Topic 2: Part 3

Introducing Heterogeneity and Borrowing Constraints: Implications for Output Dynamics and the Liquidity Trap

Mark Gertler NYU Spring 2024

Mark Gertler	Μ	arl	k G	ert	ler
--------------	---	-----	-----	-----	-----

Debt, Deleveraging and the Liquidity Trap (Eggertsson/Krugman)

• Objective: introduce heterogeneity and lending and borrowing in simple NK model

- Allow for financial constraints that impede credit flow
- Illustrate how tightening of financial constraints may reduce aggregate demand
- By doing, may reduce the natural rate of interest, possibly moving the economy into a liquidity trap and recession
- Illustrate how the deleveraging process (drawing down of debt) can cause the downturn to persist
- Motivation: tightening of borrowing constraints on households played an important role in Great Recession
 - Decline in house prices limited ability to obtain credit
 - Financial institutions that experienced losses also tightened lending terms

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ─ 国

Setup

- Baseline: NK model with consumption goods only
- Two types of agents:
 - Saver: consumes C_t^s and lends the amount D_t in capital market
 - $\bullet~$ Discount factor of β
 - Borrower: consumes C_t^b and borrows D_t
 - Discount factor of $\gamma < \beta$ (motive for borrowing)
 - Faces borrowing constraint $R_{t+1}D_t \leq \overline{D}_t$
- For simplicity we assume borrowers get the fraction ν of output Y_t as income and savers the fraction $1-\nu$
 - Goal is to derive IS curve, not complete model
- We also restrict attention to real debt, but discuss the implications of nominal debt and deflation (which raises real debt burdens).

Borrower Behavior

No uncertainty, abstract from labor supply - deterministic problem

Objective

$$\max_{\{C_{t+i}^b, D_{t+i}\}_{i \ge 0}} E_t \sum_{i=0}^{\infty} \gamma^i \log C_{t+i}^b$$

• Budget constraint

$$C_t^b = \nu Y_t - R_t D_{t-1} + D_t$$

Borrowing constraint

 $R_{t+1}D_t \leq \overline{D}_t$

IVIAIN GEILIEI

()

э

Borrower's Decision Problem

• Bellman equation

$$V_t(R_t D_{t-1}) = \max_{C_t^b, D_t} \log C_t^b + E_t \{\gamma V(R_{t+1} D_t)\}$$

subject to

$$C_t^b = \nu Y_t - R_t D_{t-1} + D_t$$
$$R_{t+1} D_t \leq \overline{D}_t$$

 $\Omega_t \equiv$ Lagrange multiplier on borrowing constraint (i.e. the shadow value of increasing the debt limit)

• First order necessary condition for consumption/saving

$$\frac{1}{C_t^b} = R_{t+1} \left[E_t \left\{ \gamma \frac{1}{C_{t+1}^b} \right\} + \Omega_t \right]$$

Mark Gertler

글 🖌 🖌 글 🕨

Solution

• If borrowing constraint does not bind (i.e. $\Omega_t = 0$)

$$\frac{1}{C_t^b} = R_{t+1} E_t \{ \gamma \frac{1}{C_{t+1}^b} \}$$

• If constraint binds (i.e. $\Omega_t > 0$)

$$C_t^b = \nu Y_t - \overline{D}_{t-1} + \overline{D}_t / R_{t+1}$$

Note:

- $\bullet\,$ Constraint more likely to bind, the lower the discount factor $\gamma\,$
- Tightening the borrowing limit \overline{D}_t reduces C_t^b
- Conversely, lower inherited debt \overline{D}_{t-1} raises C_t^b

Saver Behavior

Objective

$$\max_{C^s_{t+i}, D_{t+i}\}_{i \ge 0}} E_t \sum_{i=0}^{\infty} \beta^i \log C^s_{t+i}$$

• Budget constraint

$$C_t^s = (1-
u)Y_t + R_tD_{t-1} - D_t \rightarrow$$

First order necessary condition for consumption/saving

{

$$\frac{1}{C_t^s} = R_{t+1} E_t \{\beta \frac{1}{C_{t+1}^s}\}$$

Note $\beta > \gamma \rightarrow$ stronger incentive to save than for borrower

Mark (Gertler
--------	---------

→ < ∃ →</p>

Equilibrium (taking output as given for now)

• Resource constraint

$$\begin{aligned} \mathcal{L}_t &= C_t \\ &= C_t^s + C_t^b \end{aligned}$$

• Saver behavior

$$\frac{1}{C_t^s} = R_{t+1} E_t \{ \beta \frac{1}{C_{t+1}^s} \}$$

• Borrower behavior (assuming borrowing constraint is binding)

$$C_t^b = \nu Y_t - \overline{D}_{t-1} + \overline{D}_t / R_{t+1}$$

Mark Gertler

Macro Theory 2024

Spring 2024

글 제 제 글 제

Deterministic Steady State

• From saver behavior

$$egin{array}{rcl} rac{1}{C^s} &=& Retarac{1}{C^s}
ightarrow \ 1 &=& Reta \end{array}$$

• From borrower

$$C^{b} = \nu Y - \overline{D} + \overline{D}/R \rightarrow$$
$$C^{b} = \nu Y - \frac{R-1}{R}\overline{D}$$

• From resource constraint and borrower

$$C^{s} = Y - C^{b}$$

= $(1 - \nu)Y + \frac{R - 1}{R}\overline{D}$

Given Y, C^b varies inversely with \overline{D} and C^s positively.

Macro Theory 2024

9/13

The Short Run, Deleveraging and the Liquidity Trap

• Derive IS curve (a relation for Y conditional on R) from saver's Euler equation

$$C_t^s = (\beta R_{t+1})^{-1} E_t C_{t+1}^s \rightarrow$$
$$Y_t - C_t^b = (\beta R_{t+1})^{-1} E_t (Y_{t+1} - C_{t+1}^b) \rightarrow$$
$$Y_t = (\beta R_{t+1})^{-1} E_t Y_{t+1} + C_t^b - (\beta R_{t+1})^{-1} E_t C_{t+1}^b$$

$$Y_{t} = (\beta R_{t+1})^{-1} E_{t} Y_{t+1} + \nu Y_{t} - \overline{D}_{t-1} + \overline{D}_{t} / R_{t+1} - (\beta R_{t+1})^{-1} E_{t} (\nu Y_{t+1} - \overline{D}_{t} + \overline{D}_{t+1} / R_{t+2})$$

$$Y_{t} = (\beta R_{t+1})^{-1} E_{t} Y_{t+1} + \frac{1}{1-\nu} [-\overline{D}_{t-1} + (1+\beta^{-1})\overline{D}_{t}/R_{t+1} - (\beta R_{t+1})^{-1} E_{t}(\overline{D}_{t+1}/R_{t+2})]$$

Mark Gertler

글 🖌 🖌 글 🕨

IS Curve with Debt Constraints

$$Y_{t} = (\beta R_{t+1})^{-1} E_{t} Y_{t+1} + \frac{1}{1-\nu} [-\overline{D}_{t-1} + (1+\beta^{-1})\overline{D}_{t}/R_{t+1} - (\beta R_{t+1})^{-1} E_{t}(\overline{D}_{t+1}/R_{t+2})]$$

 $\frac{1}{1-\nu}$ is multiplier effect, arises because C_t^b depends on Y_t

- Debt constraint affects position of IS curve. Given R_{t+1}, R_{t+2}
 - Increased debt overhang reduces output $\overline{D}_{t-1}\uparrow o C^b_t\downarrow o Y_t\downarrow$
 - Tightening of borrowing limit reduces output $\overline{D}_t \downarrow \rightarrow C_t^b \downarrow$ and $C_t^s \downarrow$ (the latter because $C_{t+1}^s \downarrow$) $\rightarrow Y_t \downarrow$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

"Deleveraging" Shock and the Liquidity Trap

• Determination of natural rate of interest R_{t+1}^* :

$$Y_t^* = (\beta R_{t+1}^*)^{-1} E_t Y_{t+1}^* + \frac{1}{1-\nu} [-\overline{D}_{t-1} + (1+\beta^{-1})\overline{D}_t / R_{t+1}^* - E_t (\overline{D}_{t+1} / \beta R_{t+1}^* R_{t+2}^*)]$$

where $Y_t^* \equiv$ natural rate of output

- Deleveraging shock \equiv tightening of borrowing limit which forces a reduction in leverage: \rightarrow drop in \overline{D}_t
- Drop in \overline{D}_t induces drop in R_{t+1}^*
 - Intuitively: D
 t ↓ induces drop in spending. R^{*}{t+1} must fall to induce an increase in saver spending to make Y_t = Y^{*}_t.
- If the drop is large enough, R^*_{t+1} goes below unity \rightarrow ZLB binds.
- With nominal debt, a fall in the price level raises the inherited real debt burden $\overline{D}_{t-1} \rightarrow$ spiral of output contraction and deflation.

Some Issues

- Borrowing constraint exogenous
- Debt and debt dynamics exogenous (driven by exogenous variation in debt constraint)
 - Except when debt is in nominal terms, i.e. $D_t = \frac{D_t^n}{P_t}$ where D_t^n is the nominal value of the debt. As the economy weakens, the price level falls, raising real debt burdens. This induces a further decline in output, and so on.
- An MPC of unity for constrained borrowers seems unrealistic. Borrowers may use some of extra income to pay down debt.
 - Will happen in an environment with uncertainty as to whether the constraint will be binding.
 - Can have "precautionary" saving (i.e. building up buffer of liquid assets) to limit impact of constraint if it becomes binding. (Will also have precautionary saving with transitory income uncertainty.)
- If alternative saving vehicles are available, tightening of household borrowing constraint will not push natural rate to zero
 - With borrowers constrained, savers will substitute to these alternative assets with modest declines in real rates.
 - Unless there are frictions in supplying funds to these sectors.