensure this is

|InM,,,—InM| <m for all k< k(m), (11)

where k(m) is the least integer that satisfies &*” < ¢m and ¢ is a fixed
positive constant. The parameter m scales the money shock. As m be-
comes small, two things happen. First, movements in the money supply
will become small over k(m) periods. Second, k(m) rises and the prob-
ability that a firm survives k(m) periods without an idiosyncratic shock
will also become small. This ensures that both money growth and the
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survival probability over the relevant horizon will be first-order in m.
For reasonable model parameter values, the implied bound on money
growth is not overly restrictive.”

III. The Approximation

We approximate the model around a zero inflation steady state, with
no shocks and no price adjustment costs. We assume that the ranges of
the money shock m and the idiosyncratic shock ¢ are first-order. At the
same time, we capture the notion that the adjustment cost b and the
decision cost d are small by assuming that they are second-order. A virtue
of having second-order adjustment costs is that they lead to Ss bands
that are first-order (e.g., Akerlof and Yellen 1985; Mankiw 1985).

Formally, lets = {m, ¢, Vb, Jd}. When s = 0, the economy experiences
no shocks and no price adjustment frictions, as well as zero inflation
(since M, is fixed over an infinite horizon when m = 0). We will consider
a first-order perturbation in s about a value s = 0. Note that since \b
and Vd are first-order, b and d will be second-order. Since m is first-order,
a*™ will be firstorder (see eq. [11]).

In addition, our aggregation strategy relies on the fact that in the
data idiosyncratic shocks appear to be large relative to aggregate shocks.
We use this to motivate certain relationships among the four elements
of <. First, in order for the uniformity assumption to induce simple
distributional dynamics, we need there always to be a productivity shock
that causes a firm to raise its price and a productivity shock that causes
a firm to lower its price. For this we need ¢ to be large relative to m

and Vb. A sufficient condition is
¢ >4w + 2m, (12)

where w is the distance between either price adjustment trigger and the
target.’ To interpret this condition, note that the first term on the right-
hand side is equal to twice the steady-state log distance between the

"What is critical is that the variation in aggregate nominal demand is bounded, which
within this model translates into exogenous variation in the money supply. A better mea-
sure of nominal aggregate demand in the real world is nominal GDP, since there is
considerable movement in the money supply that reflects factors such as financial inno-
vation opposed to movements in nominal demand. In App. C we show that for empirically
reasonable variation in nominal GDP, our restriction on the magnitude of the aggregate
shock is satisfied as are our other parameter restrictions.

Under our baseline calibration, « is roughly 0.5. With ¢m = 0.05, k = 4, which implies
that the bound applies to the annual growth rate of the money supply.

8 We will see below that
1— 1/(o+1)
R

1—-¢\e—1
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upper and lower price adjustment triggers. Since the shock is mean zero
in logs, it must have a support greater than twice this amount in order
to take a firm at the upper trigger below the lower trigger. The second
term is the maximal cumulative nominal disturbance over the past
k(m) periods. This bounds how far the bands may move for the fraction
1 — ¢m of firms that set their prices during the past k(m) periods. This
term may be made tighter depending on the exact relationship between
nominal marginal cost and the money supply.

Second, in order to solve the nondifferentiability problem involving
firms near the Ss bands, we require that the decision cost be large
enough to prevent these firms from adjusting to aggregate conditions
in the absence of an idiosyncratic shock. This will eliminate any asym-
metric response of these firms to aggregate shocks. Note that this re-
quires that the decision cost be in a specific range: large enough that
firms are not willing to pay it in the absence of idiosyncratic turbulence
but small enough to make them willing to pay it when they receive news
that an idiosyncratic shock has hit. These considerations place further
restrictions on the parameters of the model: ¢ must be large relative
to d and movements in the money supply must be small. Since the
implied bounds on d depend on the firm’s value function, we delay
presenting them until after solving the model. At this point we just
assume that d is in the required range, so that firms adjust only after
an idiosyncratic shock. The firm delays adjusting to aggregate conditions
until there is a sufficiently large idiosyncratic shock.

In Appendix C, we derive the explicit bounds on d and show that for
our calibrated model there is indeed an admissible range d that is em-
pirically reasonable. In particular, d needs to be between about one and
three times the size of the menu cost 4.’

In addition, Appendix C also presents a numerical solution to a ver-
sion of the model that omits the decision cost and shows that it yields
dynamics nearly identical to those of our baseline model that includes
the decision costs. Intuitively, since aggregate shocks tend to be small
relative to the Ss bands, the decision cost affects only a small number
of firms near the price adjustment triggers and affects the aggregate
dynamics only through the effect that these firms have on the price
level."

?While we introduce d for technical reasons, Zbaracki et al. (2004) find that the man-
agerial costs of information gathering and decision making are larger than the physical
costs of adjusting prices b. Moreover, Fabiani et al. (2004) find that firms in the Euro area
review their prices more often than they change them.

' Appendix C shows that under our baseline calibration, the fraction of firms close to
the Ss bands is very small. Indeed, at the end of any given period most firms are concen-
trated in the center of the Ss bands. Intuitively, all firms that adjusted price in the period
move to the center of the bands. Further, a fraction of firms that were around the center
at the beginning of the period do not receive a new idiosyncratic shock.
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IV.  The Firm’s Optimal Pricing Decision

In this section we first characterize the firm’s objective function. We
argue that given our approximation, it is reasonable to consider a
second-order approximation of the objective function. We then show
that our restriction on adjustment costs in conjunction with the uniform
distribution of the shock leads to considerable simplification of the
objective, up to a second order. We use this quadratic objective to derive
a log-linear approximation of the decision rules about the steady state.
Throughout, we make use of our assumptions about the decision cost
to restrict firms to adjusting price only during periods of idiosyncratic
turbulence.

A.  The Firm’s Objective

At this point we drop the (j, z) subscripts except where clarity is a
concern. Real profits net of the menu cost, IV, are given by

2,19

iad t VVt —
i = (-2 ) - ox, (18)
P EX,
where b, is equal to b if Q, # Q, , and zero otherwise. Note that the
firm’s real marginal cost is W/(EX,).

It is convenient to recast the firm’s problem in terms of the markup
L

Q.X,
W, .

peo= (14)
There are two advantages of using the markup as the decision variable
as opposed to the posted price, Q,. The first is that all firms that reset
their price in period ¢ will wind up choosing the same value of pu,. By
contrast, given that the labor market is competitive within the island
(which implies that all firms on the island face the same wage, W), the
optimal reset value of Q, will vary inversely with X,. The second advan-
tage is that the markup is stationary.

Note that because pu, depends on X, and W, it may change even if
the firm keeps its nominal price constant. That is, if we let u¥* be the
optimal reset value of p,,

pi ifQ, # Q.

Wi g
X, w, 1T Qu

o= (15)

>

Moy

Effectively, the firm’s decision problem is to judge whether its markup
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in the absence of a price adjustment has drifted sufficiently away from
the optimal reset price to justify the fixed adjustment cost. Restating
period profits in terms of the markup and making use of the firm’s
demand function (7) yields

= x(2) v -1 -0
t t W lu’l (M‘l ) N

We let II, denote the term in brackets, so that fIt = X°'II,.
At this point it is useful to define several variables:

A = BTIW,

ue,,,
Al,1+i = M,
u'c)
0 X W
My W/X, MI_IX;—] W, >
a=a+ (1—-or

The term A,, summarizes the effect of the economy on current profits,

and A, is the stochastic discount factor. The term g, is the markup

that is inherited from the prior period. It depends on last period’s

nominal price Q, , and is the markup in the case of nonadjustment.

The term « is the probability that the firm survives to the next period.
The firm’s value function is then

maxE,, (aB)A,,. 1,

i=0

V(/ln Xu Qz)

had ) X+‘€_I
max X5 @), (5 . a6

The term Vdepends on the inherited markup g, the level of productivity
X,, and Q,, which summarizes variables exogenous to the firm and de-
pends on the current values of C,, Y,, W,,, and F, as well as their future
evolution."

Given that gross profits and adjustment costs are homogeneous in
X°7' it is convenient to define the normalized value function v(f,
Q):

Vg, X, Q) = X7 v(@, Q), (17)

"' Note that we suppress the decision cost. Since it is paid whenever the idiosyncratic
turbulence hits, it is effectively exogenous.
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od e—1
u(p, Q) = maXEzZ) (%) (@B)A il A (B — 1) = bl
i= t
We now express the normalized value function in a recursive form

and incorporate our assumption that because of the decision cost the
firm adjusts only in periods of idiosyncratic turbulence. Let v (u, Q,)
denote the value after price adjustment. In deciding whether or not to
adjust in period ¢, the firm compares v at the inherited markup to v
at the optimal markup:

v(i, @) = max{o(g, &), max, v(p, &) — b} (18)

Then v is equal to current profits plus the present value of an optimal
policy tomorrow:

_ _ , W
v(”’t’ Qz) = Atp't S(M: - 1) + aﬁEtAt,t+lv (,u'tW—a Qz+1)

t+1

+ (= BEA, e (ot 0,,). (19)
’ Wi

With probability «, no idiosyncratic shock hits tomorrow and the firm
maintains its price. The continuation value is v where the markup
changes with the change in the wage rate. With probability (1 — &),
the firm survives idiosyncratic turbulence and chooses whether or not
to adjust its price. The continuation value is v, and the inherited markup
reflects both the change in the wage rate and the innovation in
productivity.

B.  Approximate Value Function

Our goal in this subsection is to derive an approximate value function
that leads to a tractable (approximate) solution to the decision problem.
We approximate the firm’s problem for small s. We do so in two steps.
First, we show that second-order & in conjunction with the uniform
distribution of the productivity shock implies that the continuation value
contingent on an idiosyncratic shock at date ¢+ 1 is independent of
u, up to a second order. Second, we use the fact that second-order
adjustment costs lead to a first-order range of inaction to justify taking
a second-order approximation of profits.

It is convenient to define the target and trigger in logarithmic terms.
Let In p¥* denote the natural log of the target markup and let In p]” and
In ! be the natural logs of the upper and lower triggers. Under the Ss
policy, the firm adjusts to Inp¥ if Inpg, ¢ [Inpl, Inp!].
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1. A Simplification Theorem

What complicates the firm’s problem is that it must take account of
the continuation value conditional on an idiosyncratic shock,
EfA, ¢ "5 9()}, in equation (19). Without this consideration, the
choice of the target price at time ¢ would just involve taking into account
discounted profits in states in which the firm’s price and productivity
remain fixed. In this respect, the choice of the target is no more difficult
than in the conventional time-dependent framework. The choice of the
triggers is also simplified.

We now show that under our assumptions, E{A, ¢ V¥'y()} is in-
dependent of the firm’s period ¢ choice of the target, up to a second-
order approximation. The decision problem will then be simplified,
along the lines we have just suggested.

ProprosITION 1. Suppose that (a) b is second-order in s (implying
that In u” —In ¥ and Inp” — In u* are first-order), and (b) ¢ satisfies
(12). Then the expected value at date ¢ of an optimal policy after an
idiosyncratic shock at date ¢ + 1, E{e“ " "*'v(g,,, Q,.,)}, is independent
of the current value of p, to a second order. In particular, the firm can
treat its objective as

( Q, )
—= Q) =11, + aBE
U(W/Xl’ t t aB t

Auﬂ’”(ﬁ» QI+I)}

+ [terms independent of u] + O*(s[).  (20)

The main insight of the proposition is that in future states in which
the idiosyncratic shock will hit, history will be erased. The subsequent
continuation value E{A,,,,e“ "*1y(-)} is irrelevant to the current pricing
decision to a second order.

In Appendix A we provide a formal proof of the proposition. Here
we present the intuition, which follows from figure 1. Consider a firm
with log markup equal to In g, that receives an idiosyncratic shock in
period ¢+ 1. The shock leaves the log markup uniformly distributed
over the interval

—?, Ing,+In W, +? = [A, B].

t+1 t+1

i

Inu,+1In

Now in period ¢ + 1 the firm follows a pricing strategy characterized by
the triplet {lnpl,, Inu*,, Inpl,}. Since ¢ satisfies (12), [lnul,,,
Inu/l,] C [A, B]. Given the policy, In p,, will be uniformly distributed
over (Inpl,, Inpll)) if the firm does not adjust (the dark gray region

in fig. 1). If the firm does adjust (the light gray regions of fig. 1), then
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A IH}J.LW] lnl.l*H] lnth+] B

Inpy

F16. 1.—A firm’s response to a productivity shock

Inu,, = Inp%,. Since the triplet {In u’, |, Inp*,, Inu?,}is independent
of u, (it depends only on the state at ¢ + 1), it follows that the distribution
of pu,., and hence v(u,,,, Q,,,) is independent of p, This can be seen
from figure 1: a shift in In g, shifts the entire interval [A, B]. This does
not affect the distribution after adjustment (the mass at In p¥, and the
dark gray region); it affects only the states in which the firm adjusts up
and the states in which the firm adjusts down (the light gray region).

Accordingly, the only way that pu, could possibly affect
E{A,,.,e“ V¥1y()}) is by affecting the correlation between A, e V&
and v(). Given our assumption on b, this correlation is second-order
and its dependence on g, is third-order.

The proposition rests on two critical assumptions. The first is that the
idiosyncratic shock is uniform and has a wide enough support that both
price increases and price decreases are possible. This assumption implies
that the distribution of prices within the Ss bands is independent of
u,- The second is that b is second-order, which makes the correlation
between the decision to change price and p, third-order.

2. Approximate Optimal Pricing Policy

Let bars above variables denote values in the nonstochastic steady state
with s = 0. Let hats above variables denote log deviations from these
steady-state values.

Armed with the preceding proposition, we now take a second-order
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approximation of the profit function about the frictionless optimal
markup i = g/(e — 1):

_ W 1—¢ _ W 1—¢ )
Ht = le(ﬁ) - X2Y(F) (lnﬂt —In ﬂ)z - bt

+ [terms independent of p,] + O°(||s|),

where x, and x, are constants, with x, = é[sl’s/(e — 1)7°]. Because we
are approximating the profit function about the frictionless optimal
markup, the first-order term is zero.'? This proposition has the flavor
of an envelope theorem. The “terms independent of u,” include effects
of aggregate variables on firm profits.

Proposition 1 implies that we can ignore the continuation values in
all states in which the idiosyncratic shock arrives. Since the decision cost
dimplies that firms consider adjustment only following the idiosyncratic
shock, it follows that Q and X remain fixed in all states in which the
idiosyncratic shock does not hit. We can therefore write v as

W i=0
+ [terms independent of p,] + O*(|s]])- (21)

t

The first term on the right-hand side gives the quadratic approximation
to profits in the states in which the idiosyncratic shock does not hit.
These are weighted by o/, the probability that there is no shock for i
periods in succession. The Q and X terms in this expression are dated
tsince in these states no idiosyncratic shock hits and the price remains
constant.

It is now straightforward to derive the optimality conditions for the
target and the two triggers. The first-order necessary condition for the
target is that the expected markup over the life of the price is zero:

EZ (@B)/(Inp, —In ) = 0. (22)

Given u = QX/W, it follows immediately that the optimal nominal price
In Q% satisfies

InQf =Injp—InX + (1 - aB)E (@B)nW,, (23)

As in the pure time-dependent model, the target depends on a dis-
counted stream of future values of nominal marginal cost. In the time-

'? Linear-quadratic approximations are often inappropriate when the first-order terms
in the objective are nonzero. See the discussion in Woodford (2002).
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dependent framework, however, future marginal cost in each period is
weighted by the probability that the price remains fixed. In our state-
dependent framework, the relevant weight is the probability o' that a
new idiosyncratic shock has not arisen, which in general is a number
smaller than the probability that the price has stayed fixed.

The price adjustment triggers are given by a value-matching condition
that equates the gain from not adjusting to the gain from adjustment,
net of the adjustment cost. For [ = H, L,

o(ul, Q) = v(pf, Q) —b. (24)

Given our quadratic approximation, we restate this condition on the
optimal markup in terms of the corresponding pricing policy {Q7,
* Qf’}, since, unlike the markup, price remains fixed over the relevant

to

horizon:
© | B W l—e( Q[Xi )2]
E x.Y|l= In=—-Ing||=
2, @B x (P) n,— ~Ing
- [ _(W\'"™ X, 2\
Et;(aﬁ)%y(ﬁ) (1n %Vm —lnpu) +b.
Rearranging, we get
b 1—aBb
1 H = 1 * + \/ 1 - —_— = 1 * =+ =
nQr=hQi+ N =ab) Smp = &+ N2y
(25)

and

0 =0 Ve = g et

XQ?(ﬁ//P)liE

(26)

The second equality follows from noting that P = g and substituting
for x, and @ in terms of &. Note that the bands Inu” —Inu¥ and
Inp” —Inp* are first-order in b, as we maintained earlier. Note also
that they are symmetric about the optimum. This will prove useful in
calculating the price index below.

The comparative statics of the Ss bands are straightforward. Increases
in the menu cost b lead to wider bands for the obvious reason. Increases
in € increase the concavity of the profit function. This increases the cost
of deviations from the optimum and leads to narrower bands. Increases
in Y allow the menu cost to be spread over more units of output. This
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leads to narrower bands. Increases in « allow the menu cost to be spread
over a longer time horizon and thus to narrower bands."”

V. The Complete Model

In this section we put together the complete model. We restrict attention
to a log-linear approximation about the steady state. We begin with the
price index and the “state-dependent” Phillips curve and then turn our
attention to the rest of the model.

A.  The Price Index

At this point we reintroduce the j and z indexes. We divide both sides
of the definition of the price index (8) by F_, and raise both sides by

the power 1 — &:
P 1-e 1-¢
-] 3
5 B

Firms on a fraction « of islands maintain their prices unchanged. Since
the idiosyncratic shocks are independent across islands, these firms’
prices are representative of F_,. Let J, denote the set of islands that
receive shocks. Then we have

(%)H ot (- oz)j J,(P_]Ty djd-. (27)

Let m, = InP—1InP_,. Loglinearizing (27) about the zero-inflation
steady state, we get

m=a+ (1— a)J f(ln % —1InP_,)djdz.
i

Now let In Q% without a j or z index denote the sum In Q/¥ +1n X/,
Since every island that receives a shock is in essentially the same position,
it follows from (23) that In Q% is the same for all (j, z). Since the
In X/, ; are independent and mean zero to a first order, In Q% ; is also

the éwerage price of firms that adjust in period ¢— i. Now given that
the Ss bands in (25) and (26) are symmetric about the optimum and

" One interesting feature of the model is that the Ss bands are independent of the
elasticity of labor supply. Dotsey and King (2005) find that local labor markets lead to
tighter bands, more frequent price adjustment, and less persistence in the effects of
monetary shocks. The reason is that in Dotsey and King’s study the labor market is local
to the firm, so that the firm sees an upward-sloping labor supply curve. This makes the
firm’s profit function more concave in its own price. Here there are a large number of
firms on each island, so that each firm faces an elastic labor supply curve. As output on
the island rises, the wage will rise, but each firm treats this increase as exogenous.
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that the distribution of shocks is uniform, In Q% ; is also the average

price of those firms that did not adjust on islands that receive the idi-
osyncratic shock." It follows that

7, = (1 -a)(InQf +InF_,). (28)

B.  The State-Dependent Phillips Curve

Let m¢, be the deviation of average economywide real marginal cost
from its steady state and let Y, be the log deviation of output from its
steady-state value. After (i) making use of the relations for the optimal
reset price and the price index (eqq. [23] and [28], respectively) and
(ii) log-linearizing the rest of the model, it is straightforward to derive
the following Phillips curve relation for inflation (details are provided
in App. B):

m, = Nmc, + BEm,,,, (29)
with

d-od —af) o

A= , (30)
(64

where ¥ is a measure of the degree of real rigidities,

1
_1+508’

andme, = (1+ o) V.10

It should be clear that this state-dependent Phillips curve (29) has
the same form as the canonical time-dependent Phillips curve as orig-
inally formulated by Calvo (1983). The key (and only) difference lies
with the parameterization of the slope coefficient A, as we discuss shortly.

'* The quadratic approximation of the profit function leads to the symmetric bands. If
we had log-linearized about the exact solution to the firm’s problem in the steady state,
the bands would have been asymmetric, and we would have had to introduce another
state variable associated with the distribution of firms that did not adjust. Of course, this
alternative linearization differs from ours by terms that are second-order in s.

'""If we had aggregate productivity shocks, then we would replace Y with the output

gap-
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C.  The Rest of the Model

Given that there are only consumption goods and utility is logarithmic,
we can log-linearize the household’s intertemporal condition to obtain
the following “IS” curve:

Y, = —(R'— Em,,) + EY,.. (31)

Next, log-linearizing the first-order condition for money demand and
taking into account that consumption equals output yields

M
lth—lnPt—ln(;) =Y — ¢R. (32)

Equations (29), (31), and (32) determine the equilibrium aggregate
dynamics, conditional on a monetary policy rule.

VI. Properties of the Model

Before proceeding to some numerical exercises, we first characterize
some general properties of the model.

A.  Relationship to the Calvo Model

As we have noted, our state-dependent Phillips curve differs from the
Calvo formulation only in the parameterization of the slope coefficient
on output. In the Calvo formulation, the exogenously given probability
of no price adjustment enters the slope coefficient on the output gap
in place of «, the probability of no idiosyncratic shock, the relevant
primitive for the state-dependent case. In particular, for the time-
dependent Phillips curve, the slope coefficient, A\, is given by

_a-0a-o

A , 33
y 0 (33)

where 0 is the probability of survival with no price adjustment.
In our setting, 0 satisfies

1-0=(1—-w

( In i@+ 1Inp"
R L
o

)+(l—7')

The probability of price adjustment, 1 — 6, is equal to the fraction of
firms that receive the Poisson shock, survive, and receive an idiosyn-
cratic shock large enough to trigger adjustment, (1 — a)7[1 — (Inz” +
In 2")/¢] and the fraction of new firms that must set an initial price
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(1 — o)(1 — 7)."® Since a fraction of firms that receive an idiosyncratic
shock may not adjust, 6 is, in general, greater than «. This implies that
N > A ,.. The implication is that inflation is more sensitive to movements
in the output gap in the state-dependent framework. Intuitively, within
the state-dependent model there is a selection effect at work. In contrast
to the time-dependent case, firms not adjusting are those that are already
close to the target. In fact, the firms that do not adjust on an island
that receives an idiosyncratic shock have an average price equal to the
target price. Thus, in general, the state-dependent formulation will yield
greater nominal flexibility than the time-dependent formulation.

How much nominal flexibility state dependence delivers overall, how-
ever, depends on the other key primitive parameters of the model. Note
in particular that N also depends on the degree of real rigidities as
measured by ¥. With strong pricing complementaries (i.e., real rigidi-
ties) present, A could be small, indicating considerable nominal stick-
iness, even within the state-dependent framework."”

B.  Two Polar Cases

Our state-dependent formulation of inflation is quite flexible. It nests
two polar extremes, along with a continuous range of intermediate out-
comes. In particular, at one extreme the model can generate the kind
of complete flexibility suggested by Caplin and Spulber (1987). At the
other, it can perfectly mimic the degree of nominal stickiness in the
pure time-dependent Calvo model.

When the idiosyncratic productivity shock hits each firm each period,
the model behaves exactly like a flexible price model. In this instance,
o = 0, implying that the slope coefficient, A, on the output gap in the
Ss Phillips curve goes to infinity. According to (23), p¥* = 0. The econ-
omy is always at its frictionless optimum and money is neutral. Neutrality
holds in spite of the fact that a fraction 6 of firms do not adjust their
prices in each period.'

What is the source of this neutrality? It is instructive to analyze it from
the perspective of both a firm and the economy as a whole. Consider

' This fraction is equal to the fraction of firms that receive an idiosyncratic shock and
die (see eq. [10]). Since turnover of firms leads to price adjustment, in calibrating the
model we treat price changes that stem from new entrants as price adjustments in the
data that come from new product substitutions. See Nakamura and Steinsson (2007) and
Klenow and Kryvtsov (2008).

"7 Introducing other complementarities such as firm-specific capital (Woodford 2003)
or a chain of production (Basu 1995) may reduce N further.

' Note that Danziger (1999) does not find neutrality in his model even though he
assumes that o« = 0. The reason is that he presents an exact analytic solution, whereas we
log-linearize. The effects of money on output that Danziger finds are second-order in our
framework.
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first a firm that is contemplating price adjustment. It faces an expected
path for the nominal wage. In a time-dependent model, the firm would
set its price equal to a markup over a weighted average of future wages,
where the weights represent the discounted probability that the firm
has not yet had an opportunity to alter its price. The weights would
have the form (86)". How can the state-dependent firm ignore the future
path of wages and set its price as a markup only of the current wage?
The answer is that the state-dependent firm can use its future price
adjustment decision to bring its costs in line with whatever price it sets
today. Suppose that the wage is expected to rise in the next period. A
time-dependent firm would find that its price is too low. The state-
dependent firm shifts the set of future productivities for which it main-
tains its price so that its average markup is unchanged. The resulting
distribution of markups is unaffected by the increase in the wage. It is
important to note that this stark neutrality result depends crucially on
the assumption of a uniform distribution with wide support and that
the shock hits the firm each period. This assumption allows the firm
each period to alter its adjustment triggers without altering the resulting
distribution of the markups.

From the perspective of the economy as a whole, this neutrality result
is similar to the neutrality result of Caplin and Spulber. In their paper,
an increase in the nominal wage causes a few firms to raise their prices
by a discrete amount, so that the aggregate real wage remains constant.
Here what changes is the mix of firms that raise and lower their prices.
When a shock causes the nominal wage to rise, the set of firms that
maintain their prices fixed changes. Some that had marginally low pro-
ductivities decide to raise their prices, and some that have marginally
high productivities decide not to lower theirs. The result is an unchang-
ing distribution of markups: uniform between two fixed triggers and a
fixed mass at the target.

In the general case in which a subset of firms each period do not get
hit with an aggregate shock (0 <« < 1), the slope coefficient A is less
than infinity, implying nominal stickiness at the aggregate level. In this
instance, the unconditional distribution of idiosyncratic shocks is not
uniform, and hence monetary policy will affect the distribution of mark-
ups."” How important these effects are depends on the model calibra-
tion. We turn to this issue in the next section.

At the other extreme, as long as 0 < a < 1, the model converges to
the pure time-dependent case as the menu cost b goes to zero. In this
case the Ss bands go to zero, implying that firms adjust whenever an
idiosyncratic shock hits. In this instance the probability of price adjust-

1 As we noted in Sec. II, with o> 0, the unconditional distribution of idiosyncratic
shocks has extra mass at zero.
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ment 1 — 6 converges to 1 — «. In this case our Ss model behaves exactly
like the Calvo model: the slope coefficients on marginal cost in the
respective Phillips curves are identical in each case.

One interesting feature of the polar case of no costs of price adjust-
ment is that the small decision cost we introduced earlier for technical
considerations emerges to play an important role. Without menu costs,
the decision cost provides the only friction to preclude price adjustment
in response to aggregate shocks. Recall that the decision cost (i.e., the
cost of contemplating a price change and gathering information) pre-
cludes price adjustments in the absence of idiosyncratic shocks. As we
show in Appendix C, under our baseline calibration of menu costs, the
decision cost serves only to simplify the analytics and does not materially
affect the quantitative properties. As menu costs disappear, however, the
decision cost plays the key role in delivering nominal stickiness. While
the focus of this paper is on the role of menu costs, in future work we
plan to develop more thoroughly the role of decision costs.

C.  Relationship to the Klenow-Kryvtsov Evidence

Klenow and Kryvtsov (2008) show that for the recent low-inflation de-
cade in the United States, (i) the proportion of firms that adjust their
prices is fairly constant, and (ii) the variation in the inflation has been
driven almost entirely by variation in the size of price adjustment, not
by variation in the frequency of price adjustment.

In our framework, the probability of price adjustment is fixed up to
asecond order. It can be seen from equation (28) that all of the variation
in inflation is the result of variation in the average size of price adjust-
ment. Hence our model is consistent with the Klenow-Kryvtsov facts
even though it is based on Ss pricing.

VII. Calibration and Some Simulations

In this section we explore the response of the model economy to a
monetary shock as a way to evaluate the effects of Ss pricing. We begin
by calibrating the model. Where possible we choose standard parame-
ters. The time period is a quarter. We set the discount rate 3 at .99. We
set the elasticity of substitution between goods, €, equal to 11, which
implies a steady-state markup of 10 percent. We set the Frisch elasticity
of labor supply (the inverse of ¢) at 1.0, which is a reasonable inter-
mediate range value in the literature.

Next we turn to the key parameters of price adjustment: the proba-
bility of no idiosyncratic shock, «, the density of the idiosyncratic shock,
¢, the adjustment cost relative to average steady-state firm output, b/Y,
and the probability that the firm remains in the market 7 conditional
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on an idiosyncratic shock. Note first that the Ss band, » = Inp” —
In p*, is a function of these parameters. From equation (25),

[ 1—afb
@ = 28—1?.

The average size of price adjustment will depend on w and the range
of the idiosyncratic productivity shock (which depends on ¢). The fre-
quency of price adjustment conditional an idiosyncratic shock and sur-
vival, 1 — (2w/¢), will also depend on w and ¢. We proceed to derive a
system of relations that pin down the vector («, ¢, b/Y, 7) using evidence
on (i) the frequency of price adjustment with and without substitutions,
(ii) the absolute size of price adjustments, and (iii) the costs of price
adjustment.

Nakamura and Steinsson (2007) report the median time a price is
fixed in consumer price index data. They report numbers for two pe-
riods, 1995-97 and 1998-2005, and they report numbers including and
excluding substitutions. We interpret the substitution rate as the firm
turnover rate in our model, (1 — a)(1 — 7). When their numbers are
averaged, the median duration is 1.51 quarters excluding substitutions
and 1.49 quarters including substitutions. We set the probability of price
adjustment conditional on firm survival,

) = (L= arll = 2o/
N 1-0—-—a)1 -7~

equal to .369, the implied probability of price adjustment per quarter
excluding substitutions.” We set the overall frequency of price adjust-
ment 1 — 0 to .380, the implied probability of price adjustment including
substitutions. Next we require that the model match Klenow and
Kryvtsov’s evidence that the average absolute size of price adjustments
is about 8.5 percent: we therefore set (¢/4) + (w/2) = .085. Finally, we
set the steady-state resources devoted to price adjustment equal to 0.55
percent of revenue, on the basis of the evidence in Zbaracki et al. (2004)

and Levy et al. (1997).%' This implies y4/Y = .0055.

* As Cogley and Sbordone (forthcoming) note, given that adjustment is a binomial
random variable, the time until the next adjustment can be approximated as a continuous-
time exponential random variable, implying a median waiting time equal to
—1In (2)/1n (), where 0 is the Poisson arrival rate. Note that the median waiting time is
less than the mean duration of prices (1/0.4 = 2.5 quarters, roughly 7.5 months) since
the exponential distribution implies that some prices may not change for a very long time.

! Zbaracki et al. (2004) quantify the physical costs of price adjustment for a large
manufacturing firm. They find 5/Y to be about .004. Levy et al. (1997) in a study of four
grocery stores find that resources devoted to the price adjustment are slightly higher,
approximately 0.7 percent of revenue. However, Golosov and Lucas (2007) find that a
value of 0.24 allows their model to best match certain properties of the data. Our quan-
titative results are robust to alternative choices of this parameter.



558 JOURNAL OF POLITICAL ECONOMY

TABLE 1
IMPUTED VALUES OF THE PARAMETERS
0 o ) ) b/Y T
.620 4550 .0405 .2590 .0149 9667
TABLE 2

THE EFrFeECT OF
COMPLEMENTARITIES ON THE
COEFFICIENT ON MARGINAL

CosT
A N
0 .658 237
1 .055 .020

Table 1 shows the values of «, 0, ¢, b/Y, w, and 7 implied by this
parameterization. The parameter « > 0, reflecting the fact that not all
firms adjust after an idiosyncratic shock. The probability of price ad-
justment conditional on the idiosyncratic shock and survival, 1 —
(2w/9), is equal to .69. This reflects the fact that ¢ > 4w, implying that
the support of the idiosyncratic shock is large enough that the idiosyn-
cratic shock leads to both price increases and price decreases for small
aggregate shocks. The death probability 1 — 7 implies that each period
about 2 percent of firms leave the market. This is in the range reported
by Klenow and Kryvtsov.

Table 2 shows the implied value of A, the slope coefficient on marginal
cost in the Phillips curve given by equation (29). For comparison, we
also report the implied slope coefficient for a conventional time-
dependent Calvo formulation A, with a similar frequency of price ad-
justment. In addition, we also report slope coefficients for the case in
which real rigidities are absent (global labor markets). In this case
o = 0.

For the case with local labor markets (¢ = 1), the slope coefficient
is .055 for our Ss model, whereas for the Calvo model the parameter
shrinks to about .020. The value of A exceeds A, by a factor of almost
3, indicating greater nominal flexibility with state dependence. However,
the absolute difference is small. Further, A lies in the upper range of
estimates reported by Gali and Gertler (1999). Eliminating real rigidities
raises both N and A, by a factor of 12. In this case the absolute difference
between the two cases is large. However, both slope coefficients lie well
above estimates in the literature.

Figures 2 and 3 illustrate the response of the model economy to an
unanticipated monetary shock and clearly demonstrate the effect of
adding real rigidities. Figure 2 illustrates the response of the model
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F16. 2.—Response to a 1 percent shock to the money supply (no complementarities)

economy without real rigidities (¢ = 0) to a permanent 1 percent de-
crease in the money stock. This scenario corresponds closest to the
policy experiment considered by Golosov and Lucas (2007). The solid
line is the response of our state-dependent pricing model, and the
dotted line shows the response of the time-dependent Calvo model. For
the state-dependent model there is only a transitory decrease in real
output that lasts about 3 quarters. The initial response of the price level,
further, is slightly greater in percentage terms than the response of real
output, suggesting considerable nominal flexibility. Indeed, consistent
with the findings of Golosov and Lucas, the state-dependent model also
exhibits greater nominal flexibility than the Calvo model. For the Calvo
model, the initial output response is roughly 20 percent larger, and the
overall response lasts several quarters longer. Conversely, the overall
movement in the price level is smaller.

The absence of complementarities is evident in figure 2. The optimal
target price In Q* immediately falls by 1 percent, mimicking the path
followed by the money supply. There is no effect of the firms that do
not change their prices on the firms that do. By the time that all firms
have adjusted, the transition to the new steady state is complete.
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F1G. 3.—Response to a 1 percent shock to the money supply (with strategic
complementarities).

When we add complementarities in the form of local labor markets,
it is still the case that the state-dependent model exhibits the most
flexibility, but the percentage difference from the Calvo model becomes
smaller. Figure 3 illustrates the response of the model economy for this
case. As we would expect, there is a stronger response of output and a
weaker response of the price level for both the state- and time-dependent
models. For the state-dependent model, the percentage output response
is now roughly triple the response of the price level. Further, output
does not return to trend for over 10 quarters. Importantly, the addition
of real rigidities reduces the percentage difference in the output re-
sponse across the state- and time-dependent models. Now, for example,
the initial output response for the state-dependent model is only about
10 percent less than for the Calvo model.

We can see the effect of the complementarities in the response of
In Q*. The initial response of the target price is only half the size of the
money shock, and it takes about 10 quarters for In Q* to adjust to the
steady state. In this case even after the majority of firms have adjusted
their prices, the economy will not have returned to the steady state.
Some of these firms will have adjusted to a non-steady-state price. This
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is the source of sluggishness in the price level that generates greater
and more persistent real effects of money.

To be sure, while our model is useful for exploring the implications
of state-dependent pricing and is capable of capturing qualitatively the
relative strong response of output and weak response of inflation to a
monetary policy shock, it is clearly too simple to closely match the
evidence (e.g., Christiano, Eichenbaum, and Evans 2005). For example,
it cannot capture the delayed and hump-shaped response of real output.
However, it is straightforward to add a number of features (e.g., habit
formation, capital, investment with delays and adjustment costs, and so
on) that have proved useful in improving the empirical performance
of such models.

VIII. Conclusion

We have developed a simple macroeconomic framework that features
an analytically tractable Phillips curve relation based on state-dependent
pricing. At the micro level, firms face idiosyncratic shocks and fixed
costs of adjusting price. We cut through the usual difficulties in solving
and aggregating Ss models with restrictions on the distribution of idi-
osyncratic shocks and also by focusing on a local approximation around
a zero inflation steady state, as is done in the time-dependent pricing
literature. In the end, our model is able to match the micro evidence
on the frequency and size of price adjustment. At the same time, the
resulting Phillips curve is every bit as tractable as the Calvo relation
based on time-dependent pricing.

Consistent with the numerical exercises in Golosov and Lucas (2007),
we find that for a given frequency of price adjustment, the Ss model
exhibits greater nominal flexibility than a corresponding time-depen-
dent framework because of a selection effect: firms farthest away from
the target adjust in the Ss model, whereas this is not the case within the
time-dependent framework. However, with the introduction of real ri-
gidities, our Ss model is capable of generating considerable nominal
stickiness, as we demonstrate with a simple calibration model. Also key
to the result is that, under our baseline calibration, the idiosyncratic
shock distribution has most firms concentrated well within the Ss bands,
so that individual firms adjust prices typically only in the wake of large
idiosyncratic shocks. This is what gives our Ss model the strong flavor
of a time-dependent model, even though the adjustment decision is
purely endogenous.

An interesting recent paper by Midrigan (2006) achieves considerable
nominal stickiness by modifying the Golosov-Lucas framework by intro-
ducing a fat-tailed distribution of idiosyncratic shocks along with scale
economies in making multiple price changes. As in Golosov and Lucas’s
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paper, he solves the model numerically. We similarly use a fat-tailed
unconditional distribution of idiosyncratic shocks (though a simpler
one), but instead introduce real rigidities and find an approximate
analytical solution. Nonetheless, it would be interesting to consider
blending features of the two approaches.

While our model is capable of capturing the basic features of the
micro data, it is too simple at this stage to capture the cyclical dynamics
of output and inflation. It is straightforward to add some features that
have proved useful in explaining performance, such as habit formation,
investment, and adjustment costs. Accounting for the persistence of
inflation may prove trickier, given that the simple Calvo model also has
difficulty on this account. Specifically, the evidence suggests that a hybrid
Phillips curve that allows for lagged inflation as well as expected future
inflation to affect inflation dynamics is preferred over the pure forward-
looking model.? However, at this point we suspect that some of the
strategies employed in the time-dependent literature to address this
problem, such as dynamic indexing, information lags, and/or learning,
may prove useful in this context as well.

Appendix A
Proof of Proposition 1

Suppose that the firm has a current markup of p, such that Ing, € [Inpl,
Inp!"]. We are interested in the expected value of an optimal policy conditional
on an idiosyncratic productivity shock in period ¢+ 1. Also let p}, denote the
optimal choice of p,,, in the event of adjustment.

Consider E{A,, exp [(e — 1)é,, ]v(n,11, ©,4,)} over the states of the world in
which the idiosyncratic shock hits. Given the assumption on ¢, £/>plt, —
In (VV//VV/H) _ln”‘n and EL< %141 —In (W/Wﬂ) —Inp,

E{Auﬂ exp [e = D& Jo(p, Qo) =

EH
1 _
E[A“H_f exp [(8 - l)gzﬂ]v(l-’v?ils Q/+1)d£L+1
1

¢ npfhi—In (Wy/ Wi ) —Inpy

1 In QF% 1 —In (Wy/ W) —Inpy W
— [ BV
+ AL,L+1_f eXP [(8 - 1)£L+1]v( eXP (EH])?QHI) dEHI
1

® Jin otr-tn vy W -, W,

| [ O
+ At,t+1;f exXp [(e — 1)£t+1]{j(p':5»l’ Qt+l)d€1+l)'
il‘

* For example, Gali and Gertler (1999) find that a hybrid model with a coefficient of
roughly 0.65 on expected future inflation and 0.35 on lagged inflation is preferred over
the pure forward-looking model.
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Rearranging yields
E{A/,/H exp [(8 - l)glﬂ]v(l"zﬂa Qzﬂ)} =

E[A1,1+1{j(”’ﬁrl) Ql+l)

In Q1 —In (Wy/ Ws1) —Inp,
+ AL,/+1$I exp [(8 - 1)£L+1]
1

n Qb1 —In (W)/ Wi 1) —Inp,

_ (W,
U(W exp(gﬁl)r QH])

t+1

- {}(Mﬁla QH])‘dEHI]'
A change of variable, ®,, = Iny,+In(W/W,,) + £, gives
E{AI,I+I exp [(8 - 1)£I+1]v(ul+l7 QL+])}

= |Az,/+l7_}(ﬂ?jr1 s Ql+1)

Inpfl,
+ AL,L+1;f exXp [(8 - 1)(¢1+1 —In l"l)][‘b(exp (¢1+1)a QL+1)
1

—v(pk, Qr+l)]d¢t+l)' (A1)

Note thatInu/?, and In u},, are chosen optimally in period ¢+ 1. They depend
on the period ¢+ 1 state. The term exp (®,,,) and the aggregate variables are
independent of u,. The only place that y, enters is the exponential term inside
the integral. Now, by the assumption on b, In , is equal to In u* plus a first-order
term, and given the limits of integration, ®,,, is equal to In %, plus a first-order
term. The exponential term is therefore equal to exp [(e — 1)(In Q% , —In QF)]
plus a first-order term. The term in brackets inside the integral is bounded by
b. By the assumption on b, this term is second-order. Hence,

At,HleXp [(e — 1)(q)¢+1 —In Qz)][{/(exp (<I)r+1)a QH»]) - 'D(ijﬂ’ Qz+1)] =
Ar.r+1exp [(e=D(InQ¥%, —In QT)][@(CXP (¢t+l), QH—I) - 'Z}(Q;‘:-la QH—])] + O

Further, the assumptions that ¢>2(In Q! —In Q}) and that the range of inte-
gration is first-order imply

E{A1,1+1 eXP [(8 - 1)$1+1]U(Qtexp (EHI)’ Qt+1)}

=FE Al,[+1{/(Q>L:<+1? Qz+1)

Inpft,
+ Afmgf exp [(e — D(Inpf, —InpH)l[vlexp (B.), Qi)
1

npfi

+ 0

- i}(Qj:»l! Q/H)]dq)/H
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It follows that E{exp [(e — 1), 1v(p,11, ©,41)) is independent of u, to a second
order. QED

Appendix B
Derivation of the Log-Linear Phillips Curve

Equation (23) in the text implies that the average optimal reset price In Q% (net
of the In X/, which are mean zero across firms) is the following discounted
stream of future nominal wages:

InQF =Inj+ (1-Bw)E, >, (Ba)InW,,,.

Note that In QF depends on the island-specific wage W,,. As a step toward ag-
gregation, we would like to derive this relation in terms of the economywide
average wage, W,

Log-linearizing the household’s first-order condition for labor supply yields

InW,—InB+Inji = N, + C, (B1)

Averaging over this condition yields In W,—InB+1np = oN,+ C, implying the
following relation between the island zrelative wage and the relative employment
levels:

InW,—In W, = ¢(N,,— N). (B2)

Making use of the demand function and the production function leads to a
relationship between the relative wage and the relative price of firms that adjust
at time £

W, = InW,,— ee(n Qf —InF,). (B3)

Notice that In W,,,; depends inversely on In Q%. Raising prices on an island
reduces output and labor demand. Since the labor market is segmented, it also
reduces wages on the island, thus moderating the need to raise prices in the
first place. As emphasized in Woodford (2003), this factor segmentation thus
introduces a strategic complementarity or “real rigidity” that gives adjusting firms
a motive to keep their relative prices in line with the relative prices of nonad-
justing firms.*® This strategic complementarity, in turn, contributes to the overall
stickiness in the movement of prices. Combining (B3) with the expression for
Q* yields

InQf = (1 — af)¥(In W,—InP) +InE] + BaE,In Q% , (B4)

with ¥ = 1/(1 + ¢g).

In equilibrium, the real wages of adjusting firms, In W, — In F, move less than
one for one with the aggregate real wage, implying similarly sluggish movement
in the target price In QF. In this respect, the strategic complementarity measured
inversely by the coefficient ¥ dampens the adjustment of prices. With econo-
mywide labor markets, ¥ equals unity, implying that In W, simply is equal to
In W,

* For a menu of alternative ways to introduce real rigidities, see Kimball (1995) and
Woodford (2003).
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We are now in a position to present the Phillips curve. Let m, = InF, —
In F_, denote inflation. Combining the equation for the target price (B4) with
the price index (28) yields

T, = M\y(ln W, —InP) + BEm,,,. (B5)

It should be clear that this state-dependent Phillips curve has the same form
as the canonical time-dependent Phillips curve as originally formulated by Calvo
(1983). The key difference is that in our formulation the primitive parameter
entering the slope coefficient on marginal cost is the probability a of no idio-
syncratic shock, whereas in the time-dependent framework it is the exogenously
given probability of no price adjustment.

The rest of the model is standard. Log-linearizing the firstorder condition
for labor supply, averaging across households, and taking into account that
consumption equals output yields a linear relation between the aggregate real
wage and output:

InW—InP+Inp = «Y, (B6)

where k = 1+ ¢ is the elasticity of marginal cost (with log utility). Combining
equations (B5) and (B6) then yields the Phillips curve in terms of the output

gap:

™ = Y, + BEm,., (B7)
with
1—- 1-—
L_(-wl-ap
o
Appendix C

On the Accuracy of the Approximation

We have made a number of approximations and assumptions in order to arrive
at an analytically tractable model. Theoretically our approximation holds if (1)
there exists a decision cost such that firms adjust if and only if the idiosyncratic
shock arrives, (2) the other parameter restrictions hold, (3) the second-order
approximation of the value profit function is accurate, (4) the continuation
value following an idiosyncratic shock is third-order, and (5) the aggregate shocks
are sufficiently small that the log-linearization is accurate. In this appendix, we
evaluate the first four assumptions. The last is standard in the literature on Calvo
pricing. We also evaluate whether removing the decision cost has a large effect
on the model’s dynamics. In summary, the model holds up well for our
calibration.

The Bounds on the Decision Cost

In this subsection, we calculate the range of the decision costs [d, d] that ensure
that a firm adjusts only after receiving an idiosyncratic shock. We show that this
range is nonempty for our parameterization.

We first amend the firm’s problem to include the decision cost. We assume
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that the firm knows the aggregate state and whether or not an idiosyncratic
shock has occurred (and whether or not it has survived). The firm must pay
the decision cost d in order to learn the value of the idiosyncratic shock and to
process information regarding both the aggregate and idiosyncratic variables.
The firm must then pay the menu cost b in order to adjust its price.

Suppose that the firm last paid the decision cost at date s. Let p, =
Q,X,/W, be the markup at that time. Let z,, € A denote the number of times
that an idiosyncratic shock has hit since date s (including date ). We define
three value functions, each corresponding to a different stage of the period ¢
decision. Let o(p,, 2, z,,) denote the optimal policy at the beginning of date ¢
given that the markup was set to p, at date s, the current aggregate information
set is @, and idiosyncratic turbulence has hit the firm z,, times since s. Let
v(p, Q) denote the optimal policy at date ¢ conditional on having paid the
decision cost but before paying the menu cost . The function v depends on
the inherited markup i, and the current aggregate information (,. Finally, let
v(p,, Q) denote the value of an optimal policy after price adjustment. The
function v depends on the postadjustment markup g, and the current aggregate
state Q, Now

ﬁ(uw Qr’ Z‘x,[) = max{E[v(ﬂ,, Q)'Zu, Qr] - d,
I+ E[~4 (e — DY(In g, — In)*
+ 673(#‘, Qz+1) Z,&,L+1)|Zx,[’ Q[]} (Cl)

If the firm pays the decision cost d, then it receives the expected value of
v(fr,, Q). This expectation is taken with respect to the current aggregate infor-
mation {, and z,,, which indexes information regarding the distribution of the
productivity shock. If the firm does not pay the decision cost, then it cannot
alter its price and it does not update its information regarding X,. It thus receives
the expected profit II, defined in equation (20) and the discounted value of
v(py @41, 2,,41), Where the information is now tomorrow’s information. The
discount rate is 8 since the arrival of the idiosyncratic shock is encoded in z.
Again the expectation is taken with respect to the current information.

In the second step, the firm that pays the decision cost has the option of
altering its price

v(ﬂn Qz) = max{i}(liu QI)! maxﬁjj(u, QL) — b} (CQ)

As the final step, we define v:
Wpy @) = T+ E[— (e — D¥(Inp, — In@)* + GBi(us Qs 2,,)|2),  (C3)

where & is the survival probability. Note that if the firm pays the decision cost
if and only if z = 1, then the decision problem in equations (Cl1), (C2), and
(C3) is equivalent to the decision problem in equations (18) and (19) of the
text.

We begin with the upper bound d. We need d low enough that a firm ex-
periencing a productivity shock always chooses to pay the decision cost. Rear-
ranging (C1) and using (C2) and (C3) yields the following condition:

d< Elmax {0, max, (s, Q) — b— (i, QI[1, ). (C4)
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Here z,,is equal to one since the idiosyncratic shock has hit once. The equation
states that d must be less than the expected gain to adjustment.

Given the concavity of the profit function, a firm in the center of the bands
is the least willing to pay the decision cost. Therefore, consider a firm that (1)
knows that g = 0 when it experiences an idiosyncratic productivity shock and
(2) believes that the aggregate state will remain unchanged over the foreseeable
future so that g = 0 is the optimal markup. It is sufficient that such a firm wishes
to adjust.

We now calculate the gain to paying the decision cost for this firm after an
idiosyncratic shock. The benefit of paying the decision cost is the option to
adjust price. The firm will adjust if and only if |£| > w. In Section IV, we showed
that the normalized per-period loss to nonadjustment is appr0x1mately IChe
DYE2 If |£| > w, the firm will therefore gam e = 1)Y(E2 — »?), where we have
used the fact that when £ = w the firm is 1nd1fferent between adjusting and
nonadjusting. We integrate this potential benefit over the region of price ad-
justment [—¢/2, —w] U [w, ¢/2] using the density 1/¢. We may assume that
d € [d, d] in all subsequent periods, so we take the present value until the next
idiosyncratic shock. The simplification theorem implies that we can ignore pay-
offs beyond that point. Condition (C4) becomes

. (S_I)thﬁ/? g l( —l)Y( 2+4w3)_6_l -
SU-ape). C 7% T ol ) =

Given our parameterization, d = 0.039Y, or about 2.5 times the menu cost.

We now turn to the lower bound d. We need d large enough that a firm will
not pay the decision cost in the absence of an idiosyncratic disturbance. Sub-
stituting (C2) and (C3) into (Cl) and using the fact that with z = 0 the firm
knows its current markup, we arrive at the following condition:

max, v(u, &) — (b+ d) <o (i, Q).

When there is no idiosyncratic shock, it is as though the firm faces an adjustment
cost of b+ d. This leads to wider Ss bands and potentially prevents a firm that
set its markup at g or g" from adjusting in subsequent periods. We require that
this condition hold for all states of the model.

To calculate d, we need to calculate v and construct a worst-case scenario. To
do so we need to be explicit about the process for the aggregate shock. We
obtain a reasonable lower bound by feeding into the model shocks based on
an estimated process for nominal demand and calculating for each period the
decision cost required to prevent firms that have not received the idiosyncratic
shock from adjusting. Specifically, we fit an AR(1) to quarterly nominal GDP
growth over the sample 1984:1-2007:1, a period of moderate inflation to which
our model is most relevant. (As we discussed Sec. II.D, n. 12, our disturbance
is best thought of as a variation in nominal demand, which can be captured in
the data by movements in nominal GDP.) This yields an autoregressive parameter
p = .37 and a sequence of shocks. We use these to simulate our calibrated model.
We then compute at each date ¢ the decision cost required to discourage ad-
justment by firms whose prices were at the upper and lower adjustment triggers
at dates t— 1, t— 2, and ¢— 3. These are the firms with the greatest desire to
adjust. We go back three periods because in our calibration with o« = .455, only
4 percent of firms operating at date ¢ last received an idiosyncratic shock prior
to date { — 3. We take d to be the maximum of these costs. This procedure ylelds
d = .018Y. If we drop the largest outlier shock (the third quarter of 2001, i.e.,
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9/11), d falls to .0147Y, roughly the size of the menu cost.** We conclude that
the range of admissible decision costs is nonempty in our parameterization.

Other Parameter Restrictions

Condition (12) requires that ¢ be greater than 4w + 2m. Given our parameter-
ization, w = .0405. We need a reasonable value for m. Given o = .455, only 4
percent of firms survive 1 year. We therefore choose k(m) = 4. We associate m
with nominal GDP. The standard deviation of nominal GDP growth over the
period 1984:1-2007:1 is 1.28 percent. We take m to be two standard deviations,
or about 2.56 percent. This implies that ¢ must be greater than 0.2132, which
it is.

The Third-Order Terms in the Approximation

We take a quadratic approximation of the period profit function. This requires
that third-order terms are negligible relative to the second-order terms. To eval-
uate this assumption, we compute the ratio of the third-order term in the profit
function to the second-order term. We use our calibrated parameters and eval-
uate In Q — In Q* at the bands. The ratio is .28. Hence it is not obvious that the
third-order terms are small.?’ Below, we solve a nonlinear version of the firm’s
problem and find that these terms do affect the position of the bands but have
a negligible effect on the dynamics of the price level relative to the steady state.

The Continuation Value Following Idiosyncratic Shocks

When we took the second-order approximation of the value function, we ignored
all terms involving the arrival of the idiosyncratic shock. According to proposition
1, these terms were third-order. We now show that these terms are indeed small
in our calibration.

Note that we can rewrite equation (Al) as follows:

E{AI,I+I exp [(e = D& do(ps Q)b =

Inpfl,
C+ Et[At,tJrl_f eXP [(8 - l)éﬁl]["—}(exp (q>t+1)s QH])
1

nufiy

—o(pki, Qu)ld®,, exp[—(e—1Dnp]l,

where Cand the coefficient on exp [~(¢ — 1) Inp,] are independent of u,. When

* Assuming that the firm needed to pay d to learn aggregate information would further
reduce the decision cost. Removing the real rigidity would raise d to about .02Y.

» Devereux and Siu (2004) argue in another context that these third-order terms may
be quantitatively important.
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we take a second-order approximation with respect to Inu, the coefficient on
no s
pe s

(e~ 1)

Inpufly
9 EL[AI,I+1_J exp [(8 - l)q)/+1][7—/(exp (¢L+1)’QI+])
1

@ Jinuti

_{}(:u'?il’gﬁrl)]dq)ﬁl CXP [_(8 - 1) 1np’z]-

Now the term in brackets is bounded above by . We can get some idea of
how large this coefficient is by replacing the term in brackets by band evaluating
it at the steady-state values of the other variables. The result is .239Y. To get an
idea of how large the effect is that we have omitted from our approximation of
the value function, we need to multiply this by 87(1 — «)/(1 — «f) in order to
account for all the times this term enters the present value calculation (the term
appears in period ¢+ i with probability 7[1 — aja’™"). The resulting coefficient
is .227Y. This should be compared with the coefficient on p* that we include in
our approximation. This coefficient is

1 (Lv)rly_s_ly
oX:\p) T 9T

Given the parameters in our calibration, this is equal to 5Y. It follows that the
omitted terms are indeed small relative to the terms that we include. For our
parameterization the coefficient on the continuation value following the idio-
syncratic shock is an order of magnitude smaller than the coefficient on profits
prior to the shock.

The Importance of the Decision Cost

The introduction of the decision cost d solves a particular technical problem in
the linearization. An Ss model has threshold rules that make the model difficult
to linearize. Without the decision cost, a firm with Q, in the neighborhood of

“ will want to adjust in period ¢ + 1 if Q” falls and not adjust if Q" rises. Since
the price index is equal to the average of In Q, this creates a nondifferentiability
of the price index: shocks in one direction may trigger adjustment, whereas
shocks in the other direction may not. When the idiosyncratic productivity shock
hits, this nondifferentiability does not matter, and the idiosyncratic shock
smooths it out. We introduce the decision cost to eliminate this nondifferenti-
ability in other states of the world.*

In the model, the decision cost affects only the calculation of the bands Q*
and Q% and these bands were used only in the calculation of the price index.
We did not need the decision cost for proposition 1 since that proposition
considered only states of the world in which the idiosyncratic shock arrived. We
did not need the decision cost for the calculation of the optimal target Q*.

* Dotsey et al. (1999) eliminate these nondifferentiabilities by introducing idiosyncratic
cost shocks. We cannot do this since the distribution of prices for firms that last received
the idiosyncratic shock at date ¢ but chose not to adjust would no longer be uniform
between In Q) and In Q7. It would be a convolution of this uniform distribution and the
additional idiosyncratic shock.
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F16. C1.—Comparing the response of the price level to a 1 percent money shock in
the linear model to the response with exact profit functions and no decision cost.

Since the bands are wide relative to the aggregate fluctuations, firms at the
target rarely reach the bands before they receive another idiosyncratic shock.

We can get some idea of how the decision cost affects the aggregate dynamics
by considering how firms might want to adjust if we removed the decision cost.
We consider an experiment similar to that of Golosov and Lucas (2007). In this
experiment, we set the decision cost equal to zero. We consider a 1 percent
reduction in the money supply and solve for the perfect foresight dynamics by
iterating on the model. We begin by assuming that the aggregate variables follow
the paths predicted by our linear model. We then calculate the optimal adjust-
ment policies, given perfect foresight of these aggregate variables. We then use
these policies to construct a new price index. Here we assume that prices are
initially distributed according to the stationary distribution that would result if
the aggregate shocks were all zero. We resolve the linear model taking this price
as given and use these aggregate variables as inputs into the next stage. We
iterate to convergence.

We perform this experiment using the quadratic approximation of the profit
function and the exact profit function. In both cases, the resulting equilibrium
price paths are close to those of our linear model. Figure Cl presents the
comparison for the case of the exact profit function.

We can get some intuition for why the decision cost does not matter by
considering the period after the shock. Suppose that we normalize the model
such that initially In Q% = 0. The stationary distribution of In Q has a mass of
firms massed at zero equal to (1 —7) + 7[1 — (2w/¢)] and the remainder dis-
tributed uniformly with a density of 7/¢, just under 4 in our parameterization,
over the interval [—0.036, 0.048]. Note that since we are using the exact profit
function, the bands are asymmetric. In the period after the shock, the barriers
fall to —0.041 and 0.043. Without the decision cost, those left in the interval
[0.043, 0.048] want to adjust. With the decision cost, they do not. How large an
effect does this have? Recall that only «, just under one-half, of the firms orig-
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inally in this interval remain. Therefore, only a small fraction, a(ln QY —
In Q1)/¢ or just over 0.8 percent, of firms are affected by the decision cost. If
they are allowed to adjust, these firms charge In Q% = —.005 rather than the
average of In Q¢ and In Q1. This implies an average price change of just over 5
percent. Firms affected by the decision cost therefore contribute —0.008 x
0.05 ~ —0.0004 to the decline in the price level. The difference is small relative
to the decline in the price level itself, which is 0.28 percent in the linear model.
The difference is even smaller in subsequent periods since the policies move
by less. It is also smaller in response to a positive shock to the money supply,
since the skewness of the Ss bands implies that the affected firms adjust by only
4 percent.

Larger monetary shocks reproduce figure Cl on a larger scale. The two im-
pulse responses look exactly the same; only the vertical axis changes. Once the
money shock exceeds 5 percent, the model begins to break down. Firms initially
at O* may find themselves outside of the bands. This has a big effect on the
performance of the model.
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