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Exact third-order structure functions for
two-dimensional turbulence
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We derive and investigate exact expressions for third-order structure functions in
stationary isotropic two-dimensional turbulence, assuming a statistical balance between
random forcing and dissipation both at small and large scales. Our results extend
previously derived asymptotic expressions in the enstrophy and energy inertial ranges
by providing uniformly valid expressions that apply across the entire non-dissipative
range, which, importantly, includes the forcing scales. In the special case of white
noise in time forcing this leads to explicit predictions for the third-order structure
functions, which are successfully tested against previously published high-resolution
numerical simulations. We also consider spectral energy transfer rates and suggest
and test a simple robust diagnostic formula that is useful when forcing is applied at
more than one scale.

Key words: homogeneous turbulence, isotropic turbulence, turbulence theory

1. Introduction
Kolmogorov’s celebrated 4/5th law for third-order structure functions in three-

dimensional isotropic turbulence (Kolmogorov 1941) is a centrepiece of turbulence
theory (e.g. Landau & Lifshitz 1959; Monin & Yaglom 1975; Frisch 1995; Davidson
2015). The law stands out from other results in turbulence theory because it is both
exact and because it makes non-trivial use of the Navier–Stokes equations. In standard
notation (full details are given below) it takes the form

SL(r) = �
4
5✏r, (1.1)

where SL is the longitudinal third-order structure function, ✏ is the net energy flux
from large to small scales and r is the distance between two measurement points in
the inertial range. Despite its prominence in three-dimensional turbulence, it took until
the 1990s before analogues of this law were derived for two-dimensional turbulence,
first by Lindborg (1999) and subsequently in the same year by Bernard (1999) and
Yakhot (1999). A review of the history can be found in Cerbus & Chakraborty (2017).
There are two basic difficulties that must be overcome when adapting Kolmogorov’s
law to two-dimensional turbulence. First, as is well known, the downscale flux of
energy in three-dimensional turbulence is replaced by a downscale flux of enstrophy
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Exact third-order structure functions for two-dimensional turbulence 673

in two-dimensional turbulence, which requires a subtle adaptation of the derivation
underlying (1.1). Second, and more subtle still, in two-dimensional turbulence there
is now an upscale flux of energy towards scales larger than the forcing scale, and it
is unclear what asymptotic assumptions hold rigorously in this range. The outcome of
these studies are the twin two-dimensional asymptotic laws

SL(r) =
1
8⌘r3 and SL(r) =

3
2✏r. (1.2a,b)

The first law involves the net enstrophy flux ⌘ from large to small scales and holds in
the downscale enstrophy inertial range, whilst the second law applies at much larger
scales in the upscale energy inertial range. The energy law was given in Yakhot
(1999) and both the energy and the enstrophy laws were given in Bernard (1999) and
Lindborg (1999). The asymptotic laws in (1.2) have been confirmed by high-resolution
numerical simulations (e.g. Boffetta & Musacchio 2010, where both laws were for
the first time observed in the same simulation) and they have been the foundation
for a number of observational studies of turbulent flows. Indeed, the derivation of
(1.2) in Lindborg (1999) underpins essentially all subsequent efforts to derive similar
diagnostic relations for rotating stratified flows, with the crucial aim of allowing
a direct diagnosis of scale-to-scale energy fluxes from in situ measurements in
atmospheric and oceanic applications (e.g. Lindborg & Cho 2001; Balwada, LaCasce
& Speer 2016; Poje et al. 2017).

Still, from a theoretical perspective the derivation of the two-dimensional laws in
(1.2) has been less convincing than that of their three-dimensional counterpart (1.1)
(e.g. § 10.3.3 of Davidson (2015)). The reasons for this include the aforementioned
uncertainty of the correct asymptotics in the large-scale energy inertial range as
well as the need for subtle physical assumptions about the time dependence of
various terms in the statistical equations, which can only be checked a posteriori. As
discussed in the review article of Cerbus & Chakraborty (2017), such assumptions
were needed in previous two-dimensional studies that considered either freely decaying
turbulence or forced–dissipative turbulence with small-scale dissipation only, because
in these configurations an exactly stationary state cannot be reached as the energy
continues to accumulate at large scales.

Now, in the present paper we consider isotropic two-dimensional turbulence in a
forced–dissipative setting with both small-scale and large-scale dissipation terms, and
we restrict attention to exact stationary states of the turbulent system. The physical
restriction to an exact stationary turbulent state leads to a much simpler mathematical
problem, because it obviates the need for additional assumptions about the time
dependence of statistical terms. Instead, all statistical terms are known to be exactly
steady a priori. In a nutshell, by restricting to a stationary turbulent state we can
assume less, but derive more.

In particular, we find exact expressions for third-order structure functions for all
values of r, with explicit dissipative corrections at very small and very large scales.
This confirms (1.2) rigorously in the relevant asymptotic regimes, but rather more can
be said. Indeed, we highlight exact expression for third-order structure functions across
the entire non-dissipative range, which includes the forcing range, where the details
of the power input term due to the forcing matter. In the special case of white noise
in time forcing the power input term can be computed a priori (e.g. Bernard 1999;
Srinivasan & Young 2012), which leads to testable predictions of the stationary theory
in a practical setting. Here, excellent qualitative and quantitative agreement between
the predictions of our theory and the results of the high-resolution simulations reported
in Boffetta & Musacchio (2010) is found across the entire range of simulated scales.

.
CJ

B#
C�

9:
9�

�(
C$

� 
**

D)
���

J
J

J
 8

�$
7(

!9
�:

 C
(�

�8
C(

: 
�3

,2
5

/
4

0�2
!7

(�
(.

��C
B�

��
�1H

B�
��

�
��

*��
��

�	
��

��
�)

H7
":

8*
�*C

�* 
:�

��
$

7(
!9

�:
��

C(
:�

*:
($

)�
C�

�H
):

���
I�

!#�
7#

:�
�*

� 
**

D)
���

J
J

J
 8

�$
7(

!9
�:

 C
(�

�8
C(

:�
*:

($
) 

� 
**

D)
���

9C
! C

(�
��

� 
��

��
�"�

$
 �

��
� 


�
�

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.528


674 J.-H. Xie and O. Bühler

We also investigate a number of practical ways in which to diagnose energy
fluxes in the practically important situation where forcing occurs at more than one
spatial scale. We summarize the exact spectral energy transfer diagnostics that can
be computed globally from the third-order structure functions, and we also suggest
and test several practical formulas for local energy flux diagnostics. These are based
on the fact that usually both the longitudinal structure function SL and its transversal
counterpart ST are measured, which introduces a redundancy that can be exploited
for more robust diagnostics.

The plan of the paper is as follows. The governing equations and the main
parts of the structure function relations are presented in § 2, which also includes
a short self-contained account of Kolmogorov’s three-dimensional derivation. The
two-dimensional situation is explored in § 3 for small and large scales, recovering
(1.2) and suggesting robust diagnostic formulas. The exact expressions in the full
non-dissipative range are explored in § 4 with special emphasis on the white noise
in time case and comparison with numerical simulations in figure 1. The spectral
energy transfer theory is summarized in § 5 and compared in some test cases against
the much simpler robust diagnostics derived before. Concluding remarks are offered
in § 6.

2. Governing equations and the Kármán–Howarth–Monin relation
We consider forced–dissipative incompressible flow in an unbounded domain

described by

Du
Dt

+ rp = �↵u + ⌫r
2u + F and r · u = 0. (2.1)

Here u is the velocity vector, D/Dt = @t + (u ·r) is the material derivative, the uniform
density has been absorbed in the pressure p and F is a random body force. Scale-
selective dissipation is provided by Rayleigh friction with damping rate ↵ > 0 and
Navier–Stokes diffusion with kinematic viscosity ⌫ > 0. The random force F has zero
mean and is homogeneous in space and stationary in time and therefore

F(x, t) = 0 and F(x1, t1) · F(x2, t2) = R(x2 � x1, t2 � t1) (2.2a,b)

hold for a suitable space–time covariance function R. The overbar denotes statistical
expectation. The ensuing random turbulent flow has zero mean component (i.e. u = 0)
and is homogeneous in space as well. This implies that the covariance

u(x1, t) · u(x2, t) = u1 · u2 (2.3)

depends only on the separation vector x = x2 � x1. By construction, gradients of any
mean field with respect to (x, x1, x2) obey

r = �r1 = r2. (2.4)

Now, evaluating the governing equations at x1 and x2, cross-multiplying, adding,
averaging and following a number of calculus steps (e.g. Monin & Yaglom 1975;
Frisch 1995; Augier, Galtier & Billant 2012) yields the celebrated Kármán–Howarth–
Monin (KHM) relation

1
2

@(u1 · u2)

@t
�

1
4
r · V = (�↵ + ⌫r

2)u1 · u2 + P. (2.5)
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The independent variables in this exact statistical equation are the separation vector x
and time t. The power input term is

P(x, t) =
1
2

�
u1 · F2 + F1 · u2

�
(2.6)

and
P(0, t) = u · F = ✏ (2.7)

defines ✏ as the mean energy input due to F per unit time. The third-order structure
function vector V is

V(x, t) = |�u|2 �u , where �u = u2 � u1 (2.8)

is the velocity difference between x2 and x1. Second-order structure functions and
correlations are related for any variable A by

�A2 = 2(A2 � A1A2) ) r�A2 = �2rA1A2. (2.9)

Only spatial homogeneity has been assumed to derive the KHM relation (2.5), which
therefore holds in non-isotropic random flows as well. For stationary flows the mean
fields are time independent and the steady KHM relation is

r · V = 4
�
↵ � ⌫r

2� u1 · u2 � 4P = 4 (↵ u1 · u2 + ⌫ !1 · !2) � 4P. (2.10)

The second form uses the covariance of the vorticity ! = r ⇥ u, which for
incompressible flow is linked to the velocity covariance by the remarkable identity
(e.g. §11.3 in Monin & Yaglom (1975), Batchelor (1953))

� r
2 u1 · u2 = !1 · !2. (2.11)

At zero separation r = 0 the steady KHM relation reduces to the total energy balance

↵|u|2 + ⌫|!|2 = P(0) = ✏. (2.12)

Finally, if the flow is isotropic then there exists a function V(r) of the separation
distance r = |x| such that

V = V(r)br where br =
x
r
. (2.13)

Hence r ⇥ V = 0 for isotropic flows. If the flow is isotropic in n spatial dimensions
then

V(r) = SL(r) + (n � 1) ST(r) (2.14)

where the longitudinal and transversal structure functions are

SL = �uL�uL�uL and ST = �uL �uT�uT . (2.15a,b)

Here �uL = br · �u is the velocity difference component tangential to the separation
vector and �uT is a component transversal to it.
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676 J.-H. Xie and O. Bühler

2.1. Kolmogorov’s 4/5th law for three-dimensional isotropic turbulence
Kolmogorov’s 4/5th inertial range law for three-dimensional isotropic turbulence
(without Rayleigh friction) follows from the first part of (2.10) with ↵ = 0:

1
r2

d
dr

�
r2V

�
= 2⌫r

2
|�u|2 � 4P(r). (2.16)

Here (2.9) was used for the viscous term. With V(0) = 0 this is solved by

V(r) = 2
d
dr

⇣
⌫ |�u|2

⌘
�

4
r2

Z r

0
P(s)s2 ds. (2.17)

For high Reynolds numbers the viscous term in (2.17) is important only in the
dissipation range r 6 `⌫ = (⌫3/✏)1/4. Standard estimates put its relative size outside
this range at (`⌫/r)4/3 (e.g. Landau & Lifshitz 1959; Frisch 1995). Conversely, if
r ⌧ `f , where `f is the scale on which the force F supplies energy to the flow, then
P(r) is well approximated by its limiting value P(0) = ✏. This yields Kolmogorov’s
celebrated inertial range law

`⌫ ⌧ r ⌧ `f : V(r) = �
4
3✏r , SL(r) = �

4
5✏r and ST(r) = �

4
15✏r. (2.18a,b)

This uses SL(0) = 0 and the three-dimensional isotropic relations

V(r) = SL(r) + 2ST(r) = SL +
1
3

d
dr

(rSL) =
1

3r3

d
dr

(r4SL). (2.19)

2.2. Importance of anomalous energy dissipation
The ease with which Kolmogorov’s law could be derived from (2.16) masks the
crucial importance of anomalous energy dissipation for the analysis. Anomalous
energy dissipation in three-dimensional turbulence means that ⌫|!|2 = ✏ holds as
⌫ ! 0, implying the familiar divergence of enstrophy as 1/⌫ in the same limit. This
can interfere with Taylor expanding the covariances for small r. For example, using
the second part of (2.10) instead of the first part gives the, still exact, equation

r · V = 4⌫!1 · !2 � 4P = �2⌫|�!|2 + 4(⌫|!|2 � P) = �2⌫|�!|2 + 4(✏ � P). (2.20)

The previously used approximation P(r)⇡ ✏ for small r ⌧ `f now yields a cancellation
of constant terms on the right-hand side in (2.20), leaving behind only the enigmatic
term �2⌫|�!|2, which in the inertial range is not small if ⌫ ! 0. For example, a
Taylor expansion of this term for small r does not survive the limit ⌫ ! 0. This is
because the first term in such an expansion would be proportional to ⌫r2|r!|2, but
according to standard scaling |r!|2 / ✏3/2/⌫5/2, and hence if ⌫ ! 0 at fixed r then
⌫r2|r!|2 diverges as ⌫�3/2, indicating a loss of smoothness in this limit. Hence, the
approach based on the second part of (2.10) does not work in the three-dimensional
case without further assumptions. However, precisely the same approach is the key
for a successful analysis of the two-dimensional case, where the capricious vorticity
gradient variance is bounded a priori.
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3. Third-order structure functions for two-dimensional turbulence
Two-dimensional turbulence is very different from three-dimensional turbulence

because of the absence of vortex stretching in the two-dimensional vorticity equation

D!

Dt
= �↵! + ⌫r

2! + r ⇥ F, where ! = r ⇥ u (3.1)

and r⇥ from now on is shorthand for the vertical component of the curl. For small
(↵, ⌫), enstrophy with density !2/2 is predominantly dissipated at small scales r ⌧ `f
whereas energy with density |u|2/2 is predominantly dissipated at large scales r � `f .
Hence, as ⌫ ! 0 anomalous small-scale dissipation applies to enstrophy, not to energy.

The identity (2.11) means that applying �r2 to the KHM relation (2.5) yields
the evolution equation for !1!2/2, with �r2P emerging as the forcing term for the
enstrophy. At r = 0 the total energy balance

↵|u|2 + ⌫!2 = P(0) = ✏ (3.2)

is now paired with the analogous total enstrophy balance

↵!2 + ⌫|r!|2 = �r
2P(0) = ⌘. (3.3)

This defines ⌘ as the mean enstrophy input due to F per unit time. Using (3.2) in the
two-dimensional steady KHM relation yields

1
r

d
dr

(rV) = �2(↵|�u|2 + ⌫�!2) + 4(✏ � P). (3.4)

Note the similarity with (2.20) in three-dimensional turbulence. However, in two
dimensions the dissipation terms in (3.4) are now bounded and smooth for all values
of r. This is because ⌫|r!|2 is now bounded a priori by the two-dimensional
enstrophy balance (3.3), which implies that �!2 = O(r2) for small r ⌧ `f . Integrating
(3.4) from zero with V(0) = 0 yields

V(r) = �
1
r

Z r

0
2(↵|�u|2 + ⌫�!2)s ds + 2✏r �

4
r

Z r

0
P(s)s ds. (3.5)

3.1. Small-scale asymptotics in the enstrophy inertial range
For small r ⌧ `f the one-term approximation P(r) ⇡ ✏ now merely leads to a
cancellation between the last two terms in (3.5), hence we now consider the two-term
expansion

P(r) = ✏ �
⌘

4
r2

+ O(r4), (3.6)

which uses the definition of ⌘ in (3.3) and that r2r2 = 4 in two dimensions. This
yields

r ⌧ `f : V(r) = �
C(r)

r
+

1
4
⌘r3, (3.7)

where we used the shorthand C(r) > 0 for the dissipation integral. It is interesting
to compare (3.7) with its three-dimensional counterpart (2.17). In both cases V(r)
contains a dissipation term and a flux term. The three-dimensional dissipation term
is local in r and in the inertial range it can be readily ignored, as stated before.
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678 J.-H. Xie and O. Bühler

The two-dimensional dissipation term is non-local in r and contains a sign-definite
integral C(r) > 0 that accumulates contributions from all scales less than r, which
includes the dissipation range. To estimate the size C(r) > 0 we consider separately
its contribution from the dissipation and from the inertial range. With slight abuse
of notation the two-dimensional dissipation range is again r 6 `⌫ with a new `⌫ =p

⌫/⌘1/3. The dissipation range integral must cancel the ⌘r3/4 flux term and therefore
we can estimate C(`⌫)=⌘`4

⌫/4. The relative size of C(`⌫)/r compared to the flux term
is then (`⌫/r)4, which is indeed very small in the inertial range.

To estimate the inertial range contribution to C(r) we use the inertial range scalings
|�u|2 / ⌘2/3r2 and �!2 / ⌘2/3, which are based on dimensional analysis. The inertial
range contribution to C(r)/r of the damping term then scales as ↵⌘2/3r3 and that of
the viscous term scales as ⌫⌘2/3r. Their relative magnitudes compared to the flux term
are then ↵/⌘1/3 and (`⌫/r)2, respectively. Notably, the former does not depend on r.
In summary, the viscous term in (3.7) is irrelevant in the inertial range, as compared
to the flux term both contributions to it vanish rapidly with (`⌫/r)4 and (`⌫/r)2. The
damping term is irrelevant if

↵ ⌧ ⌘1/3, (3.8)

which is a natural physical condition for weak damping, which leaves the flux of
enstrophy through the inertial range intact. Overall, in the small-scale enstrophy flux
range of two-dimensional turbulence this analogue of (2.18) holds (Lindborg 1999):

`⌫ ⌧ r ⌧ `f : V(r) =
1
4⌘r3

, SL(r) = ST(r) =
1
8⌘r3. (3.9)

This uses the two-dimensional counterpart of (2.19), which is (e.g. Lindborg 1999)

V(r) = SL(r) + ST(r) = SL +
r
3

d
dr

(SL) =
1

3r2

d
dr

(r3SL). (3.10)

Actually, the expressions for SL and ST in (3.9) are slight approximations to the exact

SL(r) =
3
r3

Z r

0
V(s)s2 ds and ST(r) = V(r) � SL(r). (3.11a,b)

For example, if the power law for V(r) changes with r then the structure functions
adjust to the new power law with an error that decays rapidly with 1/r3. This small
error will be ignored from now on.

3.2. Large-scale asymptotics in the energy inertial range
At scales r � `f larger than the forcing scale the downscale enstrophy flux is replaced
by an upscale energy flux, and 2✏r becomes important in (3.5). However, as noted in
the introduction, there is no universal asymptotic behaviour for the function P(r) at
large scales. This will be illustrated in § 4.2, but for the moment we note that the
commonly made (e.g. Lindborg 1999) approximation P(r) ⇡ 0 for r > `f leads to

`f ⌧ r : V(r) = �
C(r)

r
+ 2✏r �

D
r

. (3.12)

Here D is the integral of 4P(s)s from zero to r = `f . The dissipation term �C(r)/r
can be estimated using the standard dimensional scaling relations |�u|2 / (✏r)2/3 and
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Exact third-order structure functions for two-dimensional turbulence 679

�!2 / ✏1/3r�2/3. For the damping and viscous terms this leads to the scaling estimates
↵✏2/3r5/3 and ⌫✏2/3r�1/3, respectively. The latter is ignorable throughout, but the former
becomes comparable to the ✏r term at the large-scale damping scale `↵ = ✏1/2↵�3/2.
This leads to the energy inertial range flux relations

`f ⌧ r ⌧ `↵ : V(r) = 2✏r �
D
r

, SL(r) =
3
2
✏r �

3
2

D
r

, ST(r) =
1
2
✏r +

1
2

D
r

(3.13a,b)

although the D/r terms are usually ignored (Lindborg 1999). As discussed before,
these power-law expressions for SL(r) and ST(r) ignore higher-order corrections
proportional to 1/r3.

3.3. Robust diagnostics for energy and enstrophy fluxes
The prior asymptotic analysis of the KHM equation allows the estimation of ✏ and
⌘ from observations of SL and ST . For example, the standard way to proceed in the
estimation of ✏ is to plot the compensated structure functions V/(2r) or 2SL/(3r),
either of which should asymptote to ✏ in the energy inertial range. However, with
both structure functions SL and ST at hand one can do better and arguably achieve
more robust diagnostics. For example, if (3.13) is accurate then the D/r term can be
eliminated by using

✏ =
1
3r

(SL(r) + 3ST(r)) (3.14)

for estimating ✏, say just above the forcing scale r = `f . Another perspective on (3.14)
is that V(r) as a solution of (3.4) in some finite range of r consists of a local particular
solution that balances the right-hand side plus a non-local homogeneous solution
proportional to 1/r. The robust diagnostics above then eliminate the homogeneous
part of the solution. More generally, if

V(r) = r p then SL(r) =
3

3 + p
r p and ST(r) =

p
3 + p

r p. (3.15a,b)

Hence an r p term is filtered by the linear combination �pSL + 3ST . Now, consider a
hypothetical situation in which

V(r) = 2✏1r +
1
4⌘2r3 (3.16)

held for some range in r. Here ✏1 and ⌘2 are related to different forcing mechanisms
operating at scales `1 ⌧ r ⌧ `2, say. In other words, r lies in the energy inertial range
relative to the first forcing mechanism and in the enstrophy inertial range relative to
the second forcing mechanism. Then the robust diagnostics

✏1 =
1
r

(SL(r) � ST(r)) and ⌘2 =
4
r3

(�SL(r) + 3ST(r)) (3.17a,b)

would exactly disentangle the energy and enstrophy fluxes. This will be illustrated in
§ 5.2 below.
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680 J.-H. Xie and O. Bühler

4. Exact non-dissipative results
The small-scale and large-scale asymptotic expressions (3.9) and (3.13) are not valid

across the forcing scale r ⇡ `f , which is a severe handicap in the practically important
situation of forcing at more than one scale, and of measurements taken in ranges that
overlap with the forcing. In this section we explore the exact result for V(r) in (3.5)
across the entire non-dissipative range

`⌫ ⌧ r ⌧ `↵ where `⌫ =
⌫1/2

⌘1/6
and `↵ =

✏1/2

↵3/2
. (4.1a,b)

Here ✏ = P(0) and ⌘ = �r2P(0) are the total energy and enstrophy input rates as
before, which involve the exact P as defined in (2.6). In this non-dissipative range
(3.5) reduces to

`⌫ ⌧ r ⌧ `↵ : V(r) = 2✏r �
4
r

Z r

0
P(s)s ds and r · V = 4(✏ � P). (4.2a,b)

The corresponding expressions for SL(r) and ST(r) follow from (3.10) as

SL(r) =
3
2
✏r �

6
r

Z r

0
P(s)s ds +

6
r3

Z r

0
P(s)s3 ds (4.3)

and
ST(r) =

1
2
✏r +

2
r

Z r

0
P(s) s ds �

6
r3

Z r

0
P(s)s3 ds. (4.4)

4.1. White noise in time forcing
In general, P is not known a priori, i.e. it is part of the solution rather than the
problem, because it depends both on the given random force F and on the unknown
fluid velocity u induced by F. An important exception to this is the case of white
noise in time forcing, in which the force covariance (2.2) is

F(x1, t1) · F(x2, t2) = R(x2 � x1)�(t2 � t1) = R(x)�(t2 � t1) (4.5)

with a smooth spatial covariance function R(x). Here we assumed r · F = 0, as any
divergent part of F is simply absorbed by the fluid pressure. As is well known (e.g.
Bernard 1999; Srinivasan & Young 2012), for this kind of forcing

P(x) =
1
2(u1 · F2 + F1 · u2) =

1
2 R(x) (4.6)

holds in the stationary regime (also for anisotropic flows). In other words, for white
noise in time forcing the function P(x) is known a priori from (4.6) and hence the
third-order structure functions in the non-dissipative range can be read off from (4.2),
without any need for an actual numerical simulation.

4.2. Structure function models and comparison with simulation
Many different covariance functions P(r) are compatible with an energy input rate
P(0)= ✏ at some scale `f , subject only to the usual condition that its Fourier transform
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Exact third-order structure functions for two-dimensional turbulence 681

P̂, say, is real and non-negative (e.g. Yaglom 1962). We consider two common models
for P(r) to indicate the range of possibilities. The first model has a spatially localized
covariance given by

P1(r) = ✏ exp
✓

�r2

4`2
f

◆
, (4.7)

which means that P̂1 / exp(�2`2
f ) where  = |k| is the magnitude of the wavenumber

vector k. This corresponds to forced wavenumbers that are concentrated in a
neighbourhood of approximate size 1/`f surrounding the origin k=0. The concomitant
rapid decay of the spatial covariance function with r makes this a reasonable model
for spatially localized forces. In the second model

P2(r) = ✏ J0(r/`f ), (4.8)

where J0 is a Bessel function. This corresponds to the often-used numerical method
where only wavenumbers in a small neighbourhood of the ring  = 1/`f are forced;
equation (4.8) arises in the limit where the width of that neighbourhood shrinks to
zero such that P̂2 / �( � 1/`f ). The perfect localization in spectral space comes at
the price of long-range correlations in real space, which are not obviously a realistic
feature for a physical process. It is easy to check that the enstrophy input rate ⌘= ✏/`2

f

for both (4.7) and (4.8), where the latter uses r2J0 = �J0.
The functions V(r) for the two models are found from (4.2) as

V1 = 2✏r � 8✏
`2

f

r


1 � exp

✓
�r2

4`2
f

◆�
and V2 = 2✏r � 4✏`f J1(r/`f ). (4.9a,b)

The corresponding longitudinal structure functions are

SL1 =
3
2
✏r � 12✏

`2
f

r
+ 48✏

`4
f

r3


1 � exp

✓
�r2

4`2
f

◆�
(4.10)

and

SL2 =
3
2
✏r � 12✏

`2
f

r
J2(r/`f ). (4.11)

Their transverse counterparts follow from ST = V � SL. Both SL1 and SL2 reduce to
⌘r3/8 and 3✏r/2 in the limits r ⌧ `f and r � `f , but the form of their transition
between these generic limits is obviously very different. This provides a testable
prediction of our theory.

In particular, the white-noise forcing (4.8) has been used in the numerical
experiments of Boffetta & Musacchio (2010), which at their highest resolution
captured both the small-scale and large-scale regimes and the transition between
them. In figure 1 we compare the theoretical result (4.11) with the numerical data
obtained by Boffetta & Musacchio (2010). This shows a remarkably accurate matching
throughout the non-dissipative range, which includes the predicted Bessel-type
oscillation.
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10–1

0.3 0.5 1.0 2.0
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2 3 4 5 6

FIGURE 1. Comparison of predicted SL from (4.11) (blue curve) with the data from
figure 3 of Boffetta & Musacchio (2010) (red circles), where the associated high-resolution
numerical simulation (run E) used 327682 grid points. The axis labels have been chosen
for easy comparison with Boffetta & Musacchio (2010). The horizontal dashed lines mark
the constant 3/2, the inset enlarges the rectangular transition region and kf = 1/`f .

5. Spectral energy flux
The most precise measure of energy transfer across spatial scales is based on a

Fourier transform of the KHM relation (e.g. Frisch 1995; Davidson 2015), which
brings in the two-dimensional energy spectrum

E(k, t) =
1
2
\u1 · u2 =

1
(2p)2

Z
1
2

u1 · u2 exp(�ik · x) dx dy. (5.1)

By construction, E is a real, even and non-negative function of k, and its total integral
over k is the mean energy density. The transformed KHM relation is

@E
@t

�
1
4
[r · V = P̂ � 2(↵ + ⌫2)E. (5.2)

On the right-hand side are the forcing and dissipation terms. In a stationary state any
discrepancy between these terms must be balanced by the third-order term on the left,
which stems from the nonlinear terms in the governing equations. The spectral energy
budget is additive over disjoint subsets of k-space, so if DK denotes any subset of
k-space then

⇧K =

Z

DK

�
1
4
[r · V dk dl =

Z

DK


P̂ � 2(↵ + ⌫2)E �

@E
@t

�
dk dl (5.3)

precisely measures the nonlinear energy flux leaving DK . Of course, the term ‘flux’
is slightly misleading here, as ⇧K is given by a bulk integral over DK rather than a
surface integral over its boundary. If

DK = {k :  = |k|6 K} (5.4)
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is a circular region then the energy flux

⇧K =

Z
�

1
4
[r · VH(K � ) dk dl = �

1
8p

Z
r · V

K
r

J1(Kr) dx dy. (5.5)

Here H(·) is the Heaviside function and the second form uses Plancherel’s theorem.

5.1. Computation of energy and enstrophy fluxes
One way to compute ⇧K is by substituting for r · V or its Fourier transform from the
steady balance in (3.4), or from its non-dissipative approximation (4.2). For example,
equations (4.7) and (4.8) would lead to the exact spectral energy fluxes

⇧K1 = �✏ exp(�K2`2
f ) and ⇧K2 = �✏(1 � H(K`f � 1)) (5.6a,b)

for K in the non-dissipative wavenumber range. Conversely, equation (5.5) can be used
directly if V is measured in an experiment. In this case it is crucial to integrate by
parts in order to avoid derivatives of the noisy field V , which yields

⇧K = �
1

8p

Z
(V ·br)K2

r
J2(Kr) dx dy. (5.7)

So far we have not assumed isotropy, but with that assumption V ·br = V(r) and hence

⇧K = �
K2

4

Z
1

0
V(r)J2(Kr) dr = �

K3

12

Z
1

0
SL(r)J3(Kr)r dr, (5.8)

where (3.10) has been used. These are exact relations, although in practice their
utility is limited by the accuracy and range of the observed V(r). It is not difficult
to check that substituting the generic V = 2✏r into (5.8) yields ⇧K = �✏, a negative
flux consistent with the inverse energy flux.

Based on (2.11) a corresponding spectral enstrophy flux ⇧!
K , say, can be constructed

provided that r · V is replaced by �r2r · V. Mutatis mutandis, for the white-noise
examples this leads to the exact enstrophy fluxes

⇧!
K1 = ⌘(1 � (K2`2

f + 1)e�K2`2
f ) and ⇧!

K2 = ⌘ H(K`f � 1) (5.9a,b)

in the non-dissipative range. As (5.6) and (5.9) are not valid for K in the large-scale
or small-scale dissipation ranges, they do not satisfy the global constraints noted in
§ 10.3.4 of Davidson (2015).

5.2. Test of robust energy flux diagnostics
The spectral flux diagnostics displayed in the last section are the most precise
measures of scale-to-scale energy transfer, but, as exemplified by (5.8), for each
K they rely on integrals of V(r) over all r. In practice, it is therefore valuable to
have simpler diagnostics that only use the structure functions in some local range
of r. Here we test the robust energy flux diagnostics proposed in § 3.3 using two
examples illustrated in figure 2. In the first example there is a single energy source
of type (4.7) with ✏ = 1 and `f = 1 and the following three energy flux diagnostics
are compared in figure 2(a):

✏l =
2
3r

SL, ✏h =
SL + 3ST

3r
, ✏r =

SL � ST

r
. (5.10a�c)
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Energy flux diagnostics: single source Energy flux diagnostics: triple source(a) (b)

FIGURE 2. Comparison of energy flux diagnostics (5.10) in two white-noise test cases.
(a) Single energy source of type (4.7) with ✏ = 1 and `f = 1. As expected, ✏h captures the
flux most rapidly. (b) Two more energy sources of type (4.8) have been added according
to (5.11). Only the enstrophy-corrected diagnostic ✏r captures the flat, constant flux regions
between the forcing scales. Note: for type (4.8) forcing the dominant wavelength is 2p/`f .

Here ✏l is the standard estimate for ✏ based on the expression for SL in (3.13), ✏h is
from (3.14), which filters the 1/r term, and ✏r is from (3.17) and filters the enstrophy
flux r3 term. Figure 2(a) shows that ✏h converges most quickly to ✏ = 1 as r increases,
as expected. The second example is more challenging: we add two further energy
sources of type (4.8) to mimic three different energy sources with parameters

✏ 2 {1, 102, 104
} and `f 2 {1, 102, 104

}. (5.11a,b)

Here the large-scale energy sources are strong enough such that their downscale
enstrophy flux interferes with the upscale energy flux of the small-scale sources,
which makes this a challenging problem. From (5.6), the exact spectral energy flux

⇧K = � exp(�K2) � 102(1 � H(102K � 1)) � 104(1 � H(104K � 1)) (5.12)

in the non-dissipative range, which makes obvious the constant flux regions between
forcing scales. Now, the result from the three simple local diagnostics (5.10) are
displayed in figure 2(b), which spans six decades. Overall, ✏r very neatly captures the
constant energy fluxes between the spatially separated energy sources. By comparison,
the other diagnostics are strongly impacted by the enstrophy fluxes. This recommends
the use of ✏r in situations with more than one energy source.

6. Concluding remarks
We highlighted the exact results for V(r) in the non-dissipative range for

two-dimensional turbulence, but of course the analogous construction also applies
in three dimensions. The main difference is that the explicit ✏ term in (4.2) does not
arise in three-dimensional turbulence, and therefore (4.2) is simply replaced by (2.17)
without the viscous term. For example, the three-dimensional analogues of (4.7) and
(4.8) are then given by

P1(r) = ✏ exp(�k2
f r2) and P2(r) =

✏

kf r
sin(kf r), (6.1a,b)
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where kf is the forcing wavenumber. The corresponding exact V(r) are then readily
computed.

Now, given the ease with which V(r) could be computed for white noise in time
forcing, it is important to bear in mind that this special case has the property P̂(k)> 0,
which is not necessarily true for general random forcing. Indeed, in the general case
it is conceivable that P̂(k) < 0 for some wavenumbers, which means that the random
force extracts energy from some scales. This is ruled out for white noise in time, of
course. Another property of the exact result (4.2) in the special case of white noise
in time forcing is that V(r)> 0 must be true because of ✏ >P(r), which holds in this
case as P(r) must be a covariance function and is therefore dominated by its value
at the origin P(0) = ✏. Whether this is true for more a general random force F is an
interesting avenue to explore.

Our results were derived by restricting attention to exact stationary turbulent states,
leaving aside the harder theoretical treatment of the freely evolving initial-value
problem, or of simulations with only one dissipation scale. A practical question
is then to what extent our results apply to situations in which the turbulent state
is not exactly stationary, but might still behave in a similar fashion as far as the
third-order structure function is concerned, which might be relevant for figure 1. In
this connection a referee pointed out to us that the ↵-term in the exact (3.5) can
be integrated using the identity |�u|2 = r1�n d(rn�uL�uL)/dr valid for incompressible
n-dimensional isotropic flows. This yields an extension of (4.2) that is valid also in
the large-scale damping range:

`⌫ ⌧ r : V(r) + 2↵(�uL�uL)r = 2✏r �
4
r

Z r

0
P(s)s ds. (6.2)

With measurements or models for �uL�uL at hand this could enhance even further the
diagnostic value of V(r) in the energy range, which is an interesting prospect.

Another question of great practical interest is the consideration of anisotropic
flows, not least because such flows are the stepping stone to rotating stratified flows,
which are of primary relevance in atmosphere and ocean applications. Here the main
theoretical problem is that the KHM relation by its very nature is only a single
equation whereas V now has two components. Of course, one might assume that
V =r� holds for some potential �(x, y), and with that assumption the KHM equation
becomes a Poisson equation for �. Similar considerations have been discussed in
the recent paper of Augier et al. (2012) on stratified turbulence, where the authors
point out the difficulties of constraining harmonic components of � outside isotropic
theory. But, if a global solution for � that includes the forcing range can be obtained,
as would be the case for white noise in time forcing, then its harmonic components
would be determined too! The main problem here is finding a good criterion for the
potential assumption V = r� in the first place.
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