Topic 2 The Baseline New Keynesian Model, Monetary Policy, and the Liquidity Trap: Part 2

Mark Gertler NYU Spring 2024

Mark Gert	ler
-----------	-----

Outline

• Part 1

Household consumption, labor supply and saving decisions, and money demand Firm labor, capital and price setting decisions Monetary policy: Taylor rules Decentralized equilibrium: monetary non-neutrality and inefficient output fluctuations

• Part 2

Loglinear model

Aggregate demand, Inflation and the natural rate of interest The New Keynesian Phillips curve Monetary policy design in the basic NK model The liquidity trap

Loglinearization: Aggregate Demand

Let $x_t = \log X_t - \log X$, except for $r_t^n (\approx \log R_t^n)$, p_t and m_t which are in log levels Let $\rho \equiv -\log \beta$, steady state net real interest rate $\approx \beta^{-1} - 1$ Loglinearize around the steady state $(A_t = A)$ with zero inflation $(\frac{P_t}{P_{t-1}} = 1)$.

$$y_t = c_t \tag{1}$$

$$c_t = -\sigma \left[r_t^n - E_t \pi_{t+1} - \rho \right] + E_t \{ c_{t+1} \}$$
⁽²⁾

$$r_t^n - E_t \pi_{t+1} - \rho = E_t \left\{ (1 - \nu)(mc_{t+1} + y_{t+1}) + \nu q_{t+1} - q_t \right\}$$
(3)

where $\pi_t = p_t - p_{t-1}$, $\nu = 1/[\alpha MC \frac{Y}{K} + 1]$, $\sigma = \frac{1}{\gamma}$, Q = 1, $z_{t+1} = mc_{t+1} + y_{t+1}$

Mark Gertler	Macro Theory 2024	Spring 2024	3 / 33

Loglinearization: Aggregate Demand (con't)

Equation (3) can be rewritten as:

$$q_t = E_t \left[(1 - \nu)(mc_{t+1} + y_{t+1}) + \nu q_{t+1} - (r_t^n - E_t \pi_{t+1} - \rho) \right]$$
(4)

$$= E_t \sum_{i=0}^{\infty} \nu^i \left[(1-\nu)(mc_{t+1+i} + y_{t+1+i}) - (r_{t+i}^n - \pi_{t+1+i} - \rho) \right]$$
(6)

 \rightarrow Log price of capital equals the loglinearized expected discounted value of earnings.

• Note: In a model with variable capital, investment will depend positively on q_t .

Mark Gertler

Macro Theory 2024

Spring 2024

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

(5)

Loglinearization: Aggregate Supply

Let $\widehat{\mu}_t = \mu_t - \mu^*$ (markup minus desired steady state markup)ightarrow

$$y_t = a_t + (1 - \alpha)I_t \tag{7}$$

$$a_t - \alpha I_t = \widehat{\mu}_t + \varphi I_t + \gamma c_t \text{ (with } \widehat{\mu}_t = -mc_t)$$
(8)

$$\rho_t = \theta \rho_{t-1} + (1-\theta)\rho_t^o \tag{9}$$

$$p_t^o = (1 - \theta\beta)E_t \sum_{i=0}^{\infty} (\theta\beta)^i (mc_{t+i} + p_{t+i})$$
(10)

$$= (1 - \theta\beta)(mc_t + p_t) + \theta\beta E_t \{p_{t+1}^o\}$$
(11)

Given $mc_t = \log MC_t - \log MC \rightarrow mc_t + p_t = \log \text{ nominal marginal cost.}$

ar		

Macro Theory 2024

Loglinearization: Monetary Policy

In the zero inflation steady state $r^n = r = \rho$ (from the consumption euler equation).

Monetary Policy Rule

$$r_t^n = \rho + \phi_\pi \pi_t + \phi_y (y_t - y_t^*) + \upsilon_t$$
(12)

・ロト・日本・ビア・ビア・ ビー うくぐ

Money demand

$$m_t - p_t = k + \frac{\gamma}{\gamma_m} y_t - \eta r_t^n$$

with $k = \frac{1}{\gamma_m} \log a_m + \frac{\gamma}{\gamma_m} y, \eta = \frac{1}{\gamma_m(R^n - 1)}$

Note again: we can ignore money demand since the central bank just adjusts m_t to support its objective for r_t^n .

Mark Gertler	Macro Theory 2024	Spring 2024	6 / 33

Loglinearization: Flexible Price Equilibrium

impose $\mu_t = \mu^* \rightarrow \hat{\mu}_t = 0 \rightarrow (y_t^*, c_t^*, l_t^*, r_{t+1}^*)$ determined by

$$y_{t}^{*} = c_{t}^{*}$$

$$c_{t}^{*} = -\sigma \left[r_{t+1}^{*} - \rho \right] + E_{t} \{ c_{t+1}^{*} \}$$

$$y_{t}^{*} = a_{t} + (1 - \alpha) l_{t}^{*}$$

$$a_{t} - \alpha l_{t}^{*} = \varphi l_{t}^{*} + \gamma c_{t}^{*}$$

given $y_t^* = c_t^* \rightarrow y_t^*, l_t^*$ jointly determined by

$$y_t^* = a_t + (1 - \alpha)I_t^*$$
$$a_t - \alpha I_t^* = \varphi I_t^* + \gamma y_t^*$$

with r_{t+1}^* given by

$$y_t^* = -\sigma \left[r_{t+1}^* - \rho \right] + E_t \{ y_{t+1}^* \}$$

"IS/AS" Formulation

The above system can be collapsed into two equations: an IS curve that relates output demand inversely to the real interest rate and an aggregate supply curve that relates inflation to excess demand:

$$IS : y_t = -\sigma(r_t^n - E_t \pi_{t+1} - \rho) + E_t y_{t+1}$$
(13)

$$AS : \pi_t = \lambda(y_t - y_t^*) + \beta E_t \pi_{t+1}$$
(14)

with
$$\lambda = \frac{(1-\theta)(1-\beta\theta)}{\theta}\kappa$$
, and where $\kappa \equiv$ elasticity of mc_t w.r.t. y_t
 $y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)}a_t$
and where the markup (and hence the labor wedge) is countercyclical

$$mc_t = \kappa(y_t - y_t^*) \rightarrow \widehat{\mu}_t = -\kappa(y_t - y_t^*)$$

 r_t^n is given by the Taylor rule, equation (12)

8/33

AS Curve

The Phillips curve (14) is derived from the recursive formulation of equation (10):

$$p_t^o = (1 - \beta\theta)(mc_t + p_t) + \beta\theta E_t p_{t+1}^o$$
(15)

From the price index equation (9), we get:

$$p_t - p_{t-1} = \pi_t = \frac{1-\theta}{\theta} (p_t^o - p_t)$$
(16)

Combining (15) and (16) yields:

$$p_{t}^{o} - p_{t} = (1 - \beta\theta)mc_{t} + \beta\theta E_{t} \left[p_{t+1}^{o} - p_{t+1} + p_{t+1} - p_{t} \right]$$
(17)

$$\frac{\theta}{1-\theta}\pi_t = (1-\beta\theta)mc_t + \beta\theta E_t \left[\frac{\theta}{1-\theta}\pi_{t+1} + \pi_{t+1}\right]$$
(18)

$$\pi_t = \frac{(1-\theta)(1-\beta\theta)}{\theta}mc_t + \beta E_t \pi_{t+1}$$
(19)

Mark Gertler

9/33

Inflation and Real Marginal Cost

$$\pi_t = \frac{(1-\theta)(1-\beta\theta)}{\theta} mc_t + \beta E_t \pi_{t+1}$$

• Iterating forward:

$$\pi_t = E_t \left\{ \sum_{i=0}^{\infty} \beta^i \frac{(1-\theta)(1-\beta\theta)}{\theta} (mc_{t+i}) \right\}$$

- Inflation thus depends on the expected path of real marginal cost (relative to steady state).
 - Reflects that firms price in response to current and expected future marginal cost.
 - Absent labor market frictions, real marginal cost proportionate the output gap

えぬ トラモト オモト

Loglinearization: Connecting mc_t to $y_t - y_t^*$

From the loglinearized flexible price equilibrium:

$$y_t^* = a_t + (1 - \alpha) l_t^*$$
$$a_t - \alpha l_t^* = \varphi l_t^* + \gamma y_t^*$$

which can be combined into

$$y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)}a_t$$
⁽²⁰⁾

Similarly, combine (1), (7) and (8) for the sticky price eq.:

$$y_t = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)}a_t + \frac{mc_t}{(\gamma-1)+\frac{\varphi+1}{1-\alpha}}$$
(21)

Then

$$y_t = y_t^* + \frac{mc_t}{(\gamma - 1) + \frac{\varphi + 1}{1 - \alpha}}$$

$$\tag{22}$$

Mark Gertler

Macro Theory 2024

Spring 2024 11 / 33

Connecting mc_t to $y_t - y_t^*$ (con't)

• marginal cost and the output gap:

$$mc_t = \kappa(y_t - y_t^*) \tag{23}$$

with $\kappa = (\gamma - 1) + \frac{\varphi + 1}{1 - \alpha}$. \equiv elasticity of marginal cost w.r. output.

- note: $mc_t = -\widehat{\mu}_t
 ightarrow$ countercyclical markup ightarrow countercyclical labor wedge
- Combining (19) and (23) yields the New Keynesian Phillips curve (14):

$$\pi_t = \lambda(y_t - y_t^*) + \beta E_t \pi_{t+1}$$
(24)

with $\lambda = \frac{(1-\theta)(1-\beta\theta)}{\theta}\kappa$.

Captures short run positive relation between $y_t - y_t^*$ and π_t . Forward looking in contrast to traditional PC: $E_t \pi_{t+1}$ enters, not π_{t-1} .

Mark G	ertler
--------	--------

NOD E VEN

12/33

Baseline New Keynesian Model

Standard representation

$$IS : y_{t} = -\sigma(r_{t}^{n} - E_{t}\pi_{t+1} - \rho) + E_{t}y_{t+1}$$

$$AS : \pi_{t} = \lambda(y_{t} - y_{t}^{*}) + \beta E_{t}\pi_{t+1}$$

$$MP : r_{t}^{n} = \rho + \phi_{\pi}\pi_{t} + \phi_{y}(y_{t} - y_{t}^{*}) + v_{t}$$

with

$$y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)} a_t$$
$$a_t = \rho_a a_{t-1} + \varepsilon_{at}$$
$$v_t = \rho_m v_{t-1} + \varepsilon_{mt}$$

Short run: Monetary policy non-neutral. $v_t \uparrow \rightarrow r_t^n \uparrow \rightarrow y_t \downarrow \rightarrow \pi_t \downarrow$. Nominal price stickiness key. Note long run neutrality.

э

Mark Gertler

Macro Theory 2024

Spring 2024

14 / 33

Output Gap and the Natural Rate of Interest

Output gap: $\tilde{y}_t = y_t - y_t^*$; Natural rate of interest $\equiv r_{t+1}^*$ y_t^* and r_{t+1}^* determined in flexible price equilibrium (independent of monetary policy)

$$egin{aligned} &y_t^* = -\sigma(r_{t+1}^*-
ho) + \mathcal{E}_t y_{t+1}^* \ &y_t^* = rac{1+arphi}{1+arphi+(\gamma-1)(1-lpha)} oldsymbol{a}_t \end{aligned}$$

$$\begin{aligned} r_{t+1}^* &= \rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)} (\mathcal{E}_t a_{t+1} - a_t)) \\ &= \rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)} (\rho_a - 1) a_t \end{aligned}$$

 r_{t+1}^* depends on expected productivity growth Note: If $\rho_a < 1$, $a_t \downarrow \rightarrow r_{t+1}^* \uparrow$

The NK Model in Terms of \tilde{y}_t and π_t

Combining sticky and flexible price equilibria \rightarrow

$$\widetilde{y}_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - r_{t+1}^*] + E_t \widetilde{y}_{t+1}$$
$$\pi_t = \lambda(\widetilde{y}_t) + \beta E_t \pi_{t+1}$$
$$r_t^n = \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + \upsilon_t$$

with

$$r_{t+1}^* =
ho + rac{1}{\sigma} rac{1+arphi}{1+arphi - (1-\gamma)(1-lpha)} (
ho_{a} - 1) a_t$$

 $\rightarrow \widetilde{y}_t$ depends inversely on "interest rate" gap $(r_t^n - E_t \pi_{t+1}) - r_{t+1}^*$ \rightarrow Monetary policy affects $r_t^n - E_t \pi_{t+1}$, \widetilde{y}_t and π_t but not r_{t+1}^* and y_t^* .

Mark Gertler

The Role of Expectations

We can represent the IS and AS curves as a system of simultaneous first order difference equations in \tilde{y}_t and π_t conditional on the path of the policy instrument r_t^n .

$$\widetilde{y}_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - r_{t+1}^*] + E_t \widetilde{y}_{t+1}$$
$$\pi_t = \lambda(\widetilde{y}_t) + \beta E_t \pi_{t+1}$$

There are no endogenous predetermined states. Both \tilde{y}_t and π_t are endogenous at t and depend on beliefs about the future. \rightarrow To solve iterate forward

$$\widetilde{y}_t = \mathcal{E}_{t_i}^{\infty} - \sigma[(r_{t+i}^n - \mathcal{E}_t \pi_{t+1+i}) - r_{t+1+i}^*]$$
$$\pi_t = \mathcal{E}_t \left\{ \sum_{i=0}^{\infty} \beta^i \lambda(\widetilde{y}_{t+i}) \right\}$$

 \tilde{y}_t depends inversely on expected path of interest rate gap (forward guidance matters!). π_t depends positively on expected path of \tilde{y}_t (forward looking price setting).

Mar	k G	ert	ler
iviai		CIL	i Ci

Monetary Policy Design: The "Taylor" Principle

$$\widetilde{y}_{t} =_{i} -\sigma[(r_{t+i}^{n} - E_{t}\pi_{t+1+i}) - r_{t+1+i}^{*}]$$
$$\pi_{t} = E_{t}\left\{\sum_{i=0}^{\infty}\beta^{i}\lambda(\widetilde{y}_{t+i})\right\}$$
$$r_{t}^{n} = \rho + \phi_{\pi}\pi_{t} + \phi_{y}\widetilde{y}_{t} + v_{t}$$

Suppose the objective of policy is $\tilde{y}_t, \pi_t = 0$. For a unique solution for (y_t, π_t) to exist with $\lim_{i\to\infty} E_t\{\tilde{y}_{t+i}\} = 0$ and $\lim_{i\to\infty} E_t\{\pi_{t+i}\} = 0$, it must be the case that

$$\lim_{i\to\infty} E_t\{(r_{t+i}^n - E_t\pi_{t+1+i}) - r_{t+1+i}^*\} = 0.$$

A sufficient condition to ensure convergence is that $\phi_{\pi} > 1$. ("Taylor" principle: see Gali).

Mark Gertler	Gertler	ırk '	Ma
--------------	---------	-------	----

18/33

ヘロマ ふぼう ヘロマ ション

The Taylor Principle and Macroeconomic Stability: Intuition

$$\begin{aligned} \widetilde{y}_t &=_i - \sigma[(r_{t+i}^n - E_t \pi_{t+1+i}) - r_{t+1+i}^*] \\ \pi_t &= E_t \left\{ \sum_{i=0}^\infty \beta^i \lambda(\widetilde{y}_{t+i}) \right\}; \quad r_t^n &= \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + \upsilon_t \end{aligned}$$

Intuitively, suppose
$$r_{t+1}^* \uparrow$$
 (due e.g. to a drop in a_t) $\rightarrow \widetilde{y}_t \uparrow$ (given r_t^n) $\rightarrow \pi_t \uparrow$.
If $\phi_{\pi} > 1 \rightarrow r_{t+i}^n \uparrow$ enough to raise real rates $r_{t+i}^n - E_t \pi_{t+1+i} \rightarrow r_{t+i}^n - E_t \pi_{t+1+i}$ converges to $r_{t+1+i}^* \rightarrow \widetilde{y}_{t+i}$ and $\pi_{t+i} \rightarrow 0$

 $\phi_{\pi} > 1$ also eliminates self-fulfilling movements in inflation. Suppose $E_t \pi_{t+1} \uparrow \rightarrow (r_t^n - E_t \pi_{t+1}) \downarrow$ (given $r_t^n) \rightarrow \widetilde{y_t} \uparrow \rightarrow \pi_t \uparrow$ With $\phi_{\pi} > 1 \rightarrow r_t^n \uparrow$ enough to raise real rates, choking off self-fulfilling inflation Evidence: $\phi_{\pi} < 1$ from mid 60s to late 70s, a period of volatile inflation and output Conversely, $\phi_{\pi} > 1$ from early 1980s to 2007, the Great Moderation.

Mark Gertler

The Taylor Principle and Macroeconomic Stability: Formalities

$$\widetilde{y}_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - r_{t+1}^*] + E_t \widetilde{y}_{t+1}$$
$$\pi_t = \lambda(\widetilde{y}_t) + \beta E_t \pi_{t+1}$$
$$r_t^n = \rho + \phi_\pi \pi_t + \phi_y \widetilde{y}_t + \upsilon_t$$

Use the policy rule to eliminate r_t^n in the IS equation \rightarrow

$$\begin{bmatrix} \widetilde{y}_t \\ \pi_t \end{bmatrix} = A \begin{bmatrix} E_t \widetilde{y}_{t+1} \\ E_t \pi_{t+1} \end{bmatrix} + B \cdot u_t$$

where A is 2×2 and B is 2×1 .

Unique solution exists if the two roots of A lie within the unit circle.

ightarrow unique solution can be obtained through forward iteration.

Sufficient condition for the roots of A in the unit circle: $\phi_{\pi} > 1$. (Gali p.65)

Optimal Policy Rule: Given objective $\tilde{y}_t, \pi_t = 0$

$$\widetilde{y}_t =_i -\sigma[(r_{t+i}^n - E_t \pi_{t+1+i}) - r_{t+1+i}^*]$$
$$\pi_t = E_t \left\{ \sum_{i=0}^{\infty} \beta^i \lambda(\widetilde{y}_{t+i}) \right\}$$

Preferable policy rule (ignoring issues of commitment for now):

$$r_{t+i}^n = r_{t+1+i}^* \; \forall i \ge 0 \to \widetilde{y}_t, \pi_t = 0$$

To ensure $\pi_t \rightarrow 0$, need to specify that policy will adjust if π_t deviates from 0 : A rule that accomplishes this is

$$r_t^n = r_{t+1}^* + \phi_\pi \pi_t$$
 with $\phi_\pi > 1$

As in the previous case, $\phi_{\pi} > 1$ ensures a determinate solution for \tilde{y}_t and π_t (thus ruling out self-fulfilling solutions).

The difference in this case is that \tilde{y}_t and π_t go right to 0.

	M	lark	Gert	ler
--	---	------	------	-----

21/33

Figure 4. The Federal Funds Rate and the Inflation Rate

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 Spring 2024

Esti	TABLE MATES OF POLICY R	-	
	γn	γx	ρ
Pre-Volcker	0.83 (0.07)	0.27 (0.08)	0.68 (0.05)
Volcker–Greenspan	2.15 (0.40)	0.93 (0.42)	0.79 (0.04)

Clarida, Galí, Gertler: The Science of Monetary Policy

Mark Gertler

Spring 2024

< ∃ >

< □ > < @ >

23 / 33

э

Demand Shocks

Standard approach: preference shifter to induce fluctuations in consumption demand Note: pandemic interpretable as temporary shock to demand *b*, along with shock to labor supply ζ (which we will ignore for now). Modify utility function as follows:

$$E_t \{ \sum_{i=0}^{\infty} \beta^i e^{b_{t+i}} [\frac{1}{1-\gamma} C_{t+i}^{1-\gamma} - \frac{e^{\zeta_{t+i}}}{1+\varphi} L_{t+i}^{1+\varphi}] \}$$

where the preference shock b_t obeys

$$b_t = \rho_b b_{t-1} + \varepsilon_{bt}$$

 \rightarrow Consumption euler equation:

$$e^{b_t}C_t^{-\gamma} = E_t\{\beta e^{b_{t+1}}C_{t+1}^{-\gamma}R_t^n rac{P_t}{P_{t+1}}\}$$

24 / 33

Demand Shocks (con't)

In loglinear form (given $\sigma=1/\gamma$)

$$c_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - \rho] + E_t \{c_{t+1}\} + \sigma(b_t - E_t \{b_{t+1}\}) \\ = -\sigma[(r_t^n - E_t \pi_{t+1}) - \rho] + E_t \{c_{t+1}\} + \sigma(1 - \rho_b)b_t$$

since $y_t = c_t$:

$$y_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - \rho] + E_t \{y_{t+1}\} + \sigma(1 - \rho_b)b_t$$

natural rate of interest:

$$y_t^* = -\sigma[r_{t+1}^* - \rho] + E_t\{y_{t+1}^*\} + \sigma(1 - \rho_b)b_t$$

 $ightarrow r^*_{t+1}$ depends on b_t and a_t

IS/AS Model with Demand Shocks

Given
$$\widetilde{y}_t = y_t - y_t^*$$

$$\widetilde{y}_t = -\sigma[(r_t^n - E_t \pi_{t+1}) - r_{t+1}^*] + E_t \widetilde{y}_{t+1}$$
$$\pi_t = \lambda(\widetilde{y}_t) + \beta E_t \pi_{t+1}$$

with

$$y_t^* = \frac{1+\varphi}{1+\varphi+(\gamma-1)(1-\alpha)}a_t$$
$$r_{t+1}^* = \rho + \frac{1}{\sigma}\frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)}(\rho_a - 1)a_t + (1-\rho_b)b_t$$

 r_{t+1}^* summarizes the effect of b_t and a_t relevant to monetary policy. Optimal to continue to set $r_t^n = r_{t+1}^*$. Complication: r_{t+1}^* not directly observable (though π_t provides information).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Figure 2: Dynamic Responses to a Discount Rate Shock: Interest Rate Rule

Mark Gertler

Macro Theory 2024

Spring 2024

27 / 33

э

Baseline New Keynesian Model: Properties

- \tilde{y}_t depends inversely on current and expected future movements of $(r_{t+i}^n E_t \pi_{t+1+i})$ relative to r_{t+1+i}^* (which summarizes effects of shocks)
- π_t depends positively on current and expected future movements of \tilde{y}_t .
- No short run trade-off between π_t and \tilde{y}_t for a **credible** central bank (i.e. a central bank that can commit to keeping $\tilde{y}_{t+i} = 0 \ \forall i > 0$.
 - Requires committing to adjust path of r_{t+i}^n so $(r_{t+i}^n E_t \pi_{t+1+i}) r_{t+1+i}^* = 0 \ \forall i$.
 - Result depends on absence of labor market frictions (otherwise mc_t not simply proportionate to \tilde{y}_t).
 - If steady state output is inefficiently low (e.g. due to imperfect competition), the central might be tempted to inflate.
 - If zero lower bound on the nominal rate binds, the economy is susceptible to deflation and output losses.

Liquidity Trap and the Zero Lower Bound (ZLB)

• Liquidity trap: a situation where the central bank cannot stimulate the economy by reducing the short term interest rate.

• Emerges when ZLB constraint on net nominal interest rate binds

• ZLB:
$$R_t^n - 1 \ge 0 \Leftrightarrow R_t^n \ge 1 \Leftrightarrow \log R_t^n = r_t^n \ge 0$$

• From earlier: desirable to set $r_t^n = r_{t+1}^*$ (natural interest rate) ightarrow

• ZLB binds if natural real rate $R^*_{t+1} < 1 \Leftrightarrow r^*_{t+1} < 0$ where $r^*_{t+1} = \log R^*_{t+1}$

• Deflationary spiral can emerge, with $\tilde{y}_t < 0$ and $\pi_t < 0$.

Liquidity Trap and the Zero Lower Bound (con't)

• Suppose:

6

• for k periods $r_{t+1+i}^* < 0$

• central bank pushes
$$r_{t+i}^n$$
 to ZLB over this period $\rightarrow r_{t+i}^n = 0$

$$\widetilde{y}_{t} = E_{t} \{ \sum_{i=0}^{k-1} -\sigma[(-E_{t}\pi_{t+1+i}) - r_{t+1+i}^{*}] + \sum_{i=k}^{\infty} -\sigma[(r_{t+i}^{n} - E_{t}\pi_{t+1+i}) - r_{t+1+i}^{*}] \}$$

• If for
$$i \ge k+1$$
, $(r_{t+i}^n - E_t \pi_{t+1+i}) = r_{t+1+i}^*$:
 $\widetilde{y}_t = E_t \{ \sum_{i=0}^{k-1} -\sigma[(-E_t \pi_{t+1+i}) - r_{t+1+i}^*] \}$

• $r_{t+1+i}^* < 0 \rightarrow a$ liquidity trap emerges with $\widetilde{y}_{t+i}, \pi_{t+i} < 0$ until $i \ge k+1$.

Mark Ge	rt	ler
---------	----	-----

• Way out - commit to inflation after r_{t+1+i}^* becomes positive.

$$\widetilde{y}_{t} = \sum_{i=0}^{k-1} -\sigma[(-E_{t}\pi_{t+1+i}) - r_{t+1+i}^{*}] + \sum_{i=k}^{\infty} -\sigma[(r_{t+i}^{n} - E_{t}\pi_{t+1+i}) - r_{t+1+i}^{*}]$$

- That is commit to $[(r_{t+1+i}^n E_t \pi_{t+1+i}) r_{t+1+i}^*] < 0$ for $i \ge k+1$.
- Note that this implies $\pi_{t+i} > 0$ if this commitment is kept \Rightarrow credibility problem: Incentive to renege when out of liquidity trap.
- Fiscal policy may be an alternative (to raise r_{t+1+i}^*).
- In an economy with financial market frictions, credit policy may also be an alternative.

• Following the pandemic, sharp increase in demand $(b_t \uparrow)$ and contraction in supply $(a_t \downarrow)$

- Sources of demand boom: waning of virus, fiscal and monetary policy
- Supply: supply chain disruptions, oil and food prices, decline in labor supply
- $b_t \uparrow$ and $a_t \downarrow \rightarrow r^*_{t+1} \uparrow$

$$r_{t+1}^* = \rho + \frac{1}{\sigma} \frac{1+\varphi}{1+\varphi-(1-\gamma)(1-\alpha)} (\rho_{a}-1)a_t + (1-\rho_b)b_t$$

 $\bullet\,$ If central bank is slow to increase rates (as occurred in practice) $\rightarrow\,$

$$(r_{t+i}^n - E_t \pi_{t+1+i}) - r_{t+1+i}^* < 0$$

 $\rightarrow \widetilde{y}_t \uparrow \text{ and } \pi_t \uparrow$.

▲□▼ ▲ □ ▼ ▲ □ ▼ ● ● ● ●

Oil Inflation and Fed Funds Rate

э