Topic 2: Part 3

Introducing Heterogeneity and Borrowing Constraints:

Implications for Output Dynamics and the Liquidity Trap

Mark Gertler NYU

Spring 2019

Debt, Deleveraging and the Liquidity Trap (Eggertsson/Krugman)

- Objective: introduce heterogeneity and lending and borrowing in simple NK model
 - Allow for financial constraints that impede credit flow
 - Illustrate how tightening of financial constraints may reduce aggregate demand,
 - By doing, may reduce the natural rate of interest, possibly moving the economy into a liquidity trap and recession
 - Illustrate how the deleveraging process (drawing down of debt) can cause the downturn to persist.
- Motivation: tightening of borrowing constraints on households played an important role in Great Recession
 - Decline housing prices limited ability to obtain credit
 - Financial institutions that experienced losses also tightened lending terms.

Setup

- Baseline: NK model with consumption goods only
- Two types of agents:
 - Saver: consumes C_t^s and lends the amount D_t in capital market.
 - * Discount factor of β
 - Borrower: consumes C_t^b and borrows D_t
 - * Discount factor of $\gamma < \beta$ (motive for borrowing)
 - * Faces borrowing constraint $R_{t+1}D_t \leq \overline{D}_t$
- For simplicity we assume borrowers get the fraction υ of output Y_t and savers the fraction $1-\nu$
 - Goal is to derive IS curve, not complete model
- We also restrict attention to real debt, but discuss the implications of nominal debt and deflation (which raises real debt burdens).

Borrower Behavior

No uncertainty, abstract from labor supply - deterministic problem

• Objective

$$\max_{C_t^b, D_t} E_t \sum_{i=o} \gamma^i \log C_{t+i}^b$$

• Budget constraint

$$C_t^b = vY_t - R_t D_{t-1} + D_t$$

• Borrowing constraint

 $R_{t+1}D_t \le \overline{D}_t$

Borrower's Decision Problem

• Bellman equation

$$V_t(R_t D_{t-1}) = \max_{C_t, D_t} (\log C_t + E_t \{\beta V(R_{t+1} D_t)\}$$

subject to

$$C_t^b = vY_t - R_t D_{t-1} + D_t$$
$$R_{t+1}D_t \leq \overline{D}_t$$

 $\Omega_t \equiv$ Lagrange multiplier on borrowing constraint (i.e. the shadow value of increasing the debt limit)

• First order necessary condition for consumption/saving

$$\frac{1}{C_t^b} = R_{t+1} \left[E_t \{ \gamma \frac{1}{C_{t+1}^b} \} + \Omega_t \right]$$

Solution

• If borrowing constraint does not bind (i.e. $\Omega_t = 0$)

$$\frac{1}{C_t^b} = R_{t+1} E_t \{ \gamma \frac{1}{C_{t+1}^b} \}$$

• If constraint binds (i.e. $\Omega_t > 0$)

$$C_t^b = vY_t - \overline{D}_{t-1} + \overline{D}_t / R_{t+1}$$

- Note:
 - Constraint more likely to bind, the lower the discount factor γ
 - Tightening the borrowing limit \overline{D}_t reduces C_t^b
 - Conversely, lower inherited debt \overline{D}_{t-1} raises C_t^b .

Saver Behavior

• Objective

 \rightarrow

$$\max_{C_t^s, D_t} E_t \sum_{i=o} \beta^i \log C_{t+i}^s$$

• Budget constraint

$$C_t^b = (1 - v)Y_t + R_t D_{t-1} - D_t$$

First order necessary condition

$$\frac{1}{C_t^b} = R_{t+1} E_t \{\beta \frac{1}{C_{t+1}^b}\}$$

Note $\beta > \gamma \rightarrow$ stronger incentive to save than for borrower

Equilibrium (taking output as given for now)

• Resource constraint:

$$Y_t = C_t = C_t^s + C_t^b$$

• Saver behavior

$$\frac{1}{C_t^s} = R_{t+1} E_t \{\beta \frac{1}{C_{t+1}^s}\}$$

• Borrower behavior (assuming borrowing constraint is binding)

$$C_t^b = vY_t - \overline{D}_{t-1} + \overline{D}_t / R_{t+1}$$

Deterministic Steady State

• From saver behavior

$$\frac{1}{C^b} = R\beta \frac{1}{C^b} \rightarrow 1 = R\beta$$

• From borrower

$$C^{b} = vY - \overline{D} + \overline{D}/R \rightarrow C^{b} = vY - \frac{R-1}{R}\overline{D}$$

• From resource constraint and borrower

$$C^{s} = Y - C^{b}$$

= $(1 - \nu)Y + \frac{R - 1}{R}\overline{D}$

Given Y, C^b varies inversely with \overline{D} and C^s positively.

The Short Run, Deleveraging and the Liquidity Trap

• Derive IS curve (a relation for Y conditional on R) from saver's Euler equation

$$C_t^s = (\beta R_{t+1})^{-1} E_t C_{t+1}^s \rightarrow$$
$$Y_t - C_t^b = (\beta R_{t+1})^{-1} E_t (Y_{t+1} - C_{t+1}^b) \rightarrow$$
$$Y_t = (\beta R_{t+1})^{-1} E_t Y_{t+1} + C_t^b - (\beta R_{t+1})^{-1} C_{t+1}^b$$

$$Y_{t} = (\beta R_{t+1})^{-1} E_{t} Y_{t+1} + v Y_{t} - \overline{D}_{t-1} + \overline{D}_{t} / R_{t+1} - (\beta R_{t+1})^{-1} E_{t} (\nu Y_{t+1} - \overline{D}_{t} + \overline{D}_{t+1} / R_{t+2})$$

$$Y_{t} = (\beta R_{t+1})^{-1} E_{t} Y_{t+1} + \frac{1}{1-\nu} [-\overline{D}_{t-1} + (1+\beta^{-1})\overline{D}_{t}/R_{t+1} - (\beta R_{t+1})^{-1} E_{t}(\overline{D}_{t+1}/R_{t+2})]$$

IS Curve with Debt Constraints

$$Y_{t} = (\beta R_{t+1})^{-1} E_{t} Y_{t+1} + \frac{1}{1-\nu} [-\overline{D}_{t-1} + (1+\beta^{-1})\overline{D}_{t}/R_{t+1} - (\beta R_{t+1})^{-1} E_{t}(\overline{D}_{t+1}/R_{t+2})]$$

$$rac{1}{1-
u}$$
 is multiplier arises because C^b_t depends on Y_t

- Debt constraint affects position of IS curve. Given R_{t+1}, R_{t+2}
 - Increased debt overhang reduces output $\overline{D}_{t-1} \uparrow \to C_t^b \downarrow \to Y_t \downarrow \qquad (\frac{1}{1-\nu} \text{ is multiplier effect due to effect of } Y_t \text{ on } C_t^b).$
 - Tightening of borrower limit reduces output $\overline{D}_t \downarrow \to C_t^b \downarrow$ and $C_t^s \downarrow$ (the latter because $C_{t+1}^s \downarrow$) $\to Y_t \downarrow$

"Deleveraging" Shock and the Liquidity Trap

• Determination of natural rate of interest R_{t+1}^* :

$$Y_t^* = (\beta R_{t+1}^*)^{-1} E_t Y_{t+1}^* + \frac{1}{1-\nu} [-\overline{D}_{t-1} + (1+\beta^{-1})\overline{D}_t / R_{t+1}^* - \overline{D}_{t+1} / \beta R_{t+1}^* R_{t+2}^*]$$

where $Y_t^* \equiv$ natural rate of output

- Deleveraging shock \equiv tightening of borrowing limit which forces a reduction in leverage: \rightarrow drop in \overline{D}_t
- Drop in \overline{D}_t induces drop in R_{t+1}^* .
 - Intuitively: $\overline{D}_t \downarrow$ induces drop in spending. R_{t+1}^* must fall to induce an increase in saver spending to make $Y_t = Y_t^*$.
- If the drop is large enough, R_{t+1}^* goes below unity $\rightarrow ZLB$ binds.
- With nominal debt, a fall in the price level raises the inherited real debt burden $\overline{D}_{t-1} \rightarrow \text{spiral}$ of output contraction and deflation

Some Issues

- Borrowing constraint exogenous
- Debt and debt dynamics exogenous (driven by exogenous variation in debt constraint).
 - Except when debt is in nominal terms, i.e., $D_t = \frac{D_t^n}{P_t}$ where D_t^n is the nominal value of the debt. As the economy weakens, the price level falls, raising real debt burdens. This induces a further decline in output, and so on.
- An MPC of unity for constrained borrowers seems unrealistic. Borrowers may use some of extra income to pay the down debt.
 - Will happen in an environment with uncertainty as to whether the constraint will be binding.
 - Can have "precautionary" saving (i.e. building up buffer of liquid assets) to limit impact of constraint if it becomes binding. (Will also have precautionary saving with transitory income uncertainty).

- If alternative saving vehicles are available, tightening of household borrower constraints will not push natural rate to zero
 - With borrowers constrained, savers will substitute to these alternative assets with modest declines in real rates.
 - Unless there are frictions in supplying funds to these sectors.