Topic 1 Real Business Cycle Theory: Part 2 Cyclical Dynamics: Model vs. Data

Mark Gertler NYU Spring 2024

Mark Gertler	Μ	arl	k G	ert	ler
--------------	---	-----	-----	-----	-----

Outline

Part 1.

Stochastic growth model with variable labor supply Planning solution Decentralized solution Steady state

Part 2.

Loglinear approximation Business cycle dynamics: Key properties Calibration and quantitative performance Shortcomings Business cycle accounting: sources of deviations from the data Representative household:

Consumes C, supplies labor L, and saves capital K which it rents to firms.

Acts competitively - takes the real wage and rental rate on capital as given

Representative firm:

Firm produces output using labor L and capital K

Acts competitively - takes real wage and rental rate on capital as given

Market clearing determines wages, rents and equilibrium quantities

Equivalent to planning solution

Mark Gertler

$$E_t\left[\sum_{i=0}^{\infty}\beta^{t+i}[u(C_{t+i})-v(L_{t+i})]\right]$$

with

$$u(C) = \frac{1}{1-\gamma} C^{1-\gamma}$$
$$= \log C \text{ iff } \gamma = 1$$
$$v(L) = \frac{1}{1+\varphi} L^{1+\varphi}$$

with $0 < \beta < 1$; $\gamma > 0$; $\varphi > 0$ $\gamma \equiv$ coefficient of relative risk aversion; $\varphi^{-1} \equiv$ Frisch elasticity of labor supply where $C_t \equiv$ consumption, $L_t \equiv$ labor supply.

Literal interpretation: Household adjusts L along intensive margin (hours) However, most hours fluctuations (2/3) are along extensive margin (bodies) Given complete markets, can re-interpret L as adjustment along extensive margin: Suppose continuum of measure unity family members who differ according to disutility of work. Let $j^{\varphi} \equiv$ disutility of work of member j. $L \equiv \#$ of family members working Given complete consumption insurance within family (each family member consumes the same amount C), family period utility is:

$$rac{1}{1-\gamma} \mathcal{C}^{1-\gamma} - \int_0^{\mathcal{L}} j^arphi dj = rac{1}{1-\gamma} \mathcal{C}^{1-\gamma} - rac{1}{1+arphi} \mathcal{L}^{1+arphi}$$

Objective unchanged \rightarrow decision rules unchanged.

While model allows for extensive margin, it ignores search and matching in the labor market and abstracts from incomplete markets

Technology

$$Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha} \\ = A_t^{1-\alpha} K_t^{\alpha} L_t^{1-\alpha}$$

where $Y_t \equiv$ output, $A_t^{1-\alpha} \equiv$ total factor productivity, $K_t \equiv$ capital, $L_t \equiv$ labor input. Productivity is labor-augmenting (to ensure a balanced growth path)

Resource Constraint (\rightarrow Law of Motion for Capital):

$$C_t + K_{t+1} = Y_t + (1 - \delta) K_t$$

where $0<\delta<1$ is the depreciation rate and where TFP obeys

$$rac{A_t/\overline{A}_t = (A_{t-1}/\overline{A}_{t-1})^
ho \cdot e^{\epsilon_t}}{\overline{A}_t/\overline{A}_{t-1} = G = 1+g \geq 1}$$

where \overline{A}_t = trend TFP, $0 \le \rho < 1$ and ϵ_t is i.i.d. with mean zero.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Behavioral Relations (from Topic 1, Part 1)

Labor market equilibrium:

$$(1-\alpha)A_t(\frac{K_t}{A_tL_t})^{\alpha} = W_t = L_t^{\varphi}/C_t^{-\gamma}$$

Consumption/saving:

$$C_t^{-\gamma} = E_t \{ \beta C_{t+1}^{-\gamma} R_{t+1} \}$$

where $R_{t+1} \equiv$ gross return on capital ($r_{t+1} = R_{t+1} - 1 \equiv$ net return):

$$R_{t+1} = \alpha \left(\frac{\kappa_{t+1}}{A_{t+1}L_{t+1}}\right)^{\alpha-1} + (1-\delta)$$

Transversality condition for household budget constraint ensures non-explosive solution. Note that the behavioral relations come from household and firm decision rules and market clearing (see Part 1).

N	1arl	k G	ert	ler

Complete Model

Endogenous variables: (Y_t, L_t, C_t, K_{t+1}) Predetermined states: (K_t, A_t)

$$Y_t = A_t^{1-\alpha} K_t^{\alpha} L_t^{1-\alpha}$$
$$(1-\alpha) A_t \left(\frac{K_t}{A_t L_t}\right)^{\alpha} = (1-\alpha) \frac{Y_t}{L_t} = \frac{L_t^{\varphi}}{C_t^{-\gamma}}$$
$$1 = E_t \{\beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\alpha \frac{Y_{t+1}}{K_{t+1}} + 1 - \delta\right)\}$$
$$K_{t+1} = Y_t + (1-\delta) K_t - C_t$$
$$A_t / \overline{A} = (A_{t-1} / \overline{A})^{\rho} e^{\epsilon_t}$$

Cyclical driving force: fluctuations in A_t .

Mark Gertler

э

Deterministic Steady State

Stationary variables: $\frac{Y}{K}, \frac{K}{AL}, \frac{C}{K}, L$

 $\frac{Y}{K}, \frac{K}{AL}, \frac{C}{K}$ determined by production function, consumption/saving relation and resource constraint:

$$\begin{split} \frac{\frac{Y}{K} = (\frac{K}{AL})^{\alpha-1} }{1 = \beta (1+g)^{-\gamma} [\alpha \frac{Y}{K} + 1 - \delta]} \\ \frac{\frac{Y}{K} = \frac{C}{K} + \delta + g \end{split}$$

with $\frac{C'}{C} = 1 + g$ and $\frac{K'}{K} = 1 + g$. Labor market then determines L:

$$(1-\alpha)\frac{Y}{L} = L^{\varphi}/C^{-\gamma}$$

Note: if $g > 0 \rightarrow \gamma = 1$ required to have L constant along balanced growth path.

9 / 30

- Loglinear approximation of model around deterministic steady state.
 - For convenience we assume no growth (g = 0, G = 1)

• "Calibrate" model parameters.

• Evaluate business cycle dynamics versus quarterly data.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Loglinearization

- Because (i) many macroeconomic series are stationary in growth rates (e.g. GDP); (ii) (for the most part) exhibit relatively small percentage changes and (iii) linear models are easy to work with; we often work with loglinear approximations:
- Consider the following nonlinear equation:

$$g(X_t) = f(Y_t)$$

• Given
$$Z_t = e^{\log Z_t}$$
:

$$g(e^{\log X_t}) = f(e^{\log Y_t})$$

• Take a first order expansion around the deterministic steady state

$$g(X) + g'(X)X \cdot d \log X_t \approx f(Y) + f'(Y)Yd \log Y_t$$

where X and Y are steady state values (satisfying g(X) = f(Y))

Loglinearization (con't)

• Given g(X) = f(Y) $g'(X)X \cdot d \log X_t \approx f'(Y)Yd \log Y_t$

• Let
$$z_t \equiv \log(Z_t/Z) = \log(Z_t) - \log(Z)$$
 for $z_t = x_t, y_t$.

For small percent changes in Z_t : $z_t \approx d \log Z_t = \frac{dZ_t}{Z}$

• This leads to the following loglinear approximation of $g(X_t) = f(Y_t)$:

$$g'(X)X \cdot x_t = f'(Y)Y \cdot y_t$$

• Via loglinearization, a model that is nonlinear in X_t and Y_t becomes linear in the log-deviations x_t and y_t .

Mark Gertler

Macro Theory 2024

Spring 2024

Predetermined versus Forward-Looking Dynamic Variables

- "Dynamic" variable depends on either history or beliefs about the future, or both
 - A variable is history dependent (or predetermined) if it depends on past values of itself and other variables. (e.g., the capital stock).
 - A variable is forward looking if it depends on beliefs about the futue (e.g. consumption, stock prices.)
- Example 1: Backward looking: y_t predetermined. 0 < a < 1

$$y_{t+1} = ay_t + f_t$$

= $\sum_{i=0}^{T} a^i f_{t-i} + a^{T+1} y_{t-T} = \sum_{i=0}^{\infty} a^i f_{t-i}$

• Example 2 Forward looking: y_t forward looking. a > 1 (and let $d_t = -f_t$)

$$y_{t} = a^{-1}[E_{t}\{y_{t+1}\} + d_{t}]$$

=
$$\sum_{i=0}^{T} (a^{-1})^{i} d_{t+i} + (a^{-1})^{T+i} y_{t+1+T} = \sum_{i=0}^{\infty} (a^{-1})^{i} d_{t+i}$$

Loglinearization of RBC Model (with no growth)

Let $\tilde{a}_t = (1 - \alpha)a_t$; and $\log(\frac{X_t}{X}) = x_t$ Production function:

$$y_t = \widetilde{a}_t + \alpha k_t + (1 - \alpha) I_t$$

Labor market equilibrium:

$$\widetilde{a}_t + \alpha(k_t - l_t) = \varphi l_t + \gamma c_t$$

Consumption/Saving:

$$-\gamma c_t = -\gamma E_t \left\{ c_{t+1} \right\} + E_t \left\{ \beta \alpha \frac{Y}{K} \left(y_{t+1} - k_{t+1} \right) \right\}$$

Law of motion for capital:

$$k_{t+1} = \frac{Y}{K}y_t - \frac{C}{K}c_t + (1-\delta)k_t$$

with $\tilde{a}_t = \rho \tilde{a}_{t-1} + \varepsilon_t$. (No constants since model in log deviations from steady state.)

Some Economics: Labor Supply

Rearranging labor market equilibrium (condition):

$$egin{aligned} &I_t = arphi^{-1}(\widetilde{a}_t + lpha(k_t - I_t)) - (\gamma/arphi)c_t \ &= arphi^{-1}w_t - (\gamma/arphi)c_t \end{aligned}$$

 $\varphi^{-1} \equiv$ Frisch labor supply elasticity (percentage response of l_t to one percent change in w_t , holding c_t constant).

Estimates of φ^{-1} depend on whether I_t reflects intensive vs. extensive margin. Low for former (~ 0.5), higher for latter (~ 1.0)

Second term: "wealth" effect on labor supply: $c_t \uparrow \rightarrow l_t \downarrow$. Strength of wealth effect increasing in γ . $\gamma \uparrow \rightarrow$ stronger desire to smooth consumption.

Some Economics: Consumption/Saving

$$R_{t+1} = 1 + r_{t+1} = (\alpha \frac{Y_{t+1}}{K_{t+1}} + 1 - \delta) \rightarrow R\widehat{r}_{t+1} = \alpha \frac{Y}{K} (y_{t+1} - k_{t+1}) \rightarrow R\widehat{r}_{t+1} = 0$$

$$\widehat{r}_{t+1} = \beta \alpha \frac{\gamma}{K} (y_{t+1} - k_{t+1})$$
 (since $R = \beta^{-1}$ and $\widehat{r}_{t+1} = r_{t+1} - r$)

Let $\sigma = \gamma^{-1} \rightarrow \text{Consumption/saving}$:

$$c_{t} = E_{t} \{c_{t+1}\} - \sigma E_{t} \{\beta \alpha \frac{Y}{K} (y_{t+1} - k_{t+1})\} \leftrightarrow$$
$$c_{t} = E_{t} \{c_{t+1}\} - \sigma E_{t} \{\widehat{r}_{t+1}\}$$

Dependence of c_t on $E_t \{c_{t+1}\}$ reflects desire to smooth consumption. Fluctuation in $E_t \{\hat{r}_{t+1}\}$ may induce intertemporal substitution of consumption across time: $\sigma \equiv \frac{1}{\gamma}$ is the intertemporal elasticity of substitution. $\gamma \uparrow \rightarrow \sigma \downarrow$ since greater desire to smooth consumption.

Solution

To shed some light on the mechanisms that drive output and employment, combine the production function and the labor market equilibrium to obtain:

$$I_t = \frac{1}{\alpha + \varphi} (\widetilde{a}_t + \alpha k_t) - \frac{\gamma}{\alpha + \varphi} c_t$$

$$egin{aligned} y_t &= \left(1 + rac{1-lpha}{lpha+arphi}
ight) \left(\widetilde{a}_t + lpha k_t
ight) - rac{(1-lpha)\gamma}{lpha+arphi} c_t
ightarrow \ y_t &= y(\widetilde{a}_t, k_t, c_t) \end{aligned}$$

 $\tilde{a}_t + \alpha k_t$ reflects productivity which has both a direct and indirect (through labor demand) effect on y_t .

 c_t reflects wealth effect on labor supply.

Three key parameters:
$$\alpha, \varphi$$
 and $\gamma (\equiv \sigma^{-1})$

・ 同 ト ・ ヨ ト ・ ヨ ト

Effect of Increase in A on Y and L

Solving for c_t :

Use the previous relation for y_t to eliminate y_{t+1} in the consumption euler equation and y_t in the resource constraint. Doing so yields the following system of two simultaneous first-order difference equations for c_t and k_{t+1} :

$$c_{t} = -\sigma E_{t} \left\{ \beta \alpha \frac{Y}{K} \left(y(\widetilde{a}_{t+1}, k_{t+1}, c_{t+1}) - k_{t+1} \right) \right\} + E_{t} \left\{ c_{t+1} \right\}$$
$$k_{t+1} = \frac{Y}{KG} y(\widetilde{a}_{t}, k_{t}, c_{t}) - \frac{C}{KG} c_{t} - \frac{1-\delta}{G} k_{t}$$

with

$$\widetilde{a}_t = \rho \widetilde{a}_{t-1} + \varepsilon_t$$

with $0 \le \rho \le 1$ and where \tilde{a}_t and k_t are predetermined.

Note that the two first-order difference equations can be combined into a single second-order difference equation in k_t, k_{t+1} and $E_t\{k_{t+2}\}$.

Mark Gertler

Macro Theory 2024

Spring 2024 19 / 30

Matrix form:

$$\begin{bmatrix} E_t c_{t+1} \\ k_{t+1} \end{bmatrix} = A \begin{bmatrix} c_t \\ k_t \end{bmatrix} + B \cdot \widetilde{a}_t$$

where A is $2x^2$ and B is $2x^1$, where k_{t+1} is known at t, and where

$$\widetilde{a}_t = \rho \widetilde{a}_{t-1} + \varepsilon_t$$

- A has two characteristic roots. To ensure stability (convergence to steady state) one is greater than unity (unstable) and the other is less than unity (stable).
- The unstable root is associated with the forward looking variable c_t (consumption) and the stable root is associated with the predetermined state k_t .

Mark Gertler

Macro Theory 2024

• Structural system:

$$\begin{bmatrix} E_t c_{t+1} \\ k_{t+1} \end{bmatrix} = A \begin{bmatrix} c_t \\ k_t \end{bmatrix} + B \cdot \widetilde{a}_t$$
$$\widetilde{a}_t = \rho \widetilde{a}_{t-1} + \varepsilon_t$$

• Reduced form policy functions for c_t and k_{t+1} :

$$c_t = \pi_{ca}\widetilde{a}_t + \pi_{ck}k_t$$

 $k_{t+1} = \pi_{ka}\widetilde{a}_t + \pi_{kk}k_t$

where the π coefficients are functions of the model parameters (in A, B and ρ). and can be obtained by using the method of undetermined coefficients (Campbell, JME 1994). MofUC: substitute conjectured solutions for c_t, k_{t+1} into system and solve for π coefficients.

IVIAIN GEILIEI	M	ark	Gert	ler
----------------	---	-----	------	-----

過 ト イ ヨ ト イ ヨ ト

From reduced form policy function for $c_t (= \pi_{ca} \tilde{a}_t + \pi_{ck} k_t)$, it is possible to solve for the other variables of the model:

$$l_t = \frac{1}{\alpha + \varphi} (\tilde{a}_t + \alpha k_t) - \frac{\gamma}{\alpha + \varphi} c_t$$
$$= \frac{1 - \gamma \pi_{ca}}{\alpha + \varphi} \tilde{a}_t + \frac{\alpha - \gamma \pi_{ck}}{\alpha + \varphi} k_t$$

$$y_t = \left(1 + \frac{1 - \alpha}{\alpha + \varphi}\right) \left(\widetilde{a}_t + \alpha k_t\right) - \frac{(1 - \alpha)\gamma}{\alpha + \varphi} c_t$$

= $\left(1 + (1 - \alpha)\frac{1 - \gamma \pi_{ca}}{\alpha + \varphi}\right) \widetilde{a}_t + (\alpha + (1 - \alpha)\frac{\alpha - \gamma \pi_{ck}}{\alpha + \varphi}) k_t$

$$k_{t+1} = \frac{Y}{KG} y_t - \frac{C}{KG} \left(\pi_{ca} \widetilde{a}_t + \pi_{ck} k_t \right) + \frac{1 - \delta}{G} k_t$$

Combining the relations for y_t and $k_{t+1} \rightarrow \text{policy function for } k_{t+1} (= \pi_{ka} \tilde{a}_t + \pi_{kk} k_t)$

Mark Gertler

Observe that k_t (i.e. the log-deviation of capital stock from steady state or percent variation of the capital stock) is small over the cycle. Hence we can assume:

$$egin{aligned} c_t &pprox \pi_{ca} \widetilde{a}_t
ightarrow \ l_t &pprox rac{1-\gamma\pi_{ca}}{lpha+arphi} \widetilde{a}_t \ y_t &pprox \left(1+(1-lpha)rac{1-\gamma\pi_{ca}}{lpha+arphi}
ight) \widetilde{a}_t \end{aligned}$$

Given $I_t = K_{t+1} - (1-\delta)K_t = Y_t - C_t o rac{l}{Y} inv_t = y_t - rac{C}{Y}c_t o$

$$inv_{t} = \frac{Y}{I}y_{t} - \frac{C}{I}c_{t} \rightarrow$$
$$inv_{t} \approx \frac{Y}{I} \left[\left(1 + (1 - \alpha)\frac{1 - \sigma \pi_{ca}}{\alpha + \varphi} \right) - \frac{C}{Y} \pi_{ca} \right] \widetilde{a}_{t}$$

Key point: inv_t likely more volatile than c_t

 π_{ca} not large due to consumption smoothing (especially if \tilde{a}_t less persistent, i.e. ρ is low) $\frac{Y}{I} > 1$ is large

Mark Gertler

23 / 30

To pick parameter values, use information independent of the business cycle data to be explained: e.g. long run relationships in the data (average growth rate, average labor share of output), parameter estimates from micro studies (labor supply elasticity, etc.).

Productivity not directly observable \rightarrow Detrend the data (e.g. using a Hodrick-Prescott filter). Then recover the Solow residual $\tilde{a}_t = y_t - \alpha k_t - (1 - \alpha)l_t$.

Then use filtered data to estimate the process $\tilde{a}_t = \rho \tilde{a}_{t-1} + \epsilon_t$.

Next, generate artificial data by feeding the estimated TFP process into the calibrated model.

From the artificial data, compute a variety of business cycle moments and compare with actual data.

Wark Gertier

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

Parameter Choices (example from King and Rebelo)

Six "economic" parameters $(\beta, \gamma = \sigma^{-1}, \varphi, \alpha, \delta, g, \rho, \sigma_a^2)$

 $\beta = 0.9375$ annually (0.984 quarterly) to match average return on capital.

- g = 0.016 annually (0.004 quarterly) to match average growth in output per capita.
- lpha= 0.33 to match capital share.
- $\delta=0.10$ (0.025 quarterly) to match capital depreciation rate.
- $\varphi^{-1} = 1$ to match evidence on Frisch elasticity of labor supply (extensive margin).
- $\gamma=1~\mathrm{log}$ utility to ensure a balanced growth path exists

Two additional parameters governing productivity process (ρ, σ_a^2) Obtained from estimates of filtered Solow residuals

Note: calibration does not allow for parameter uncertainty making it hard to assess how confident one can be in model performance.

э.

See Tables 1 and 3 in the Handbook chapter of King and Rebelo. Here only some key moments are reported

	std%	std%	correlation with output	correlation with output
	data	model	data	model
output	1.81	1.39	1	1
consumption	1.35	0.61	0.88	0.94
investment	5.30	4.09	0.80	0.99
hours	1.79	0.67	0.88	0.97
labor productivity	1.02	0.75	0.55	0.98

э

- A reasonably calibrated model with a_t as the sole driving force can generate a standard deviation of output equal to seventy percent of actual output fluctuations (for postwar data pre-1984).(Note a_t = (1 α)z_t in the previous figure).
- The model can produce about half the volatility of hours.
- Investment is more volatile than consumption (as in the data).
- Fluctuations are Pareto efficient no scope for policy.

• Consumption smoothing:

Iterating the consumption/saving relation forward and imposing a terminal condition:

$$c_t = \sum_{i=0}^{\infty} -\sigma E_t \left\{ \widehat{r}_{t+1+i} \right\}$$

with

$$\widehat{r}_{t+1} = \alpha \frac{Y}{K} \left(y_{t+1} - k_{t+1} \right)$$

• As long as long-term interest rates are not too variable, consumption behavior will be smooth.

			=)
1ark Gertler	Macro Theory 2024	Spring 2024	29 / 30

Shortcomings

- **(1)** There is no internal propagation of shocks: y_t is driven only by a_t .
- Ourlikely that high frequency variation in the Solow residual reflects true movements in TFP. Total factor productivity a_t is not observed directly but measured as a residual. Suppose Y_t = A_t^{1-α} (U_t^KK_t)^α (U_t^NL_t)^{1-α}. The production function includes unmeasured variations of factor utilization. The loglinearized Solow residual is then a_t^o = a_t + αu_t^K + (1 α) u_t^N. Thus utilization may be driving the high frequency variation in the Solow residual.
- The productivity/hours correlation at the high frequency has shifted from positive to negative, post-1984 (due mainly to "jobless" recoveries).
- Under a reasonable calibration the model cannot account for the magnitude of employment fluctuations.
- Monetary/financial frictions are absent from this model.

Macro Theory 2024