A Macroeconomic Model with Financial Panics

Mark Gertler, Nobuhiro Kiyotaki, Andrea Prestipino

NYU, Princeton, Federal Reserve Board¹

December 2018

Gertler Kiyotaki Prestipino ()

 $^{^1{\}rm The}$ views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board or the Federal Reserve System

- Incorporate banks and banking panics in simple macro model
- Broad goal:
 - Develop framework to understand dynamics of recent financial crisis
- Specific goals:
 - Characterize sudden/discrete nature of financial collapse in fall 2008
 - No observable large exogenous shock
 - Gorton (2010), Bernanke (2010): Bank runs at heart of collapse
 - Model credit boom preceding crisis
 - Optimistic beliefs before crisis (Bordalo et al (2017))
 - Increases susceptibility to runs

Motivation

1. GDP Growth and Credit Spreads

3.0 - 6 - 5.0 Lehman failure -2.5 5 Lehman failure 2.0 4.5 4 1.5 1.0 4.0 2 0.5 0.0 3.5 -0.5 0 -1.0 - Nominal GDP Growth - BAA-10 Year Treasury Spread -1 3.0 -1.5 -2 -2.0 -2.5 -3 2.5 2004 2005 2006 2007 2008 2009 2010 2004 2005 2006 2007 2008 2009 2010

2. Broker Liabilities

- Simple New Keynesian model with investment
- Banks intermediate funds between households and productive capital
 - $\bullet\,$ Hold imperfectly liquid long term assets and issue short term debt $\rightarrow\,$
 - Vulnerable to panic failure of depositors to roll over short term debt
 - Based on GK (2015) and GKP (2016)
 - In turn based on Cole/Kehoe(2001) self-fulfilling sovereign debt
- Households may directly finance capital, but less efficient at margin than banks

Evolution and Financing of Capital

• End of period capital S_t vs. beginning K_t

$$S_t = \Gamma(I_t) + (1 - \delta)K_t$$

 $\Gamma' > 0, \ \Gamma'' < 0$
• $S_t \to K_{t+1}$:

$$K_{t+1} = \xi_{t+1} S_t$$

 $\xi_{t+1} \equiv$ "capital quality" shock

• S_t^b intermediated by banks; S_t^h directly held by households

$$S_t = S_t^b + S_t^h$$

Household and Bank intermediation

• Rate of return on intermediated capital

$$R_{t+1}^{b} = \xi_{t+1} \frac{Z_{t+1} + (1-\delta)Q_{t+1}}{Q_{t}}$$

• Utility cost to household of direct finance

$$\varsigma(S_t^h, S_t) = \frac{\chi}{2} \left(\frac{S_t^h}{S_t}\right)^2 S_t$$

• Marginal rate of return on directly held capital

$$R^h_{t+1} = rac{1}{1+\chirac{S^h_t}{S_t}}R^b_{t+1}$$

Where $\chi \frac{S_t^h}{S_t}$ is the marginal cost of direct finance

Household and Bank Intermediation

NO BANK RUN EQUILIBRIUM

Bank Decision Problem

Objective

$$V_t = E_t \Lambda_{t,t+1} [(1-\sigma)n_{t+1} + \sigma V_{t+1}]$$

 $\sigma \equiv$ exogenous survival probability

• Net worth n_t accumulated via retained earnings - no new equity issues

$$n_{t+1} = R_{t+1}^k Q_t s_t^b - \overline{R}_t d_t \quad \text{if no run} \\ = 0 \quad \text{if run}$$

Balance sheet

$$Q_t s_t^b = d_t + n_t$$

Deposit Contract

 $\overline{R}_t \equiv$ deposit rate; $R_{t+1} \equiv$ return on deposits $p_t \equiv$ run probability; $x_{t+1} < 1 \equiv$ recovery rate

• Deposit contract: (One period)

$$R_{t+1} = \begin{cases} \overline{R}_t \text{ with prob. } 1 - p_t \\ x_{t+1}\overline{R}_t \text{ with prob. } p_t \end{cases}$$

• Recovery rate:

$$x_{t+1} = \frac{\xi_{t+1} \left[Z_{t+1} + (1-\delta) Q_{t+1}^* \right] S_t^b}{\bar{R}_t D_t}$$

Bank Decision Problem: Perfect vs. Imperfect Markets

• Perfect markets:

Banks issue deposits until:

$$E_t \Lambda_{t,t+1} \{ R_{t+1}^k - R_{t+1} \} = 0$$

 \Rightarrow Leverage constraints do not arise \Rightarrow Financial panics cannot arise

• Limits to arbritage:

Occasionally binding leverage constraints \Rightarrow

$$E_t \Lambda_{t,t+1} \{ R_{t+1}^k - R_{t+1} \} > 0$$

Bank runs possible: extreme increases in $E_t \Lambda_{t,t+1} \{ R_{t+1}^k - R_{t+1} \}$

- Moral Hazard Problem:
 - After banker borrows funds at t, it may divert fraction θ of assets for personal use.
 - If bank does not honor its debt, creditors can
 - recover the residual funds and
 - shut the bank down.
- \Rightarrow Incentive constraint (IC)

 $\theta Q_t s_t^b \leq V_t$

Solution

- Can show $V_t = \psi_t n_t$ with $\psi_t \ge 1$ and increasing in $E_t \{R_{t+1}^k R_{t+1}\}$
- \bullet Combine with $\mathit{IC} \to \mathsf{endogenous}$ leverage constraint :

$$Q_t s_t^b \leq \overline{\phi}_t n_t$$

$$\overline{\phi}_t = \frac{\psi_t}{\theta}$$

Note:

- $n_t \leq 0 \Rightarrow$ bank cannot operate (key for run equilbria)
- $E_t \{ R_{t+1}^k R_{t+1} \}$ countercyclical $\Rightarrow \overline{\phi}_t$ countercyclical.

Homogeneity: $\phi_t \equiv \frac{Q_t s_t^b}{n_t}$ and $\overline{\phi}_t$ independent of bank-specific factors

 $\bullet \ \to \mathsf{Aggregate} \ \mathsf{leverage} \ \mathsf{constraint}$

$$Q_t S_t^b \leq \overline{\phi}_t N_t$$

$$ightarrow E_t \Lambda_{t,t+1} \{ R_{t+1}^k - R_{t+1} \} > 0$$

• Aggregate net worth

$$N_{t} = \sigma[(R_{t}^{k} - R_{t})\phi_{t-1} + R_{t}]N_{t-1} + \zeta S_{t-1}$$

• Absent runs, conventional financial accelerator with non-linearity

- Self-fulfilling "bank run" equilibrium (i.e. rollover crisis) possible if:
 - A depositor believes that if other households do not roll over their deposits, the depositor will lose money by rolling over.
 - Condition met iff banks' net worth n_t goes to zero if others run
 - $n_t = 0 \rightarrow$ banks cannot operate

Conditions for Bank Run Equilibrium (BRE)

• Run equilibrium exists at t + 1 if

$$\xi_{t+1} \left(Z_{t+1}^* + (1-\delta) Q_{t+1}^* \right) S_t^b < D_t \bar{R}_t \tag{1}$$

where $Q_{t+1}^* \equiv$ liquidation price:

$$Q_t^* = E_t \{ \Lambda_{t,t+1} \xi_{t+1} (Z_{t+1} + (1-\delta)Q_{t+1}) \} - \chi \frac{S_t^n}{S_t}$$

evaluated at $\frac{S_t^h}{S_t} = 1$

• $\iota_{t+1} \equiv$ sunpot variable; if $\iota_{t+1} = 1$ depositors panic when run possible

• Run occurs if (i) equation (1) is satisfied and (ii) $\iota_{t+1} = 1$

Run Probability p_t

- Assume sunspot occurs with probability \varkappa .
- \rightarrow The time *t* probability of a run at t+1 is

$$p_t = \Pr_t \left\{ \xi_{t+1} \left(Z_{t+1}^* + (1-\delta) Q_{t+1}^* \right) S_t^b < D_t \bar{R}_t \right\} \cdot \varkappa$$

$$\Leftrightarrow$$

$$p_t = \Pr_t \left\{ \xi_{t+1} \left(Z_{t+1}^* + (1-\delta) Q_{t+1}^* \right) < \frac{D_t \bar{R}_t}{S_t^b} \right\} \cdot \varkappa$$

 \rightarrow Higher leverage ratios $\frac{D_t\bar{R}_t}{K_t^b}$ increase run probability

Production, Pricing and Monetary Policy (Standard)

• Production, resource constraint and Q relation for investment

$$Y_t = AK_t^{\alpha}L_t^{1-\alpha}$$

$$Y_t = C_t + I_t + G$$

$$Q_t = \Phi(I_t)$$

- Monopolistically comp. producers with quadratic costs of nominal price adjustment (Rotemberg)
 - Adjust output to meet demand
 - New Keynesian Phillips curve relating inflation to marginal cost
- Monetary policy: simple Taylor rule

$$R_t^n = \frac{1}{\beta} (\frac{P_t}{P_{t-1}})^{\kappa_{\pi}} (\Theta_t)^{\kappa_y}$$

Calibration

Parameter	Description	Value	Target
Standard Parameters			
β	Impatience	.99	Risk Free Rate
γ_h	Risk Aversion	2	Literature
φ	Frish Elasticity	2	Literature
ϵ	Elasticity of subst across varieties	11	Markup 10%
α	Capital Share	.33	Capital Share
δ	Depreciation	.025	$\frac{I}{K} = .025$
η	Elasticity of q to i	.25	Literature
a	Investment Technology Parameter	.53	Q = 1
b	Investment Technology Parameter	83%	$\frac{I}{K} = .025$
G	Government Expenditure	.45	$\frac{G}{V} = .2$
ρ^{jr}	Price adj costs	1000	Slope of Phillips curve .01
κ_{π}	Policy Response to Inflation	1.5	Literature
κ_y	Policy Response to Output	.5	Literature
Financial Intermediation Parameters			
σ	Banker Survival rate	.93	Leverage $\frac{QS^b}{N} = 10$
ζ	New Bankers Endowments as a share of Capital	.1%	$\%~\Delta$ I in crisis $\approx 35\%$
θ	Share of assets divertible	.22	Spread Increase in Crisis $= 1.5\%$
γ	Threshold for HH Intermediation Costs	.61	$\frac{S^b}{S} = .33$
χ	HH Intermediation Costs	.105	$ER^b - R = 2\%$ Annual
×	Sunspot Probability	.15	Run Probability 4% Annual
$\sigma(\epsilon^{\xi})$	std of innovation to capital quality	.5%	std Output (C+I)
ρ^{ξ}	serial correlation of capital quality	.7	std Investment

Response to a Capital Quality Shock: No Run Case

Response to a Sequence of Shocks: Run VS No Run

Financial Crisis: Model vs Data

Gertler Kiyotaki Prestipino ()

Boom leading to the bust: news driven optimism

• Capital quality:

$$\xi_{t+1} = \rho^{\xi} \xi_t + \epsilon_{t+1}^{\xi}$$

- At t = 0 bankers learn that unusually large realization of ϵ_{t+1}^{ξ} of size B > 0 will happen at $t^B \in \{1, ..., T\}$ with prob. $\overline{P}_0^B < 1$
- $\Pr_0\{t^B = t\}$ is a truncated Normal (discrete approx.)
- Agents update \Pr_t and \overline{P}_t^B by observing ϵ_t^{ξ}
- Prob. at t of shock at t+1 is $\Pr_t \{t^B = t+1\} \cdot \overline{P}_t^B$
- Implies forecast errors in line with evidence, e.g. Bordalo et al 2017

Optimism, credit boom and financial vulnerability (no run)

Financial Crisis After Credit Boom: Model vs Data

Gertler Kiyotaki Prestipino ()

December 2018 24 / 31

Forecast Errors in Credit Spreads (Baa-10yr Treasury)

Forecast Errors: AAA-Treasury (4-Quarters Ahead)

Gertler Kiyotaki Prestipino ()

Conclusion

- Incorporated banking sector with conventional macro model
 - Banks occasionally exposed to self-fulfilling rollover crises
 - Crises lead to significant contractions in real economic activity
- Model captures qualitatively and quantitatively
 - Nonlinear dimension of financial crises
 - The broad features of the recent recent collapse
 - Credit boom preceding crisis
- Next steps:
 - Macroprudential policy (Run Externality)
 - Lender-of-last resort policies

Run Equilibrium Threshold

• We can simplify existence condition for BRE:

$$x_t = \frac{R_t^{b*}}{\overline{R_t}} \cdot \frac{\phi_{t-1}}{\phi_{t-1}-1} < 1$$

with

$$R_t^{b*} = \frac{\xi_t[Z_t + (1-\delta)Q_t^*]}{Q_{t-1}}; \quad \phi_{t-1} = \frac{Q_{t-1}S_{t-1}^b}{N_{t-1}}$$

• Likelihood BRE exists decreasing in $Q^*(\cdot)$ and increasing in ϕ_{t-1}

• ϕ_{t-1} countercyclical \rightarrow likelihood BRE exists is countercyclical.

Run Equilibrium Threshold

- Conventional financial accelerator/credit cycle models (e.g. Gertler/Kiyotaki 2011)
 - Mutual feedback between borrower balance sheets and real activity
 - Local approximations \rightarrow dynamics linear
- Models with occasionally binding balance sheet constraints (e.g.Brunnermeier/Sannikov 2014, He/Krishnamurthy, 2016)
 - $\bullet\,$ Moving from unconstrained to constrained region $\Rightarrow\,$ nonlinear contraction
- This paper: both occasionally binding constraints and bank runs
 - Runs more significant source of non-linearity
 - Richer macro model

Response to a Sequence of Shocks in Flex Price Economy: Run VS No Run

— RUN (Run Threshold Shock and Sunspot) - - NO RUN (Run Threshold Shock and No Sunspot)

Gertler Kiyotaki Prestipino ()