Topic 2 The Baseline New Keynesian Model, Monetary Policy, and the Liquidity Trap: Part 2

Mark Gertler NYU Spring 2024

←□

Outline

• Part 1

Household consumption, labor supply and saving decisions, and money demand Firm labor, capital and price setting decisions Monetary policy: Taylor rules Decentralized equilibrium: monetary non-neutrality and inefficient output fluctuations

Part 2

Loglinear model

Aggregate demand, Inflation and the natural rate of interest The New Keynesian Phillips curve Monetary policy design in the basic NK model The liquidity trap

 \rightarrow \rightarrow \rightarrow

Loglinearization: Aggregate Demand

Let $x_t = \log X_t - \log X$, except for $r_t^n (\approx \log R_t^n)$, p_t and m_t which are in log levels Let $\rho\equiv -\log\beta$, steady state net real interest rate $\approx \beta^{-1}-1$ Loglinearize around the steady state $(A_t = A)$ with zero inflation $(\frac{P_t}{P_{t-1}} = 1).$

$$
y_t = c_t \tag{1}
$$

$$
c_t = -\sigma \left[r_t^n - E_t \pi_{t+1} - \rho \right] + E_t \{ c_{t+1} \}
$$
 (2)

$$
r_t^n - E_t \pi_{t+1} - \rho = E_t \left\{ (1 - \nu)(mc_{t+1} + y_{t+1}) + \nu q_{t+1} - q_t \right\}
$$
 (3)

where $\pi_t=p_t-p_{t-1},\ \nu=1/[\alpha MC\frac{Y}{K}+1],\ \sigma=\frac{1}{\gamma},\ Q=1,\ z_{t+1}=mc_{t+1}+y_{t+1}$

Loglinearization: Aggregate Demand (con't)

Equation [\(3\)](#page-2-0) can be rewritten as:

$$
q_t = E_t [(1-\nu)(mc_{t+1} + y_{t+1}) + \nu q_{t+1} - (r_t^n - E_t \pi_{t+1} - \rho)] \qquad (4)
$$

$$
(5)
$$

$$
= E_t \sum_{i=0}^{\infty} \nu^i \left[(1-\nu)(mc_{t+1+i} + y_{t+1+i}) - (r_{t+i}^n - \pi_{t+1+i} - \rho) \right]
$$
(6)

 \rightarrow Log price of capital equals the loglinearized expected discounted value of earnings.

Note: In a model with variable capital, investment will depend positively on $q_t.$

Mark Gertler [Macro Theory 2024](#page-0-0) 5 Spring 2024 4 / 33

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - Y 이 Q Q

Loglinearization: Aggregate Supply

Let $\widehat{\mu}_t = \mu_t - \mu^*$ (markup minus desired steady state markup) \rightarrow

$$
y_t = a_t + (1 - \alpha)l_t \tag{7}
$$

$$
a_t - \alpha l_t = \hat{\mu}_t + \varphi l_t + \gamma c_t \text{ (with } \hat{\mu}_t = -mc_t \text{)}
$$
 (8)

$$
\rho_t = \theta p_{t-1} + (1-\theta)p_t^o \tag{9}
$$

$$
p_t^o = (1 - \theta \beta) E_t \sum_{i=0}^{\infty} (\theta \beta)^i (mc_{t+i} + p_{t+i})
$$
 (10)

$$
= (1 - \theta \beta)(mc_t + p_t) + \theta \beta E_t \{p_{t+1}^o\}
$$
\n(11)

Given $mc_t = \log MC_t - \log MC \rightarrow mc_t + p_t = \log$ nominal marginal [co](#page-3-0)[st.](#page-5-0)

Loglinearization: Monetary Policy

In the zero inflation steady state $r^n = r = \rho$ (from the consumption euler equation).

Monetary Policy Rule

$$
r_t^n = \rho + \phi_\pi \pi_t + \phi_y (y_t - y_t^*) + v_t \tag{12}
$$

Money demand

$$
m_t - p_t = k + \frac{\gamma}{\gamma_m} y_t - \eta r_t^n
$$

with $k=\frac{1}{\gamma_m}\log a_m+\frac{\gamma_m}{\gamma_m}$ $\frac{\gamma}{\gamma_m}$ y, $\eta = \frac{1}{\gamma_m(R^n-1)}$

Note again: we can ignore money demand since the central bank just adjusts m_t to support its objective for r_t^n .

Loglinearization: Flexible Price Equilibrium

impose $\mu_t = \mu^* \to \widehat{\mu}_t = 0 \to (\mathsf{y}_t^*, \mathsf{c}_t^*, \mathsf{l}_t^*, \mathsf{r}_{t+1}^*)$ determined by

$$
y_t^* = c_t^*
$$

\n
$$
c_t^* = -\sigma \left[r_{t+1}^* - \rho \right] + E_t \{ c_{t+1}^* \}
$$

\n
$$
y_t^* = a_t + (1 - \alpha) l_t^*
$$

\n
$$
a_t - \alpha l_t^* = \varphi l_t^* + \gamma c_t^*
$$

given $y_t^* = c_t^* \rightarrow y_t^*, l_t^*$ jointly determined by

$$
y_t^* = a_t + (1 - \alpha)l_t^*
$$

$$
a_t - \alpha l_t^* = \varphi l_t^* + \gamma y_t^*
$$

with r_{t+1}^* given by

$$
y_t^* = -\sigma \left[r_{t+1}^* - \rho \right] + E_t \{ y_{t+1}^* \}
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

"IS/AS" Formulation

The above system can be collapsed into two equations: an IS curve that relates output demand inversely to the real interest rate and an aggregate supply curve that relates inflation to excess demand:

IS:
$$
y_t = -\sigma(r_t^n - E_t \pi_{t+1} - \rho) + E_t y_{t+1}
$$

\n*AS*: $\pi_t = \lambda (y_t - y_t^*) + \beta E_t \pi_{t+1}$ (14)

with
$$
\lambda = \frac{(1-\theta)(1-\beta\theta)}{\theta}\kappa
$$
, and where $\kappa \equiv$ elasticity of mc_t w.r.t. y_t $y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)}a_t$ and where the markup (and hence the labor wedge) is countercyclical.

$$
mc_t = \kappa(y_t - y_t^*) \rightarrow \widehat{\mu}_t = -\kappa(y_t - y_t^*)
$$

 r_t^n is given by the Taylor rule, equation (12)

 $A \equiv \mathbf{1} \times A \equiv \mathbf{1}$

AS Curve

The Phillips curve [\(14\)](#page-7-0) is derived from the recursive formulation of equation [\(10\)](#page-4-0):

$$
\rho_t^o = (1 - \beta \theta)(mc_t + p_t) + \beta \theta E_t \rho_{t+1}^o \tag{15}
$$

From the price index equation [\(9\)](#page-4-1), we get:

$$
p_t - p_{t-1} = \pi_t = \frac{1 - \theta}{\theta} (p_t^o - p_t)
$$
 (16)

Combining [\(15\)](#page-8-0) and [\(16\)](#page-8-1) yields:

$$
\rho_t^o - p_t = (1 - \beta \theta)mc_t + \beta \theta E_t \left[p_{t+1}^o - p_{t+1} + p_{t+1} - p_t \right]
$$
(17)

$$
\frac{\theta}{1-\theta}\pi_t = (1-\beta\theta)mc_t + \beta\theta E_t \left[\frac{\theta}{1-\theta}\pi_{t+1} + \pi_{t+1}\right]
$$
(18)

$$
\pi_t = \frac{(1-\theta)(1-\beta\theta)}{\theta}mc_t + \beta E_t \pi_{t+1}
$$
\n(19)

Mark Gertler [Macro Theory 2024](#page-0-0) 5 Spring 2024 5 Macro Theory 33

イロト イ部 トイミト イヨト

 299

造

Inflation and Real Marginal Cost

$$
\pi_t = \frac{(1-\theta)(1-\beta\theta)}{\theta}mc_t + \beta E_t \pi_{t+1}
$$

• Iterating forward:

$$
\pi_t = E_t \left\{ \sum_{i=0}^{\infty} \beta^i \frac{(1-\theta)(1-\beta\theta)}{\theta} (mc_{t+i}) \right\}
$$

- Inflation thus depends on the expected path of real marginal cost (relative to steady state).
	- Reflects that firms price in response to current and expected future marginal cost.
	- Absent labor market frictions, real marginal cost proportionate the output gap

Loglinearization:Connecting mc_t to $y_t - y_t^*$ t

From the loglinearized flexible price equilibrium:

$$
y_t^* = a_t + (1 - \alpha)l_t^*
$$

$$
a_t - \alpha l_t^* = \varphi l_t^* + \gamma y_t^*
$$

which can be combined into

$$
y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)}a_t
$$
\n(20)

Similarly, combine (1) , (7) and (8) for the sticky price eq.:

$$
y_t = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)}a_t + \frac{mc_t}{(\gamma-1)+\frac{\varphi+1}{1-\alpha}}
$$
(21)

Then

$$
y_t = y_t^* + \frac{mc_t}{(\gamma - 1) + \frac{\varphi + 1}{1 - \alpha}}
$$
(22)

Mark Gertler [Macro Theory 2024](#page-0-0) Spring 2024 Spring 2024 11/33

Connecting mc_t to $y_t - y_t^*$ t_t^* (con't)

marginal cost and the output gap:

$$
mc_t = \kappa (y_t - y_t^*)
$$
 (23)

with $\kappa=(\gamma-1)+\frac{\varphi+1}{1-\alpha}.\equiv$ elasticity of marginal cost w.r. output.

- note: $mc_t = -\hat{\mu}_t \rightarrow$ countercyclical markup \rightarrow countercyclical labor wedge
- Combining [\(19\)](#page-8-2) and [\(23\)](#page-11-0) yields the New Keynesian Phillips curve [\(14\)](#page-7-0):

$$
\pi_t = \lambda (y_t - y_t^*) + \beta E_t \pi_{t+1}
$$
\n(24)

with $\lambda = \frac{(1-\theta)(1-\beta\theta)}{\theta}$ $\frac{(1-\rho\sigma)}{\theta} \kappa.$

Captures short run positive relation between $y_t - y_t^*$ and π_t . Forward looking in contrast to traditional PC: $E_t \pi_{t+1}$ enters, not π_{t-1} .

 $E + 4E + E = 990$

Baseline New Keynesian Model

Standard representation

IS:
$$
y_t = -\sigma(r_t^n - E_t \pi_{t+1} - \rho) + E_t y_{t+1}
$$

\n*AS*: $\pi_t = \lambda (y_t - y_t^*) + \beta E_t \pi_{t+1}$
\n*MP*: $r_t^n = \rho + \phi_\pi \pi_t + \phi_y (y_t - y_t^*) + v_t$

with

$$
y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)} a_t
$$

\n
$$
a_t = \rho_a a_{t-1} + \varepsilon_{at}
$$

\n
$$
v_t = \rho_m v_{t-1} + \varepsilon_{mt}
$$

Short run: Monetary policy non-neutral. $v_t \uparrow \rightarrow r_t^n \uparrow \rightarrow y_t \downarrow \rightarrow \pi_t \downarrow$. Nominal price stickiness key. Note long run neutrality.

医单位 医单位

4 0 8

 299

G.

Figure 1: Dynamic Responses to a Monetary Policy Shock: Interest Rate Rule

 290

Output Gap and the Natural Rate of Interest

Output gap: $\widetilde{y}_t = y_t - y_t^*$; Natural rate of interest $\equiv r_{t+1}^*$
 y^* and r^* determined in flexible price equilibrium (index y_t^* and ι_{t+1}^* determined in flexible price equilibrium (independent of monetary policy)

$$
y_t^* = -\sigma(r_{t+1}^* - \rho) + E_t y_{t+1}^*
$$

$$
y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)} a_t
$$

$$
r_{t+1}^* = \rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)} (E_t a_{t+1} - a_t))
$$

=
$$
\rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)} (\rho_a - 1) a_t
$$

 r_{t+1}^* depends on expected productivity growth Note: If $\rho_a < 1$, $a_t \downarrow \rightarrow r_{t+1}^* \uparrow$

 \rightarrow

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

The NK Model in Terms of \widetilde{v}_t and π_t

Combining sticky and flexible price equilibria \rightarrow

$$
\widetilde{y}_t = -\sigma \left[\left(r_t^n - E_t \pi_{t+1} \right) - r_{t+1}^* \right] + E_t \widetilde{y}_{t+1}
$$
\n
$$
\pi_t = \lambda(\widetilde{y}_t) + \beta E_t \pi_{t+1}
$$
\n
$$
r_t^n = \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + \upsilon_t
$$

with

$$
r_{t+1}^* = \rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi - (1-\gamma)(1-\alpha)} (\rho_a - 1)a_t
$$

 $\rightarrow \widetilde{y}_t$ depends inversely on "interest rate" gap $(r_t^n - E_t \pi_{t+1}) - r_{t+1}^*$ \to Monetary policy affects $r_t^n - \mathcal{E}_t \pi_{t+1}$, \widetilde{y}_t and π_t but not r_{t+1}^* and y_t^* .

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

The Role of Expectations

We can represent the IS and AS curves as a system of simultaneous first order difference equations in \widetilde{y}_t and π_t conditional on the path of the policy instrument r_t^n .

$$
\widetilde{y}_t = -\sigma \left[\left(r_t^n - E_t \pi_{t+1} \right) - r_{t+1}^* \right] + E_t \widetilde{y}_{t+1}
$$

$$
\pi_t = \lambda(\widetilde{y}_t) + \beta E_t \pi_{t+1}
$$

There are no endogenous predetermined states. Both \tilde{v}_t and π_t are endogenous at t and depend on beliefs about the future. \rightarrow To solve iterate forward

$$
\widetilde{y}_t = E_t_i^{\infty} - \sigma[(r_{t+i}^n - E_t \pi_{t+1+i}) - r_{t+1+i}^*]
$$

$$
\pi_t = E_t \left\{ \sum_{i=0}^{\infty} \beta^i \lambda(\widetilde{y}_{t+i}) \right\}
$$

 $\widetilde{\gamma}_t$ depends inversely on expected path of interest rate gap (forward guidance matters!). π_t depends positively on expected path of $\widetilde{\gamma}_t$ (forward looking price setting).

重き メラメー

Monetary Policy Design: The "Taylor" Principle

$$
\widetilde{y}_t =_i -\sigma \left[\left(r_{t+i}^n - E_t \pi_{t+1+i} \right) - r_{t+1+i}^* \right]
$$
\n
$$
\pi_t = E_t \left\{ \sum_{i=0}^\infty \beta^i \lambda(\widetilde{y}_{t+i}) \right\}
$$
\n
$$
r_t^n = \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + \upsilon_t
$$

Suppose the objective of policy is $\widetilde{\mathbf{y}}_t, \pi_t = 0$.
For a unique solution for (\mathbf{y}, π_t) to exist wit For a unique solution for (y_t, π_t) to exist with $\lim_{i\to\infty} E_t\{\widetilde{y}_{t+i}\}=0$ and $\lim_{i\to\infty} E_t\{\pi_{t+i}\}=0$,
it must be the sese that it must be the case that

$$
\lim_{i\to\infty}E_t\{(r_{t+i}^n-E_t\pi_{t+1+i})-r_{t+1+i}^*\}=0.
$$

A sufficient condition to ensure convergence is that $\phi_{\pi} > 1$. ("Taylor" principle: see Gali).

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

The Taylor Principle and Macroeconomic Stability: Intuition

$$
\widetilde{y}_t =_i - \sigma[(r_{t+i}^n - E_t \pi_{t+1+i}) - r_{t+1+i}^*]
$$
\n
$$
\pi_t = E_t \left\{ \sum_{i=0}^{\infty} \beta^i \lambda(\widetilde{y}_{t+i}) \right\}; \qquad r_t^n = \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + v_t
$$

Intuitively, suppose
$$
r_{t+1}^* \uparrow
$$
 (due e.g. to a drop in a_t) $\rightarrow \widetilde{y}_t \uparrow$ (given r_t^n) $\rightarrow \pi_t \uparrow$.
\nIf $\phi_{\pi} > 1 \rightarrow r_{t+i}^n \uparrow$ enough to raise real rates $r_{t+i}^n - E_t \pi_{t+1+i} \rightarrow$
\n $r_{t+i}^n - E_t \pi_{t+1+i}$ converges to $r_{t+1+i}^* \rightarrow \widetilde{y}_{t+i}$ and $\pi_{t+i} \rightarrow 0$

 $\phi_{\pi} > 1$ also eliminates self-fulfilling movements in inflation. Suppose $E_t \pi_{t+1} \uparrow \rightarrow (r_t^n - E_t \pi_{t+1}) \downarrow$ (given $r_t^n \rightarrow \widetilde{y}_t \uparrow \rightarrow \pi_t \uparrow$) With $\phi_\pi > 1 \to \mathsf{r}_t^{\mathsf{n}}$ \uparrow enough to raise real rates, choking off self-fulfilling inflation Evidence: ϕ_{π} < 1 from mid 60s to late 70s, a period of volatile inflation and output Conversely, $\phi_{\pi} > 1$ from early 1980s to 2007, the Great Moderation.

AD A B A B A B A GOOD

The Taylor Principle and Macroeconomic Stability: Formalities

$$
\widetilde{y}_t = -\sigma \left[\left(r_t^n - E_t \pi_{t+1} \right) - r_{t+1}^* \right] + E_t \widetilde{y}_{t+1}
$$
\n
$$
\pi_t = \lambda \left(\widetilde{y}_t \right) + \beta E_t \pi_{t+1}
$$
\n
$$
r_t^n = \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + v_t
$$

Use the policy rule to eliminate r_t^n in the IS equation \rightarrow

$$
\left[\begin{array}{c}\widetilde{y}_t\\\pi_t\end{array}\right]=A\left[\begin{array}{c}E_t\widetilde{y}_{t+1}\\E_t\pi_{t+1}\end{array}\right]+B\cdot u_t
$$

where A is 2×2 and B is 2×1 .

Unique solution exists if the two roots of A lie within the unit circle.

 \rightarrow unique solution can be obtained through forward iteration.

Sufficient condition for the roots of A in the unit circle: $\phi_{\pi} > 1$. (Gali p.65)

Optimal Policy Rule: Given objective $\widetilde{\mathsf{y}}_t, \pi_t = 0$

$$
\widetilde{y}_t =_i -\sigma \left[\left(r_{t+i}^n - E_t \pi_{t+1+i} \right) - r_{t+1+i}^* \right]
$$
\n
$$
\pi_t = E_t \left\{ \sum_{i=0}^\infty \beta^i \lambda(\widetilde{y}_{t+i}) \right\}
$$

Preferable policy rule (ignoring issues of commitment for now):

$$
r_{t+i}^n = r_{t+1+i}^* \ \forall i \geq 0 \rightarrow \widetilde{y}_t, \pi_t = 0
$$

To ensure $\pi_t \to 0$, need to specify that policy will adjust if π_t deviates from 0 : A rule that accomplishes this is

$$
r_t^n = r_{t+1}^* + \phi_\pi \pi_t \text{ with } \phi_\pi > 1
$$

As in the previous case, $\phi_{\pi} > 1$ ensures a determinate solution for $\tilde{\gamma}_t$ and π_t (thus ruling out self-fulfilling solutions).

The difference in this case is that \widetilde{v}_t and π_t go right to 0.

 Ω

1696 Journal of Economic Literature, Vol. XXXVII (December 1999)

Figure 4. The Federal Funds Rate and the Inflation Rate

イロト イ部 トイヨ トイヨト Mark Gertler [Macro Theory 2024](#page-0-0) 22/33

 299

重

Clarida, Galí, Gertler: The Science of Monetary Policy

1697

 $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

K ロ ト K 伊 ト K 毛

目

Demand Shocks

Standard approach: preference shifter to induce fluctuations in consumption demand Note: pandemic interpretable as temporary shock to demand b, along with shock to labor supply ζ (which we will ignore for now). Modify utility function as follows:

$$
E_t\left\{\sum_{i=0}^{\infty}\beta^i e^{b_{t+i}}\left[\frac{1}{1-\gamma}C_{t+i}^{1-\gamma}-\frac{e^{\zeta_{t+i}}}{1+\varphi}L_{t+i}^{1+\varphi}\right]\right\}
$$

where the preference shock b_t obeys

$$
b_t = \rho_b b_{t-1} + \varepsilon_{bt}
$$

 \rightarrow Consumption euler equation:

$$
e^{b_t}C_t^{-\gamma} = E_t \{\beta e^{b_{t+1}} C_{t+1}^{-\gamma} R_t^n \frac{P_t}{P_{t+1}}\}
$$

 Ω

Demand Shocks (con't)

In loglinear form (given $\sigma = 1/\gamma$)

$$
c_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - \rho] + E_t\{c_{t+1}\} + \sigma(b_t - E_t\{b_{t+1}\})
$$

= $-\sigma[(r_t^n - E_t \pi_{t+1}) - \rho] + E_t\{c_{t+1}\} + \sigma(1 - \rho_b)b_t$

since $y_t = c_t$:

$$
y_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - \rho] + E_t\{y_{t+1}\} + \sigma(1 - \rho_b)b_t
$$

natural rate of interest:

$$
y_t^* = -\sigma[r_{t+1}^* - \rho] + E_t\{y_{t+1}^*\} + \sigma(1 - \rho_b)b_t
$$

 \rightarrow r_{t+1}^* depends on b_t and a_t

イロメ イ部 メイミメ イモメー

 $E = \Omega Q$

IS/AS Model with Demand Shocks

Given
$$
\tilde{y}_t = y_t - y_t^*
$$

$$
\widetilde{y}_t = -\sigma \left[\left(r_t^n - E_t \pi_{t+1} \right) - r_{t+1}^* \right] + E_t \widetilde{y}_{t+1}
$$
\n
$$
\pi_t = \lambda(\widetilde{y}_t) + \beta E_t \pi_{t+1}
$$

with

$$
y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)} a_t
$$

$$
r_{t+1}^* = \rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)} (\rho_a - 1) a_t + (1-\rho_b) b_t
$$

 r_{t+1}^* summarizes the effect of b_t and a_t relevant to monetary policy. Optimal to continue to set $r_t^n = r_{t+1}^*$. Complication: r_{t+1}^* not directly observable (though π_t provides information).

K 何 ▶ 【 ヨ ▶ 【 ヨ ▶

Figure 2: Dynamic Responses to a Discount Rate Shock: Interest Rate Rule

 299

Baseline New Keynesian Model: Properties

- \widetilde{y}_t depends inversely on current and expected future movements of $(r_{t+i}^n E_t \pi_{t+1+i})$ relative to r^*_{t+1+i} (which summarizes effects of shocks)
- π_t depends positively on current and expected future movements of \widetilde{y}_t .
- No short run trade-off between π_t and \widetilde{y}_t for a **credible** central bank (i.e. a central bank that can commit to keeping $\widetilde{v}_{t+i} = 0 \ \forall i > 0$.
	- Requires committing to adjust path of r_{t+i}^n so $(r_{t+i}^n \mathcal{E}_t \pi_{t+1+i}) r_{t+1+i}^* = 0 \ \forall i$.
	- **Result depends on absence of labor market frictions (otherwise** mc_t **not simply proportionate** to \widetilde{y}_t).
	- If steady state output is inefficiently low (e.g. due to imperfect competition), the central might be tempted to inflate.
	- If zero lower bound on the nominal rate binds, the economy is susceptible to deflation and output losses.

イロト イ母 トイミト イヨト ニヨー りんぴ

Liquidity Trap and the Zero Lower Bound (ZLB)

Liquidity trap: a situation where the central bank cannot stimulate the economy by reducing the short term interest rate.

Emerges when ZLB constraint on net nominal interest rate binds

• ZLB:
$$
R_t^n - 1 \geq 0 \Leftrightarrow R_t^n \geq 1 \Leftrightarrow \log R_t^n = r_t^n \geq 0
$$

From earlier: desirable to set $r_t^n = r_{t+1}^*$ (natural interest rate) \rightarrow

ZLB binds if natural real rate $R^*_{t+1} < 1 \Leftrightarrow r^*_{t+1} < 0$ where $r^*_{t+1} = \log R^*_{t+1}$

• Deflationary spiral can emerge, with $\widetilde{y}_t < 0$ and $\pi_t < 0$.

イロト イ母 トイミト イヨト ニヨー りんぴ

Liquidity Trap and the Zero Lower Bound (con't)

• Suppose:

-0

- for *k* periods $r_{t+1+i}^* < 0$
- central bank pushes r^{n}_{t+i} to ZLB over this period $\rightarrow r^{n}_{t+i} = 0$

$$
\widetilde{y}_t = E_t \{_{i=0}^{k-1} - \sigma \left[\left(-E_t \pi_{t+1+i} \right) - r_{t+1+i}^* \right] + \sum_{i=k}^{\infty} -\sigma \left[\left(r_{t+i}^n - E_t \pi_{t+1+i} \right) - r_{t+1+i}^* \right] \}
$$

• If for
$$
i \ge k + 1
$$
, $(r_{t+i}^n - E_t \pi_{t+1+i}) = r_{t+1+i}^*$:
\n
$$
\widetilde{y}_t = E_t \{_{i=0}^{k-1} - \sigma [(-E_t \pi_{t+1+i}) - r_{t+1+i}^*] \}
$$

 $r^*_{t+1+i} < 0 \rightarrow$ a liquidity trap emerges with $\widetilde{y}_{t+i}, \pi_{t+i} < 0$ until $i \geq k+1$.

Way out - commit to inflation after r^*_{t+1+i} becomes positive.

$$
\widetilde{y}_t =_{i=0}^{k-1} - \sigma [(-E_t \pi_{t+1+i}) - r_{t+1+i}^*] +_{i=k}^{\infty} - \sigma [(r_{t+i}^n - E_t \pi_{t+1+i}) - r_{t+1+i}^*]
$$

- That is commit to $[(r_{t+1+i}^n E_t \pi_{t+1+i}) r_{t+1+i}^*] < 0$ for $i \geq k+1$.
- Note that this implies $\pi_{t+i} > 0$ if this commitment is kept \Rightarrow credibility problem: Incentive to renege when out of liquidity trap.
- Fiscal policy may be an alternative (to raise r_{t+1+i}^*).
- In an economy with financial market frictions, credit policy may also be an alternative.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

• Following the pandemic, sharp increase in demand $(b_t \uparrow)$ and contraction in supply $(a_t \downarrow)$

- Sources of demand boom: waning of virus, fiscal and monetary policy
- Supply: supply chain disruptions, oil and food prices, decline in labor supply

 $b_t \uparrow$ and $a_t \downarrow \rightarrow r_{t+1}^* \uparrow$

$$
r_{t+1}^* = \rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)} (\rho_a - 1)a_t + (1-\rho_b)b_t
$$

• If central bank is slow to increase rates (as occurred in practice) \rightarrow

$$
\left(r_{t+i}^n - E_t \pi_{t+1+i}\right) - r_{t+1+i}^* < 0
$$

 $\rightarrow \widetilde{v}_t$ \uparrow and π_t \uparrow .

HERMER E MAG

Oil Inflation and Fed Funds Rate

 $\mathcal{I}=\mathcal{I}$ É